Araştırma Makalesi – Research Article

Cr₂O₃ Nanoyapılarının Elektrokimyasal Sentezi ve Karakterizasyonu

Ahmet Recep Korkmaz¹, Emir Çepni², Hülya Öztürk Doğan^{3*}

Geliş / Received: 20/04/2020

Revize / Revised: 04/10/2020

Kabul / Accepted: 15/10/2020

ÖΖ

Bu çalışmada krom(III) oksit (Cr_2O_3) nanoyapıları flor katkılı kalay oksit (FTO) kaplı cam elektrot yüzeyinde elektrokimyasal teknik kullanılarak sentezlenmiştir. Elektrolit çözeltisi olarak $CrCl_3$ içeren ortamda öncelikle krom oksihidroksit türleri oluşturulmuş ve sonrasında ısıl işlem uygulanarak oksit formuna dönüşüm sağlanmıştır. Elektrokimyasal sentez üzerine indirgenme potansiyeli ve depozisyon süresinin etkisi incelenmiştir. Elektrokimyasal olarak biriktirilen Cr_2O_3 nanoyapılarının karakterizasyonu XRD, SEM ve EDS teknikleri kullanılarak gerçekleştirilmiştir. -1,4 V sabit potansiyelde hazırlanan Cr_2O_3 nanoyapılarının XRD spektrumunda Cr_2O_3' in (110) düzlemine ait kırınım piki elde edilmiştir. EDS spektrumu ise elementel olarak oldukça saf Cr_2O_3 nanoyapılarının sentezlendiğini desteklemiştir.

Anahtar Kelimeler- Elektrokimyasal Biriktirm, Flor Katkılı Kalay Oksit, Krom Oksit, Nanoyapı.

¹İletişim: <u>ahmetkorkmaz381@gmail.com</u> (http://orcid.org/ 0000-0003-3583-514X) Nanobilim ve Nanomühendislik Bölümü, Atatürk Üniversitesi, Erzurum.

²İletişim: <u>emircepni@windowslive.com</u> (https://orcid.org/0000-0001-8738-1157)

Nanobilim ve Nanomühendislik Bölümü, Atatürk Üniversitesi, Erzurum.

^{3*}Sorumlu yazar iletişim: <u>hdogan@atauni.edu.tr</u> (http://orcid.org/ 0000-0002-4072-7744)

Kimya ve Kimyasal İşleme Teknolojisi Bölümü, Teknik Bilimler Meslek Yüksek Okulu, Atatürk Üniversitesi, Erzurum.

Electrochemical Synthesis and Characterization of Cr₂O₃ Nanostructures

ABSTRACT

In this study, chromium (III) oxide (Cr_2O_3) nanostructures were synthesized using electrochemical technique on the surface of the fluorine-doped tin oxide (FTO) coated glass electrode. Firstly, chromium oxyhydroxide species were created in the aqueous electrolyte solution containing $CrCl_3$, and then thermal annealing was applied to convert to oxide form. The effect of reduction potential and deposition time on electrochemical synthesis was investigated. The characterization of electrochemically deposited Cr_2O_3 nanostructures was carried out using XRD, SEM and EDS techniques. The diffraction peak of the Cr_2O_3 (110) plane was obtained in the XRD spectrum of Cr_2O_3 nanostructures prepared at -1,4 V constant potential. The EDS spectrum supported that elementally highly pure Cr_2O_3 nanostructures were synthesized.

Keywords- Electrochemical Deposition, F-Doped Tin Oxide, Chromium Oxide, Nanostructure

I. GİRİŞ

Endüstriyel ihtiyaçların artmasıyla birlikte, nanoboyutlu metal oksitler üzerine yapılan çalışmalar gittikçe daha ilgi çeken bir alan oluşturmuştur [1-4]. Yığın malzemelere kıyasla nanoboyutlu materyallerin maliyetlerinin düşük olması ve yüksek yüzey alanı/hacim oranlarına sahip olmaları bu malzemelere olan ilgiyi arttırmıştır. Düşük maliyet ve birkaç oksidasyon formu (+2, +3, +6) ile krom oksit, elektrokimyasal uygulamalar için ideal bir elektrot malzemesi olarak kabul edilir. Krom (III) oksit (Cr₂0₃) önemli bir geçiş metal oksiti olup, çimento endüstrisi [5] ve katalizör uygulamaları gibi çeşitli alanlarda yaygın olarak kullanılır. Kromun tüm oksitleri arasında Cr_2O_3 formu en kararlı olanıdır ve geniş bir aralıktaki sıcaklık, basınç değişimlerine karşı kararlı halini korur [6-8]. Nanoboyutlu Cr₂O₃'in endüstriyel değeri dünyada giderek daha fazla ilgi görmekte ve daha fazla uygulama alanında kullanımı incelenmektedir [9,10]. Örneğin, elektrik, manyetik malzeme ve hidrojen depolama alanında kullanılabilir. Cr₂O₃ ayrıca refrakter malzeme olarak da kullanılabilir [11]. Cr₂O₃'in çeşitli maddelerle kompoziti oluşturularak aşınma ve korozyon direnci ile mekanik özellikleri geliştirilebilir [12-15]. Cr2O3'in katalizör olarak kullanıldığı uygulamalar da literatürde bulunmaktadır [16-18]. Petrokimya endüstrisinde hidrojenasyon organik reaksiyonları ve organik maddenin ayrışması gibi uygulamalarda katalizör olarak yaygın bir şekilde kullanılmaktadır. Aynı zamanda farklı katalizörler ya da malzemeler ile katkılama yoluyla elde edilen bileşik katalizörlerde dikkate değer bir performans artışına olanak sağlayabilmektedir [19-24]. Kompozit Cr₂0₃ katalizörleri gaz dönüşümü, gaz üretimi ve malzeme dönüşümünde kullanılmaktadır. Tüm bunlara ek olarak, Cr₂0₃ hidrojen depolama malzemeleri [25,26], gaz sensörleri [27-30], manyetik uygulamalar [31-33], lityum malzeme [34-37] ve güneş enerjisi uygulaması [38,39] gibi farklı alanlarda araştırılmıştır.

Nanoboyutlu Cr₂O₃ ceşitli yöntemlerle sentezlenebilir. Genel olarak, bu sentez yöntemleri katı faz yöntemi, sıvı faz yöntemi ve buhar fazı yöntemi olmak üzere üç ana kategoriye ayrılabilir. Cr₂O₃ katı faz yöntemi olan termal ayrışma [40,41] yöntemi; sıvı faz yöntemleri olan mikroemülsiyon yöntemi [10], sol-jel yöntemi [42,43], cökeltme yöntemi [44-46], hidrotermal yöntemi [47,48], solvotermal yöntemi [49] ve mikrodalga vöntemi [50]; gaz faz vöntemleri olan kimvasal buhar voğusma fazı vöntemi [51], lazer buharı biriktirme yöntemi [52] ve metal organik kimyasal buharı biriktirme yöntemi [53] kullanılarak sentezlenmiştir. Katı faz ve buhar fazı yöntemleri oldukça yüksek maliyetlidirler ve büyük ölçekli sentezde yüksek saflık elde etmek oldukça zordur. Sıvı fazı yöntemlerinde boyutu kolaylıkla kontrol edilebilir nanoparçacıkların elde edilmesi nispeten kolaydır. Elektrokimyasal teknik ise sıvı faz uygulamaları içerisinde ucuz, kolay, basit ve oda koşullarında uygulanabilir olması nedeniyle avantajlıdır. Özellikle substrat yüzeyinde doğrudan malzeme oluşumuna imkan tanıması bu yöntemi pratik kılmakla birlikte; ağır kimyasallar ve yüksek sıcaklık/basınç ortamına ihtiyaç duyulmaması da ticarileşme anlamında maliyeti düşürmektedir. Bu avantajlarına rağmen literatürde Cr₂O₃ nanoyapılarının doğrudan elektrot yüzeyinde elektrokimyasal sentezine yönelik herhangi bir çalışma mevcut değildir. Bu çalışmanın temel amacı; güneş pillerinde oldukça fazla uygulama alanına sahip görünür bölge duyarlı ve optiksel olarak geçirgen materyalin elektrokimyasal biriktirme ile eldesidir. Bu sayede gelecekte modifiye elektrotların hazırlanmasında alt yapı oluşturacak Cr2O3 nanoyapılarının sentezlenmesi mümkün olacaktır.

II. MATERYAL VE METOT

 Cr_2O_3 nanoyapılarının elektrokimyasal sentezi için 3 elektrotlu hücre sistemi seçilmiştir. Bu hücre sistemi için çalışma elektrodu flor katkılı kalay oksit (FTO), karşıt elektrodu Pt tel (yaklaşık %99,95 saflıkta, 0,5 mm çapında ve 5 cm uzunluğunda) ve referans elektrodu Ag/AgCl kullanılmıştır. Elektrokimyasal depozisyonların öncesinde FTO elektrodun temizliği yapılmıştır. Bunun için FTO elektrot sırası ile etanol ve saf su içerisinde 15 dakika ultrasonik banyoda bekletilmiştir. Elektrolit çözeltisi ise 5 mM CrCl₃ ve 50 mM NH₄Cl içeren sulu çözeltidir. Elektrokimyasal depozisyon öncesinde ve depozisyon esnasında elektrolit çözeltisinden O_2 gazı geçirilmiş ve her deney öncesi dönüşümlü voltamogram (CV) alınmıştır. CV ölçümleri oda sıcaklığında +0,2 V ile -1,7 V potansiyel aralığında 100 mV/s tarama hızında Gamry Reference 600+ potansiyostat cihazı kullanılarak kaydedilmiştir. FTO yüzeyinde sabit potansiyel altında elektrokimyasal depozit edilen krom oksihidroksit türleri O_2 gazı geçirilen sistemden 400 °C ve 500 °C'de ısıl işleme tabi tutulmuş ve Cr_2O_3 yapısına dönüşümü sağlanmıştır. Sentezlenen nanoyapıların yapısal karakterizasyonu X-ışınları kırınım spektroskopisi (XRD) ve Enerji dağılımlı X-ışını spektroskopisi (EDS) ile gerçekleştirilmiştir. Morfolojik karakterizasyon için ise taramalı elektron mikroskobu (SEM) kullanılmıştır.

III. BULGULAR VE TARTIŞMA

Elektrokimyasal sentez için öncelikle 5 mM CrCl₃ ve 50 mM NH₄Cl içeren çözeltiden O₂ gazı geçirilmiş ve bu elektrolit ortamında FTO elektrodun dönüşümlü voltamogramı alınmıştır (Şekil 1).

Şekil 1. 5 mM CrCl₃ ve 50 mM NH₄Cl içeren çözeltide FTO elektrodun dönüşümlü voltamogramı

Şekil 1'de verilen voltamogram incelendiğinde; indirgenme yönünde iki indirgenme piki görülmektedir. Literatürde I.pikin Cr^{+3} türlerinin Cr^{+2} 'ye indirgenmesine karşılık geldiği, II.pikin ise Cr^{+2} türlerinin Cr^{0} 'a indirgenmesine ait olduğu belirtilmektedir [54]. Çözelti içerisinde O₂ bulunması durumunda; elektrot yüzeyinde indirgenmiş Cr türleri O₂ ve suyun hidroksiti ile birleşir; böylece krom oksihidroksit türlerini oluşturur. Bu türlere ısıl işlem uygulandığında kolaylıkla hidroksit formundan oksit formuna geçiş olmaktadır. Literatürde metal oksitlerin bu şekilde elde edilmesi ile ilgili çalışmalar mevcuttur [55].

 Cr_2O_3 nanoyapılarının elektrokimyasal sentezi için depozisyon potansiyeli ve depozisyon süresi gibi parametrelerin oluşan nanoyapılar üzerine etkisi XRD spektrumları alınarak incelenmiştir. Depozisyon potansiyeli olarak Şekil 1'de alınan voltamograma göre -1,2 ve -1,4 V değerleri seçilmiş ve bu potansiyellerde 30 dakika süre ile biriktirilmiş numuneler 500 °C'de 1 saat süre ile ısıl işleme tabi tutulmuştur. Bu numunelere ve karşılaştırma amacıyla FTO elektroduna ait XRD spektrumları Şekil 2'de gösterilmiştir. Substrat olarak kullanılan FTO elektroduna ait kırınım pikleri 27,0; 34,1; 38,2; 52,8; 61,9 ve 65,9°'lerde gözlenmiştir. -1,2 V'ta depozit edilen numune için alınan XRD spektrumunda FTO pikleri dışında Cr_2O_3 'e ait kırınım piklerinin elde edilememesi depozisyon potansiyelinin Cr_2O_3 yapısının oluşması için yeterli olmadığına işaret eder. -1,4 V'ta sentezlenen numunede ise Cr_2O_3 'in (110) düzlemine ait $2\theta=36,8°$ 'deki piki elde edilmiştir. Bu kırınım piki JCPDS-38-1479 kart numarası ile uyumludur. Ek olarak metalik Cr ($2\theta=44,4°$) veya krom oksihidroksit ($2\theta=20°$) yapılarına ait herhangi bir kırınım piki gözlenmemiştir. Bu durum elektrot yüzeyine depozit edilen türlerin ısıl işlem ile tamamen Cr_2O_3 formuna dönüştüğünü ifade eder. BŞEÜ Fen Bilimleri Dergisi 7(2), 994-1003, 2020

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

Şekil 2. Farklı depozisyon potansiyellerinde sentezlenen Cr2O3 nanoyapılarının XRD spektrumları

-1,4 V sabit potansiyelde farklı depozisyon sürelerinde (15 ve 30 dakika) numuneler hazırlanmış ve XRD spektrumları Şekil 3'te karşılaştırılmıştır. Bu spektrumda 30 dakika depozit edilen numunede Cr_2O_3 kırınım piki daha baskın elde edilmiştir. Bu nedenle depozisyon süresi 30 dakika olarak belirlenmiştir.

Şekil 3. Farklı depozisyon sürelerinde sentezlenen Cr_2O_3 nanoyapılarının XRD spektrumları

Tavlama sıcaklığının etkisinin belirlenmesi amacıyla -1,4 V sabit potansiyelde 30 dakikada sentezlenen numuneler 400 0 C ve 500 0 C'de tavlanmıştır. Hazırlanan Cr₂O₃ yapılarının XRD spektrumları kaydedilmiştir (Şekil 4). 500 0 C ısıl işlem uygulanan numunede Cr₂O₃ kırınım piki gözlenmiştir.

BŞEÜ Fen Bilimleri Dergisi 7(2), 994-1003, 2020

e-ISSN: 2458-7575 (http://dergipark.gov.tr/bseufbd)

Şekil 4. Farklı tavlama sıcaklıklarında hazırlanan Cr2O3 nanoyapılarının XRD spektrumları

FTO elektrot yüzeyinde elektrokimyasal olarak hazırlanan Cr_2O_3 nanoyapılarının morfolojik karakterizasyonu için SEM görüntüsü alınmıştır (Şekil 5). Bu SEM görüntüsü incelendiğinde nanoyapıların elektrot yüzeyini kapladığı görülmektedir. Ayrıca alınan EDS spektrumunda (Şekil 5 iç resim), substrattan kaynaklanan pikler ve Cr_2O_3 dışında herhangi bir elemente rastlanmamıştır. Elementel olarak oldukça saf Cr_2O_3 nanoyapılarının sentezlendiği görülmüştür.

Şekil 5. Cr₂O₃ nanoyapılarının SEM görüntüsü (iç resim:EDS spektrumu)

IV. Sonuç

Yapılan bu çalışmada literatürde daha önce Cr_2O_3 'in elektrokimyasal sentezi için mevcut olmayan bir yöntem önerilmiştir. Cr^{+3} iyonlarını içeren elektrolit ortamından O_2 gazı geçtiği sırada -1,4 V'ta 30 dakika süre boyunca elektrokimyasal depozisyon yapılmıştır. Böylece FTO elektrot yüzeyinde doğrudan krom oksihidroksit

türleri oluşturulmuş ve elektrodun 500 0 C'de 1 saat süre ile ısıl işleme tabi tutulmasıyla bütün krom oksihidroksit türlerinin Cr₂O₃ formuna dönüşümü sağlanmıştır. Yapısal karakterizasyon için XRD tekniğinden faydalanılmış ve Cr₂O₃'in (110) düzlemine ait kırınım piki elde edilmiştir. SEM tekniği ile yapılan morfolojik karakterizasyonda nanoyapılar açıkça gözlenmiştir. FTO elektrot yüzeyinde doğrudan sentezlenen Cr₂O₃ nanoyapıları gelecekte enerji depolama ve dönüşüm uygulamalarında doğrudan kullanılabilecektir.

TEŞEKKÜR

Bu çalışmanın gerçekleştirilmesinde laboratuvar alt yapısının kullanılmasına izin verdiği için Atatürk Üniversitesi Fen Fakültesi Dekanlığı'na teşekkür ederiz. Sentezlenen elektrotların karakterizasyonlarının yapılması için desteklerini esirgemeyen Atatürk Üniversitesi Doğu Anadolu Yüksek Teknoloji Araştırma Merkezi'ne de (DAYTAM) teşekkürlerimizi sunarız.

KAYNAKLAR

- [1] Eklund, P., Mikkelsen, N.J., Sillassen, M., Bienk, E.J., & Bøttiger, J. (2008). Chromium oxide-based multilayer coatings deposited by reactive magnetron sputtering in an industrial setup. *Surface and Coatings Technology*, 203, 156-159.
- [2] Mougin, J., Bihan, T.L., & Lucazeau, G. (2001). High-pressure study of Cr₂O₃ obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. *Journal of Physics and Chemistry of Solids*, 62, 553-563.
- [3] Pang, X.L., Gao, K.W., Luo, F., Emirov, Y., Levin, A.A., & Volinsky, A.A. (2009). Investigation of microstructure and mechanical properties of multi-layer Cr/Cr₂O₃ coatings. *Thin Solid Films*, 517, 1922-1927.
- [4] Gordo, E., Chen, G.Z. & Fray, D.J. (2004). Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. *Electrochim. Acta*, 49, 2195-2208.
- [5] Barros, A.M., Espinosa, D.C.R., & Tenorio, J.A.S. (2004). Effect of Cr₂O₃ and NiO additions on the phase transformations at high temperature in Portland cement. *Thin Solid Films*, *34*, 1795-1801.
- [6] Mndar, H., Uustare, T., Aarik, J., Tarre, A., & Rosental, A. (2007). Characterization of asymmetric rhombohedral twin in epitaxial α -Cr₂O₃ thin films by X-ray and electron diffraction. *Thin Solid Films*, 515, 4570-4579.
- [7] Ouyang, J.H., & Sasaki, S. (2001). Effects of different additives on microstructure and high-temperature tribological properties of plasma-sprayed Cr₂O₃ ceramic coatings. *Wear*, 249, 56-66.
- [8] Morisato, T., Jones, N.O., Khanna, S.N., & Kawazoe, Y. (2006). Stable aluminum and chromium oxide clusters as precursors to nanoscale materials. *Computational Materials Science*, *35*, 366-370.
- [9] Kohli, N., Singh, O., Anand, K., & Singh, R.C. (2012). Effect of reaction temperature on crystallite size and sensing response of chromium oxide nanoparticles. *Materials Research Bulletin*, 47, 2072-2076.
- [10] Lei, S.J., Peng, X.M., Liang, Z.H., Li, X.P., Wang, C.Y., Cheng, B.C., Xiao, Y.H., & Zhou, L. (2012). Self-template formation and properties study of Cr₂O₃ nanoparticle tubes. *Journal of Materials Chemistry*, 22, 1643-1652.
- [11] Guo, Z.Q., Ping, Z.F., & Chen N. (1996). Production and properties of Cr₂O₃ raw material for refractories. *Industrial Ceramics*, *16*, 172.
- [12] Cellard, A., Zenati, R., Garnier, V., Fantozzi, G., & Baret G. (2007). Optimization of chromium oxide nanopowders dispersion for spray-drying. *Journal of the European Ceramic Society*, 27, 1017-1021.

- [13] Li, M.S., Feng, C.J., & Wang, F.H. (2006). Effect of partial pressure of reactive gas on chromium nitride and chromium oxide deposited by arc ion plating. *Transactions of Nonferrous Metals Society of China*, *16*, 276-279.
- [14] Siab, R., Huvier, C., Kemdehoundja, M., Grosseau-Poussard, J.L., & Dinhut, J.F. (2009). On the relation between damage rate and stress level evolution in α-Cr₂O₃ thin films growing on Ni–33at%Cr. *Corrosion Science*, 51, 2246-2248.
- [15] Shiratsuchi, Y., Kawahara, S.I., Noutomi, H., Arakawa, K., Mori, H., & Nakatani, R. (2011). Effect of crystallinity of Co layer on perpendicular exchange bias in Au-capped ultrathin Co film on Cr₂O₃(0 0 0 1) thin film. *Journal of Magnetism and Magnetic Materials*, *323*, 579-586.
- [16] Rafi, U.D., Qu, X.H., Li, P., Lin, Z., Wan, Q., Iqbal, M.Z., Rafique, M.Y., Farooq, M.H., & Islam, U.D. (2012). Superior Catalytic Effects of Nb₂O₅, TiO₂, and Cr₂O₃ Nanoparticles in Improving the Hydrogen Sorption Properties of NaAlH₄. *The Journal of Physical Chemistry C*, *116*, 11924-11938.
- [17] Bates, M.K., Jia, Q.Y., Ramaswamy, N., Allen, R.J., & Mukerjee, S. (2015). Composite Ni/NiO-Cr₂O₃ Catalyst for Alkaline Hydrogen Evolution Reaction. *The Journal of Physical Chemistry C*, *119*, 5467-5477.
- [18] Karuppuchamy, S., Matsui, H., Kira, K., Hassan, M.A., &Yoshihara, M. (2012). Visible light induced photocatalytic activity of Nb₂O₅/carbon cluster/Cr₂O₃ composite materials. *Ceramics International*, 38, 1515-1521.
- [19] Khaleel, A., Shehadi, I., & Shamisi, M.A. (2010). Nanostructured chromium-iron mixed oxides: Physicochemical properties and catalytic activity. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 355, 75-82.
- [20] Shaislamov, U., Yang, B.Y., & Park, K. (2012). Enhanced photocatalytic properties of TiO₂ nanotube arrays with Cr₂O₃ nanoparticles under visible light. *Journal of the Korean Physical Society*, *61*, 759–763.
- [21] Khassin, A.A., Sipatrov, A.G., Demeshkina, M.P., & Minyukova, T.P. (2009). Partially hydrated ironchromium oxide catalyst for the Fischer-Tropsch synthesis. *Reaction Kinetics and Catalysis Letters*, 97, 371–379.
- [22] Kim, A.R., Lee, B., Park, M.J., Moon, D.J., & Bae, J.W. (2012). Catalytic performance on CuO-Cr₂O₃-Ga₂O₃ mixed oxides for water gas shift reaction: Effects of Ga/Cr molar ratio. *Catalysis Communications*, 19, 66-69.
- [23] Tamiolakis, I., Lykakis, I.N., Katsonlidis, A.P., Malliakas, C.D., & Armatas, G.S. (2012). Catalytic performance on CuO–Cr₂O₃–Ga₂O₃ mixed oxides for water gas shift reaction: Effects of Ga/Cr molar ra Ordered mesoporous Cr₂O₃ frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. *Journal of Materials Chemistry*, 22, 6919-6927.
- [24] Wang, F., Fan J.L., Zhao, Y., Zhang, W.X., Liang, Y., Lu, J.Q., Lun, M.F., & Wang, Y.J. (2014). Effects of yttrium-doping on the performance of Cr₂O₃ catalysts for vapor phase fluorination of 1,1,2,3tetrachloropropene. *Journal of Fluorine Chemistry*, 166, 78-83.
- [25] Khafri M.A., & Lafdani, M.H.K. (2012). A novel method to synthesize Cr₂O₃ nanopowders using EDTA as a chelating agent. *Powder Technology*, 222, 152-159.
- [26] Song, M.Y., Kwon, S.N., Park, H.R., & Mumn, D.R. (2011). Effects of fine Cr₂O₃ addition on Mg's hydrogen-storage performance. *Journal of Industrial and Engineering Chemistry*, *17*, 167-169.
- [27] Jin, H., Huang, Y.J., & Jian, J.W. (2015). Sensing mechanism of the zirconia-based highly selective NO sensor by using a plate-like Cr₂O₃ sensing electrode. *Sensors and Actuators B: Chemical, 219*, 112-118.

- [28] Hao, R., Yuan, J.Y., & Peng, Q. (2006). Fabrication and Sensing Behavior of Cr₂O₃ Nanofibers via In situ Gelation and Electrospinning. *Chemistry Letters*, *35*, 1248-1249.
- [29] Yoon, J.W., Kim, H.J., Jeong, H.M., & Lee J.H. (2014). Gas sensing characteristics of p-type Cr₂O₃ and Co₃O₄ nanofibers depending on inter-particle connectivity. *Sensors and Actuators B: Chemical*, 202, 263-271.
- [30] Stanoiu, A., Simion, C.E., Diamandescn, L., Mihaila, D.T., & Feder, M. (2012). NO₂ sensing properties of Cr₂O₃ highlighted by work function investigations. *Thin Solid Films*, *522*, 395-400.
- [31] Montiel, H., Alvarez, G., Conde-Gallardo, A., & Zamorano, R. (2015). Microwave absorption behavior in Cr₂O₃ nanopowders. *Journal of Alloys and Compounds*, 628, 272-276.
- [32] Lebreau, F., Islam, M.M., Diawara, B., & Marcus, P. (2014). Structural, Magnetic, Electronic, Defect, and Diffusion Properties of Cr₂O₃: A DFT+U Study. *The Journal of Physical Chemistry C, 118*, 18133-18145.
- [33] Hehl, F.W., Obukhov, Y.N., Rivera, J.P., & Schmid, H. (2009). Magnetoelectric Cr₂O₃ and relativity theory. *The European Physical Journal B*, *71*, 321.
- [34] Boldyrev, Y.I., Ivanova, N.D., Sokolsky, G.V., Ivanov, S.V., & Stadnik, O.A. (2013). Thin film nonstoichiometric chromium oxide-based cathode material for rechargeable and primary lithium batteries. *Journal of Solid State Electrochemistry*, *17*, 2213–2221.
- [35] Sahan, H., Goktepe, H., Patat, S., & Ulgen, A. (2010). Effect of the Cr₂O₃ coating on electrochemical properties of spinel LiMn₂O₄ as a cathode material for lithium battery applications. *Solid State Ionics, 181*, 1437-1444.
- [36] Lin, X.T., Wu, K.Q., Shao, L.Y., Shui, M., Jiang, X.X., Wang, D.G., Long, N.B., Ren, Y.L., & Shu, J. (2014). Facile preparation of Cr₂O₃@Ag₂O composite as high performance lithium storage material. *Journal of Alloys and Compounds*, 598, 68-72.
- [37] Cheng, C.X., Yi, H.Y., & Chen, F. (2014). Effect of Cr₂O₃ Coating on LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ as Cathode for Lithium-Ion Batteries. *Journal of Electronic Materials*, *43*, 3681–3687.
- [38] Khamlich, S., Mccrindle, R., Nuru, Z.Y., Cingo, N., & Maaza, M. (2013). Annealing effect on the structural and optical properties of Cr/α-Cr₂O₃ monodispersed particles based solar absorbers. *Applied Surface Science*, 265, 745-749.
- [39] Khamlich, S., Nemraoui, O., Mongwaketsi, N., Mccrindle, R., Cingo, N., & Maaza, M. (2012). Black Cr/α-Cr₂O₃ nanoparticles based solar absorbers. *Physica B: Condensed Matter*, 407, 1509-1512.
- [40] Gibot, P., & Vidal, L. (2010). Original synthesis of chromium (III) oxide nanoparticles. *Journal of the European Ceramic Society*, *30*, 911-915.
- [41] Jankovsky, O., Sedmidubsky, D., Sofer, Z., Luxa, J., & Bartunek, V. (2015). Simple synthesis of Cr₂O₃ nanoparticles with a tunable particle size. *Ceramics International*, *41*, 4644-4650.
- [42] Gupta, R.K., Mitchell, E., Candler, J., Kahol, P.K., Ghosh, K., & Dong, L. (2014). Facile synthesis and characterization of nanostructured chromium oxide. *Powder Technology*, 254, 78-81.
- [43] Jung, Y.S., Kim, K.H., Jang, T.Y., Tak, Y., & Baeck, S.H. (2011). Enhancement of photocatalytic properties of Cr₂O₃–TiO₂ mixed oxides prepared by sol–gel method. *Current Applied Physics*, 11, 358-361.
- [44] El-Sheikh, S.M., Mohamed, R.M., & Fouad, O.A. (2009). Synthesis and structure screening of nanostructured chromium oxide powders. *Journal of Alloys and Compounds*, 482, 302-307.

- [45] Ocana, M. (2001). Nanosized Cr₂O₃ hydrate spherical particles prepared by the urea method. *Journal of the European Ceramic Society*, *21*, 931-939.
- [46] Tyagi, A.K., Mangamma, G., Kamruddin, M., Dash, S., & Raj, B. (2007). Synthesis and Characterization of Nanocrystalline Cr₂O₃ and ZrO₂ Ceramic Materials. *Journal of Nanoscience and Nanotechnology*, 7, 2005-2009.
- [47] Pei, Z.Z., & Zhang, Y. (2008). A novel method to prepare Cr₂O₃ nanoparticles. *Jo Materials Letters*, 62, 504-506.
- [48] Pei, Z.Z., Xu, H.B., & Zhang, Y. (2009). Preparation of Cr₂O₃ nanoparticles via C₂H₅OH hydrothermal reduction. *Journal of Alloys and Compounds*, 468, L5-L8.
- [49] Wei, G.Y., Qu, J.K., Zheng, Y.D., Qi, T., & Guo Q. (2012). Preparation of Cr₂O₃ precursors by hydrothermal reduction in the abundant Na₂CO₃ and Na₂CrO₄ solution. *International Journal of Minerals*, *Metallurgy, and Materials*, 19, 978–985.
- [50] Xu, H.T., Lou, T.J., & Li, Y.D. (2004). Synthesis and characterize of trivalent chromium Cr(OH)₃ and Cr₂O₃ microspheres. *Inorganic Chemistry Communications*, *7*, 666-668.
- [51] Balachandran, U., Siegel, R.W., Liao, Y.X., & Askew, T.R. (1995). Synthesis, sintering, and magnetic properties of nanophase Cr₂O₃. *Nanostructured Materials*, *5*, 505-512.
- [52] Balakrishnan, G., Kuppusami, P., Sairam, T.N., Rao, R.V.S., Mohandas, E., & Sastikumar, D. (2009). Influence of background gas atmosphere on formation of Cr₂O₃ thin films prepared by pulsed laser deposition. *Surface Engineering*, *25*, 223-227.
- [53] Egharevba, G.O., Eleruja, M.A., Osasona, O., Akinwunmi, O.O., Olofinjana, B., Jeynes, C., & Ajayi, E.O.B. (2012). Synthesis and Some Properties of Metal Organic Chemical Vapour Deposited Lithium Chromium Oxide Thin Films. *Journal of Materials Science Research*, *1*, 130-137.
- [54] He, X., Li, C., Zhu, Q., Hou, B., Jiang, Y., & Wu, L. (2014). Electrochemical mechanism of Cr(iii) reduction for preparing crystalline chromium coatings based on 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid. *RSC Advances*, 4, 64174-64182.
- [55] Liang, S., Zhang, H., Luo, M., Luo, K., Li, P., Xu, H., & Zhang, Y. (2014). Colour performance investigation of a Cr₂O₃ green pigment prepared via the thermal decomposition of CrOOH. *Ceramics International*, 40, 4367-4373.