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Abstract

In this study, we examine the concepts of outer and inner lacunary statistical convergence in measure for sequences of fuzzy-valued
measurable functions and show that both kinds of convergence are equivalent in a finite measurable set. Also, we investigate the notion of
lacunary statistical convergence in measure for sequences of fuzzy-valued measurable functions and establish interesting results. Furthermore,
we give the lacunary statistical version of Egorov’s theorem for sequences of fuzzy-valued measurable functions in a finite measurable space.
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1. Introduction and Definitions

Throughout the paper N denotes the set of natural numbers and R denotes the set of real numbers. The concept of convergence of a real
sequence was extended to statistical convergence independently by Fast [10] and Schoenberg [28]. It became a notable topic in summability
theory after the work of Fridy [11] and Šalát [26]. Lacunary statistical convergence was examined by Fridy and Orhan [12]. Balcerzak et
al. [6] investigated different kinds of statistical convergence and ideal convergence of sequences of functions namely pointwise, uniform and
equi-statistical (or, ideal) convergence. For recent work on these types of convergence, we refer to Belen and Mohiuddine [7], Mohiuddine
and Alamri [20]. For the statistical convergence of function sequences, Duman and Orhan [9] introduced convergence in µ-density and
µ-statistical convergence of sequences of functions defined on a subset of real numbers, and proposed the concepts of µ-statistical uniform
convergence and µ-statistical pointwise convergence.
Among various developments of the theory of fuzzy sets a progressive development has been made to find the fuzzy analogues of the classical
set theory by Zadeh [35]. In fact the fuzzy set theory has become an area of active research for the last 40 years. The notion of fuzzyness are
using by many persons for Cybernetics, Artificial Intelligence, Expert System and Fuzzy control, Pattern recognition, Operation research,
Decision making, Image analysis, Projectiles, Probability theory, Agriculture, Weather forecasting. The fuzzy set theory has been used
widely in many engineering applications, such as, in bifurcation of non-linear dynamical systems, in the control of chaos, in the non-linear
operator, in population dynamics. The fuzzyness of all the subjects of mathematical sciences has been investigated. It attracted many workers
on sequence spaces and summability theory to introduce different types of sequence spaces and study their different properties.
The concept of ordinary convergence of a sequence of fuzzy numbers was firstly introduced by Matloka [18] and proved some basic theorems
for sequences of fuzzy numbers. Nanda [19] studied the sequences of fuzzy numbers and showed that the set of all convergent sequences
of fuzzy numbers form a complete metric space. Considering the uncertainty of data and information in a specific modeling process, this
uncertainty was usually represented by a fuzzy number by Negoita [23]. Savaş [27] proved the characterization theorem for the sequence of
fuzzy numbers. Statistical convergence in the setting of sequences of fuzzy numbers was discussed by Nuray and Savaş [24], and recently,
this notion via difference operators together with weighted mean has been defined and studied by Mohiuddine et al. [21].
Aytar and Pehlivan [4] discussed the statistical convergence of sequences of fuzzy numbers and sequences of α-cuts. Later, Aytar et al. [5]
extended the concepts of statistical superior limit and inferior limit to statistically bounded sequences of fuzzy numbers and obtained some
fuzzy-analogues of properties of superior statistical limit and inferior limit for real numbers. Altın et al. [1] introduced the concept of
pointwise statistical convergence sequences of fuzzy mapping and established some basic properties of fuzzy mappings. Recently, Gong et
al. [13] studied statistical convergence, uniformly statistical convergence and equi-statistical convergence for sequences of fuzzy-valued
functions and established some basic properties of sequences of fuzzy-valued functions based on sequences of α-level cuts. Some useful
results on related topic may be found in Altinok et al. [2], Altinok and Et [3], Çınar et al. [8]. Hazarika et al. [14] investigated outer and
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inner statistical convergence, for double sequences of fuzzy-valued measurable functions, also defined statistical convergence in measure for
double sequences of fuzzy-valued measurable functions and establish several interesting results.
Nuray [25] investigated lacunary statistical convergence of sequences of fuzzy numbers. Şençimen and Pehlivan [29] examimed the concept
of statistically convergent sequence in a fuzzy normed linear space. Türkmen and Çınar [30] studied lacunary statistical convergence in fuzzy
normed linear space. Also, lacunary statistical convergence of double sequences in fuzzy normed spaces was investigated by Türkmen and
Dündar [31].
Now, we recall some concepts and basic definitions used in the paper. (see [1–4, 6, 9, 10, 12–25, 27, 32–35])
Let K be a nonempty set. A fuzzy subset of K is a nonempty subset {t,x(t) : t ∈ K} of K×J (= [0,1]) for some function x : K→ J (= [0,1]).
A function x : R→ J (= [0,1]) is called a fuzzy number if the function x satisfies the following properties:
(i) x is convex, i.e., x(t)≥ x(s) ∧ x(r) = min{x(s) ,x(r)}, where s < t < r.
(ii) x is normal, i.e., there exists an t0 ∈ R such that x(t0) = 1.
(iii) x is upper semi-continuous, i.e., for each ε > 0, x−1 ((0,a+ ε]), for all a ∈ [0,1] is open in the usual topology of R.
(iv) [x]0 = cl ({t ∈ R : x(t)≥ 0}) is compact, where cl is the closure operator.
We denote the set of all fuzzy numbers by F (R). The set R can be embedded in F (R) if we define r ∈ F (R) by

r (t) =
{

1, if t = r,
0, if t 6= r.

For 0 < α ≤ 1, α-cut of x is defined by [x]
α
= {t ∈ R : x(t)≥ α}=

[
x−α ,x

+
α

]
is a closed and bounded interval of R. As in [23], the Hausdorff

distance between two fuzzy numbers x and y given by D : F (R)×F (R)→ [0,∞)

D(x,y) = sup
α∈[0,1]

d ([x]
α
, [y]

α
) = sup

α∈[0,1]
max

{∣∣x−α − x+α
∣∣ , ∣∣y−α − y+α

∣∣} ,
where d is the Hausdorff metric. For any x,y,z,u ∈ F (R) we know that
(i) (F (R) ,D) is a complete metric space.
(ii) D(γx,γy) = |γ|D(x,y) ; γ ∈ R.
(iii) D(x+u,y+u) = D(x,y) .
(iv) D(x+ z,y+u)≤ D(x,y)+D(z,u) .

Lemma 1.1. Let x ∈ F (R) and [x]
α
=
[
x−α ,x

+
α

]
. Then, the following conditions are satisfied:

(i) x−α is a left continuous monotone nondecreasing function on (0,1] .
(ii) x+α is a right continuous monotone nonincreasing function on (0,1] .
(iii) x−α and x+α are right continuous at α = 0.
(iv) x−1 ≤ x+1 .

For K ⊂ N and j ∈ N, δ j (K) is called jth partial density of K, if

δ j (K) =
|K∩{1,2, ..., j}|

j
.

If

δ (K) = lim
n→∞

1
n
|{k ≤ n : k ∈ K}| ,

(
i.e., δ (K) = lim

j→∞
δ j (K)

)
exists, it is called the natural density of K, where |{k ≤ n : k ∈ K}| denotes the number of elements of K not exceeding n. Ψ =
{K ⊂ N : δ (K) = 0} is called the zero density set.
A sequence of fuzzy numbers (xn) is said to be statistically convergent to a fuzzy number x0 if for every ε > 0

δ ({n ∈ N : D(xn,x0)≥ ε}) = 0,

i.e., {n ∈ N : D(xn,x0)≥ ε} ∈Ψ. We write st− limxn = x0 or xn
st→ x0, (n→ ∞) .

A sequence of fuzzy number valued functions
{

f n
}

is said to be pointwise statistically convergent to a fuzzy-number-valued function f , if

f n (x)
st→ f (x) for each x ∈ [a,b], i.e.,

∀x ∈ [a,b] , ∀ε > 0, ∃Mx ∈Ψ, ∀n ∈ N\Mx, D
(

f n (x) , f (x)
)
< ε.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr− kr−1→ ∞ as r→ ∞. The intervals
determined by θ will be denoted by Ir = (kr−1,kr].
Throughout this study, let θ = {kr} be a lacunary sequence.
Let A⊂ N and r ∈ N. δ r

θ
(A) is called the rth partial lacunary density of A, if

δ
r
θ (A) =

|A∩ Ir|
hr

.

Let A⊂ N. The number δθ (A) is called the lacunary density or θ -density of A if

δθ (A) = lim
r→∞

1
hr
|{k ∈ Ir : k ∈ A}|,

(
i.e.,δθ (A) = lim

r→∞
δ

r
θ (A)

)
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exists. Also,

Λ = {A⊂ N : δθ (A) = 0}

is said to be zero density set.
A sequence of fuzzy numbers (xn) is said to be lacunary statistically convergent to a fuzzy number x0 if for every ε > 0

δθ ({n ∈ N : D(xn,x0)≥ ε}) = 0.

We write Sθ − lim
n→∞

xn = x0 or xn
Sθ→ x0.

2. Main Results

Throughout the paper, we will suppose that h : [a,b]→ F (R) and hm : [a,b]→ F (R) are the fuzzy-valued function and a sequence of
fuzzy-valued functions for all m ∈ N, respectively. We will show SFVF and FVF instead of sequence of fuzzy-valued functions and
fuzzy-valued function, respectively.

Definition 2.1. A SFVF
(
hm
)

is pointwise lacunary statistically convergent to FVF h on [a,b], denoted by pSθ − limhm (y) = h(y) or

hm
pSθ→ h, if for every y ∈ [a,b] and every ε > 0 there exists Ty ∈ Λ such that for all m ∈ N\Ty we have D

(
hm(y),h(y)

)
< ε . It is clear that

hm
pSθ→ h if for every y ∈ [a,b] and every ε > 0

δθ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ ε
})

= 0.

Here, h is called the lacunary statistical limit function of (hm).

Definition 2.2. A SFVF
(
hm
)

is uniformly lacunary statistically convergent to FVF h on [a,b], denoted by uSθ − limhm (y) = h(y) or

hm
uSθ

⇒ h, if for every ε > 0 there exists T ∈ Λ such that for all m ∈ N\T we have D
(
hm(y),h(y)

)
< ε, which holds for all y ∈ [a,b]. It is

clear that hm
uSθ

⇒ h if for every ε > 0,

δθ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ ε
})

= 0,

for all y ∈ [a,b].

Remark 2.3. If hm
uSθ

⇒ h, then hm
pSθ→ h

Remark 2.4. hm
uSθ

⇒ h if and only if sup
x∈[a,b]

D
(
hm(y),h(y)

) pSθ→ 0.

Theorem 2.5. Assume that the sequence of fuzzy-valued functions hm
pSθ→ h on [a,b], where

(
hm
)

are equi-continuous on [a,b], then h is

continuous and hm
uSθ

⇒ h on [a,b] .

Proof. First we prove that hm is continuous. Let ε > 0 and y0 ∈ [a,b]. By the equi-continuity of hm, then there exists γ > 0 such that

D
(
hm(y),hm (y0)

)
<

ε

3
,

for any m ∈ N and y ∈ (y0− γ,y0 + γ). For any y ∈ (y0− γ,y0 + γ), since hm
pSθ→ h, the set{

m ∈ N : D
(
hm (y0) ,h(y0)

)
≥ ε

3

}
∪
{

m ∈ N : D
(
hm (y) ,h(y)

)
≥ ε

3

}
∈ Λ.

Hence, there exists m ∈ N,

D
(
hm (y0) ,h(y0)

)
<

ε

3
and D

(
hm (y) ,h(y)

)
<

ε

3
.

We have

D
(
h(y0) ,h(y)

)
≤ D

(
h(y0) ,hm (y0)

)
+D

(
hm (y0) ,hm (y)

)
+D

(
hm (y) ,h(y)

)
<

ε

3
+

ε

3
+

ε

3
= ε.

and the continuity of h is proved.

Now, we will prove that hm
uSθ

⇒ h on [a,b] . Let ε > 0. Since h is continuous on [a,b], it gives that h is uniformly continuous and
(
hm
)

is
uniformly equi-continuous on [a,b]. Hence, pick γ > 0 such that |y− y′|< γ for any y,y′ ∈ [a,b], we have

D
(
hm (y) ,hm

(
y′
))

<
ε

3
and D

(
h(y) ,h

(
y′
))

<
ε

3
.

By the finite covering theorem, choose finite open coverings

(y1− γ,y1 + γ) , (y2− γ,y2 + γ) , · · · , (yr− γ,yr + γ)
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from the cover of [a,b] . Using hm
µSθ→ h, there exists a set Myi ∈ Λ such that

D
(
hm (yi) ,h(yi)

)
<

ε

3
,

for all m /∈Myi and i ∈ {1,2, ...,r}. Let m /∈Myi and y ∈ [a,b]. Thus y ∈ (yi− γ,yi + γ) for some i ∈ {1,2, ...,r}. Hence

D
(
hm (y) ,h(y)

)
≤ D

(
hm (y) ,hm (yi)

)
+D

(
hm (yi) ,h(yi)

)
+D

(
h(yi) ,h(y)

)
<

ε

3
+

ε

3
+

ε

3
= ε,

which yields that hm
uSθ

⇒ h on [a,b] .

Definition 2.6. A SFVF
(
hm
)

is lacunary equi-statistically convergent to FVF h, denoted by hm
eSθ

� h, if for given ε > 0,

Gr,ε = δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ ε
})

with regards to y ∈ [a,b] is uniformly convergent to zero function. Thus, hm
eSθ

� h if and only if for all ε,β > 0, ∃k ∈ N, for all r ≥ k and all
y ∈ [a,b],

δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ ε
})

< β .

Notice that, by monotonicity of δ r
θ

, we can also take β = ε .

Remark 2.7. It is clear that hm
pSθ→ h if and only if for every y ∈ Y and every ε,β > 0 ∃k ∈ N, for all r ≥ k,

δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ ε
})

< β .

In this case, we may take β = ε . Clearly, hm
eSθ

� h implies hm
pSθ→ h. Morever, we can see that hm

uSθ

⇒ h implies hm
eSθ

� h.

Theorem 2.8. A SFVMF
(
hm
)

is uniformly lacunary statistically convergent to FVMF h if and only if
[
hm (y)

]
α

is uniformly lacunary
statistically convergent to

[
h(y)

]
α

uniformly with regards to α and y.

Proof. Let ε > 0. Given hm
uSθ

⇒ h, there exists M ∈ Λ such that D
(
hm(y),h(y)

)
< ε, for any m ∈ N\M and y ∈ [a,b], i.e.,

sup
α∈[0,1]

max
{∣∣∣(hm (y)

)−
α
−h−α (y)

∣∣∣ , ∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣}< ε.

That is, there are∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣< ε and
∣∣∣(hm (y)

)+
α
−h+α (y)

∣∣∣< ε,

for any m ∈ N\M and y ∈ [a,b]. In addition,[
hm (y)

]
α
=
[(

hm (y)
)−

α
,
(
hm (y)

)+
α

]
and

[
h(y)

]
α
=
[
h−α (y) , h+α (y)

]
.

Therefore, we get
[
hm (y)

]
α

is uniformly lacunary statistically convergent to
[
h(y)

]
α

uniformly with regards to α and y.
Conversely, for any α ∈ [0,1] and for any y ∈ [a,b],

[
hm (y)

]
α

is uniformly lacunary statistically convergent to
[
h(y)

]
α

with regards to α

and y. Thus, for given ε > 0 there exists M1 ∈ Λ such that∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣< ε,

for all m ∈ N\M1, y ∈ [a,b] and any α ∈ [0,1] . Also, we can see that for given ε > 0 there exists M2 ∈ Λ such that∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣< ε,

for all m ∈ N\M2, any y ∈ [a,b] and any α ∈ [0,1] . Let M = M1∪M2 ∈ Λ. We have∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣< ε and
∣∣∣(hm (y)

)+
α
−h+α (y)

∣∣∣< ε,

for all m ∈ N\M, any y ∈ [a,b] and any α ∈ [0,1] . Hence, we get

sup
α∈[0,1]

max
{∣∣∣(hm (y)

)−
α
−h−α (y)

∣∣∣ , ∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣}< ε,

that is,

D
(
hm(y),h(y)

)
< ε.

This completes the proof.
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Theorem 2.9. Let h FVMF and
(
hm
)

SFVMF. Fix y0 ∈ [a,b], if hm
eSθ

� h on [a,b] and all
(
hm
)

are continuous on y0, then h is continuous at
y0.

Proof. Let ε > 0. hm
eSθ

� h, we can find a number r ∈ N such that for all y ∈ [a,b]

δ
r
θ

({
m ∈ N : D

(
hm (y) ,h(y)

)
≥ ε

3

})
<

1
2
.

Let K (y) =
{

m ∈ N : D
(
hm (y) ,h(y)

)
< ε

3
}

, y ∈ [a,b] . Therefore, δ r
θ
(K (y))> 1

2 , for all y ∈ [a,b]. By the continuity of h1,h2, ...,hr at y0,
there is a neighborhood (y0−ζ ,y0 +ζ ) of y0 such that

D
(
hi (y) ,hi (y0)

)
<

ε

3
,

for all i = 1,2, ...,r, y ∈ (y0−ζ ,y0 +ζ ). Fix y ∈ (y0−ζ ,y0 +ζ ). Since δ r
θ
(K (y)) > 1

2 and δ r
θ
(K (y0)) >

1
2 , we find p ∈ K (y)∩K (y0).

Thus,

D
(
h(y) ,h(y0)

)
≤ D

(
h(y) ,hp (y)

)
+D

(
hp (y) ,hp (y0)

)
+D

(
hp (y0) ,h(y0)

)
<

ε

3
+

ε

3
+

ε

3
= ε.

Thus, we have

D
(
h(y) ,h(y0)

)
< ε,

for all y ∈U (y0,ζ ) , i.e., h is continuous on y0.

Theorem 2.10. A of SFVMF
(
hm
)

is lacunary equi-statistically convergent to FVMF h if and only if
[
hm (y)

]
α

is lacunary equi-statistically
convergent to

[
h(y)

]
α

uniformly for any α ∈ [0,1] and any y ∈ [a,b].

Proof. hm
eSθ

� h shows that for any ε > 0 and σ > 0, there exists k ∈ N, for all r ≥ k and any y ∈ [a,b] such that

δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ ε
})

< σ .

Thus, for any α ∈ [0,1] we get

δ
r
θ

({
m ∈ N : sup

α∈[0,1]
max

{∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣ , ∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣}≥ ε

})
< σ .

Therefore, for any α ∈ [0,1] we obtain

δ
r
θ

({
m ∈ N :

∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣≥ ε

})
< σ

and

δ
r
θ

({
m ∈ N :

∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣≥ ε

})
< σ .

Then, note that[
hm (y)

]
α
=
[(

hm (y)
)−

α
,
(
hm (y)

)+
α

]
and

[
h(y)

]
α
=
[
h−α (y) , h+α (y)

]
.

Hence,
[
hm (y)

]
α

is uniformly lacunary statistically convergent to
[
h(y)

]
α

for any α ∈ [0,1] and any y ∈ [a,b] .
Conversely, let ε > 0 and σ > 0, there exists k1 ∈ N such that

δ
r
θ

({
m ∈ N :

∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣≥ ε

})
< σ ,

for all r ≥ k1 and any y ∈ [a,b] and for any α ∈ [0,1]. Analogously, there exists k2 ∈ N such that

δ
r
θ

({
m ∈ N :

∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣≥ ε

})
< σ ,

for all r ≥ k2 and any y ∈ [a,b] and for any α ∈ [0,1]. Then, pick k = max{k1,k2}. We may get

δ
r
θ

({
m ∈ N :

∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣≥ ε

})
< σ ,

and

δ
r
θ

({
m ∈ N :

∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣≥ ε

})
< σ ,

for all r ≥ k and any y ∈ [a,b] and for any α ∈ [0,1]. Thus, we have

δ
r
θ

({
m ∈ N : sup

α∈[0,1]
max

{∣∣∣(hm (y)
)−

α
−h−α (y)

∣∣∣ , ∣∣∣(hm (y)
)+

α
−h+α (y)

∣∣∣}≥ ε

})
< σ ,

that is,

δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ ε
})

< σ .

This completes the proof.
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The generalization of Egorov’s theorem, a classical and well known result of measure theory, has been studied by several authors in various
directions. The following result is the lacunary statistical version of Egorov’s theorem, a classical theorem of measure theory, for the SFVF.

Theorem 2.11. Let (Ω,M ,µ) be a finite measurable space. Suppose that the FVF h and SFVF
(
hm
)

are measurable and defined almost

everywhere on Ω. Suppose also that hm
pSθ→ h almost everywhere on Ω. Then, for every ε > 0 there exists A⊂M such that µ (Ω\A)< ε

and hm|A
eSθ

� h|A on A.

Proof. We assume that each fuzzy-valued functions
(
hm
)

and h are defined everywhere on Ω and also suppose that hm (y)
pSθ→ h(y) for all

y ∈Ω. Now, for any fix σ ,r ∈ N, examine that the set

P =

{
y ∈Ω : δ

r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ 1

σ

})
<

1
σ

}
is measurable. Then, the function Φm (y) = D

(
hm(y),h(y)

)
, y ∈Ω, is measurable. Let Hm = Φ−1

m
([ 1

σ
,∞
))

. For every y ∈Ω, we have y ∈ P
if and only if

1
hr

∑
m∈Ir

χHm (y)<
1
σ
.

Since the function

h =
1
hr

∑
m∈Ir

χHm (y)

is measurable, so we have P = h−1 ((−∞, 1
σ

))
. For k ∈ N, one writes

Θσ ,k =

{
y ∈Ω : ∀r ≥ k,δ r

θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ 1

σ

})
<

1
σ

}
.

Then, from the previous observation, we conclude that Θσ ,k is measurable and so, we have

Θσ ,k ⊂Θσ ,k+1 (∀k ∈ N) and Ω =
∞⋃

k=1

Θσ ,k.

As a result, µ (Ω) = lim
m→∞

µ
(
Θσ ,k

)
. Let ε > 0 be given. For every k ∈ N, choose k (σ) ∈ N such that µ

(
Ω\Θσ ,k(σ)

)
< ε

2σ . Set

T0 =
∞⋃

σ=1

(
Ω\Θσ ,k(σ)

)
.

Then, we have

µ (T0)≤
∞

∑
σ=1

µ

(
Ω\Θσ ,k(σ)

)
< ε.

Let

T = Ω\T0 =
∞⋂

σ=1
Θσ ,k(σ).

Thus, µ (Ω\T ) = µ (T0)< ε . Hence, we get ∀σ ∈ N,∀r ≥ k (σ) , ∀y ∈ T,

δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ 1

σ

})
<

1
σ
.

This gives that hm|A
eSθ

� h|A on A .

Corollary 2.12. Let (Ω,M ,µ) be a finite measurable space. Suppose that the FVF h and SFVF
(
hm
)

are measurable and defined almost

everywhere on Ω. Then, hm
pSθ→ h almost everywhere on Ω iff there exists a sequence (Am) of sets on M such that hm|Am

eSθ

� h|Am
on Am for

all m and µ

(
Ω\

⋃
m∈N

Am

)
= 0.

Proof. Suppose that both FVF h and SFVF
(
hm
)

are measurable and defined almost everywhere on Ω, and also hm
pSθ→ h almost everywhere

on Ω. Then, the conclusion is obvious by considering ε = 1
m (m ∈ N) in Theorem 2.11. Next, we suppose that hm|Am

eSθ

� h|Am
on Am for all

m. Thus, we get hm|Am

pSθ→ h|Am
on Am for all m. Therefore, we conclude that hm

pSθ→ h almost everywhere on Ω.

Now, we will define outer and inner lacunary statistical convergence in measure of SFVF and prove that these two concepts are equivalent. For
our convenience, we shall use the notations SFVMF and FVMF instead of sequence of fuzzy-valued measurable function and fuzzy-valued
measurable function, respectively.
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Definition 2.13. Let (Ω,M ,µ) be a measurable space. Suppose that the set L 0 of all FVMF defined almost everywhere on Ω, and
(
hm
)

and h in L 0. The outer lacunary statistical convergence in measure of a SFVMF
(
hm
)

to a FVMF h is defined by

δ
r
θ

({
m ∈ N : µ

({
y ∈Ω : D

(
hm(y),h(y)

)
≥ η

})
≥ ζ

})
→ 0, if r→ ∞, (2.1)

for η , ζ > 0. We shall write hm
δθ ,µ→ h. Notice that, by changing the order of δ r

θ
and µ in relation (2.1), one gets the inner statistical

convergence in measure of a SFVMF
(
hm
)

to a FVMF h as follows:

µ
({

y ∈Ω : δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ η

})
≥ ζ

})
→ 0, if r→ ∞.

We shall show hm
µ,δθ→ h.

Theorem 2.14. Let (Ω,M ,µ) be a measurable space. Suppose that
(
hm
)

and h in L 0.

(i) If hm
δθ ,µ→ h, then hm

µ,δθ→ h.

(ii) If hm
µ,δθ→ h, then hm

δθ ,µ→ h, provided µ (Ω)< ∞.

Proof. Since δ r
θ

: P1→ [0,1] (r ∈ N) is a probability measure, one can suppose the product measure µ×δ r
θ

on the product algebra M ⊗P1
of subsets of Ω×N. Now for fixed η > 0, we write

Sη = {(y,m) ∈Ω×N : D(hm(y),h(y))≥ η}.

We define a function Φ : Ω×N→ R as

Φ((y,m)) = D(hm(y),h(y)),(y,m) ∈Ω×N

is M ⊗P1-measurable. Therefore, we have Sη ∈M ⊗P1. Now for any K ⊂Ω×N, one writes

K (y) = {m ∈ N : (y,m) ∈K } if y ∈Ω

and

K (m) = {y ∈Ω : (y,m) ∈K } if m ∈ N.

(i) In order to obtain this, we need to prove that

∀ε,q > 0, ∃r0 ∈ N, ∀r ≥ r0, µ
({

y ∈Ω : δ
r
θ

(
Sη (y)

)
≥ q
})

< ε. (2.2)

Fix ε > 0 and q > 0. Since hm
δθ ,µ→ h, one may find r0 ∈ N such that r ≥ r0, one get the following:

δ
r
θ

({
m ∈ N : µ

(
Sη (m)

)
≥ 1
})

<
q
2

(2.3)

and

δ
r
θ

({
m ∈ N : µ

(
Sη (m)

)
≥ qε

4

})
<

qε

4
. (2.4)

Suppose that

P =
{

m ∈ N : µ
(
Sη (m)

)
< 1
}
.

Then, we have from condition (2.3) that

δ
r
θ (N\P)<

q
2
, (∀r ≥ r0) .

Hence, for all ∀r ≥ r0, one obtains

µ
({

y ∈Ω : δ
r
θ

(
Sη (y)

)
≥ q
})

≤ µ

({
y ∈Ω : δ

r
θ

(
Sη (y)∩P

)
≥ q

2

})
+µ

({
y ∈Ω : δ

r
θ

(
Sη (y)\P

)
≥ q

2

})
≤ µ

({
y ∈Ω : δ

r
θ

(
Sη (y)∩P

)
≥ q

2

})
.

Let S∗η = Sη ∩ (Ω×P). Therefore, we have

S∗η (y) = Sη (y)∩P (y ∈Ω) and S∗η (m) = Sη (m) , (m ∈ P) .

To obtain relation (2.2), it is enough to prove that

∀r ≥ r0, µ

({
y ∈Ω : δ

r
θ

(
S∗η (y)

)
≥ q

2

})
< ε. (2.5)

For the set S∗η ⊂Ω×P and for every fix r ∈ N, we can apply the famous Fubini theorem for the characteristic function of S∗η of the finite
measure µ×δ r

θ
. Indeed,

S∗η =
⋃

m∈P

(
m×Sη (m)

)
,
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where

µ
(
Sη (m)

)
< 1, (∀m ∈ P) and δ

r
θ ({(m)}) = 0 (∀m > r) .

Thus,∫
P

µ
(
S∗η (m)

)
dm = (µ×δ

r
θ )
(
S∗η
)
=
∫

Ω

δ
r
θ

(
S∗η (y)

)
dy.

Assume r0 ∈ N such that r ≥ r0, one obtains

qε

2
>

qε

4
+δ

r
θ

({
m ∈ N : µ

(
Sη (m)

)
≥ qε

4

})
≥

∫
{m∈P:µ(Sη (m))< qε

4 }
µ
(
Sη (m)

)
dm+

∫
{m∈P:µ(Sη (m))≥ qε

4 }
1.dm

≥
∫

P
µ
(
Sη (m)

)
dm =

∫
P

µ
(
S∗η (m)

)
dm

=
∫

Ω

δ
r
θ

(
S∗η (y)

)
dy≥

∫
{y∈Ω:µ(S∗η (y))≥

q
2}

δ
r
θ

(
S∗η (y)

)
dy

≥ q
2

µ

({
y ∈Ω : δ

r
θ

(
S∗η (y)

)
≥ q

2

})
,

which shows that strict inequality (2.5) is valid.
(ii) Assume that µ (Ω)< ∞. Fix η > 0. To prove our result, we need to show that

∀ε,q > 0, ∃r0 ∈ N, ∀r ≥ r0, δ
r
θ

({
m ∈ N : µ

(
Sη (m)

)
≥ q
})

< ε.

Let ε > 0 and q > 0 be given. Since hm
µ,δθ→ h, one may find r0 ∈ N such that for all r ≥ r0, we have

µ

({
y ∈Ω : δ

r
θ

(
Sη (y)

)
≥ qε

2µ (Ω)

})
<

qε

2
.

By taking into account the well-known Fubini theorem for the characteristic function of Sη ⊂Ω× Ir, we get∫
Ω

δ
r
θ

(
Sη (y)

)
dy = (µ×δ

r
θ )
(
Sη

)
=
∫
N

µ
(
Sη (m)

)
dm.

Supposing r0 such that for all r ≥ r0, we have

qε >
qεµ (Ω)

2µ (Ω)
+µ

({
y ∈Ω : δ

r
θ

(
Sη (y)

)
≥ qε

2µ (Ω)

})
≥

∫{
y∈Ω: δ r

θ
(Sη (y))<

qε

2µ(Ω)

} δ
r
θ

(
Sη (y)

)
dy+

∫{
y∈Ω: δ r

θ
(Sη (y))≥ qε

2µ(Ω)

} 1dy

≥
∫

Ω

δ
r
θ

(
Sη (y)

)
dy =

∫
N

µ
(
Sη (m)

)
dm

≥
∫
{m∈N:µ(Sη (m))≥q}

µ
(
Sη (m)

)
dm

≥ qδ
r
θ

({
m ∈ N : µ

(
Sη (m)

)
≥ q
})

.

This completes the proof.

Theorem 2.14 shows that the both kinds of convergence (in Definition 2.13) in measure are equivalent if Ω is finite measurable set. Hence,
by considering finite measurable set Ω, we define lacunary statistical convergence in measure of SFVF as follows.

Definition 2.15. Let (Ω,M ,µ) be a finite measurable space, Assume that
(
hm
)

and h in L 0. A SFVMF
(
hm
)

is said to be lacunary

statistical convergent in measure (shortly, LSCM) to a FVMF h, in symbol, hm
µSθ→ h, if µ

({
y ∈Ω : D

(
hm(y),h(y)

)
≥ q
})

is lacunary
statistically convergent to zero for any q > 0 and all m ∈ N. We give this notion is equivalent to the following formula:

∀η > 0, ∀q > 0,
{

m ∈ N : µ
({

y ∈Ω : D
(
hm(y),h(y)

)
≥ q
})

> η
}
∈ Λ.

Here, we can write η = q or q = 1
r , r ∈ N.

Proposition 1. Let (Ω,M ,µ) be a finite measurable space. Assume that
(
hm
)

and h in L 0. Then, hm
uSθ

⇒ h⇒ hm
µSθ→ h.

Proof. We assume that hm
uSθ

⇒ h. Let q > 0 be given. Then, there is a set T ∈ Λ such that

D
(
hm(y),h(y)

)
< q, ∀m /∈ T, y ∈Ω.

Thus, we get{
m ∈ N : µ

({
y ∈Ω : D

(
hm(y),h(y)

)
≥ q
})

> q
}
⊂
{

m ∈ N : µ
({

y ∈Ω : D
(
hm(y),h(y)

)
≥ q
})
6= /0
}
⊂ T ∈ Λ.

This shows that hm (y)
µSθ→ h(y).
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Theorem 2.16. Let (Ω,M ,µ) be a measurable space. Assume that
(
hm
)

and h in L 0. If SFVMF
(
hm
)

pointwise lacunary statistically

convergent to a FVMF h almost everywhere on Ω, then hm
µSθ→ h.

Proof. Suppose that hm (y)
pSθ→ h(y) almost everywhere on Ω. We have from Theorem 2.14 that hm

µ,δθ→ h is same as hm (y)
µSθ→ h(y). So, to

prove our result, we will prove that hm (y)
µ,δθ→ h(y) . Assume that ε > 0 and q > 0. It follows from Theorem 2.11 that A ⊂M such that

hm|A
eSθ

� h|A and µ (Ω\A )< ε . Choose indexes k such that

δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ q
})

< q

for all r ≥ k and y ∈A . Thus, for all r ≥ k, we have{
y ∈Ω : δ

r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ q
})
≥ q
}
⊂Ω\A .

Hence, for all r ≥ k,

µ
({

y ∈Ω : δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ q
})
≥ q
})

< ε

as desired.

Theorem 2.17. Let (Ω,M ,µ) be a finite measurable space. Assume that both
(
hm
)
, h ∈L 0. If hm (y)

pSθ→ h(y) almost everywhere on Ω,

then hm (y)
µSθ→ h(y) .

Proof. Let q,ε > 0 be given. In view of Theorem 2.11, there is an A ⊂M such that hm|A
eSθ

� h|A and µ (Ω\A ) < ε . Consider k ∈ N
such that

δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ q
})

< q, (∀r ≥ k and y ∈A )

which yields{
y ∈Ω : δ

r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ q
})
≥ q
}
⊂Ω\A (∀r ≥ k) .

Therefore, one obtains

µ
({

y ∈Ω : δ
r
θ

({
m ∈ N : D

(
hm(y),h(y)

)
≥ q
})
≥ q
})

< ε.

Corollary 2.18. Let (Ω,M ,µ) be a finite measurable space. Assume that both
(
hm
)
, h ∈L 0. If hm (y)

µSθ→ h(y), then ∃ a subsequence(
hmk

)
of
(
hm
)

such that hmk (y)
pSθ→ h(y) almost everywhere on Ω.

Proof. Suppose that hm (y)
µSθ→ h(y), so any subsequence

(
hmk

)
of
(
hm
)

also lacunary statistically convergent in measure to h. Thus,
(
hm
)

has a subsequence that lacunary statistically convergent in measure to h almost everywhere on Ω. This means that hmk (y)
pSθ→ h(y) almost

everywhere on Ω.

Definition 2.19. Let (Ω,M ,µ) be a finite measurable space. Assume that
(
hm
)+

α
,
(
hm
)−

α
, h+α , h−α ∈L 0. The double sequence

[
hm (y)

]
α

is
uniformly lacunary statistically convergent in measure (in short, we shall write ULSCM) to

[
h(y)

]
α

with regards to α if

µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣≥ q

})
and

µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣≥ q

})
both lacunary statistically convergent in measure to zero for every q > 0. Note that this notion is equivalent to the following formula:

∀η > 0,∀q > 0,

{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣≥ q

})
≥ η

}
∈ Λ

and

∀η > 0,∀q > 0,

{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣≥ q

})
≥ η

}
∈ Λ,

in this case, one can write η = q or q = 1
r , r ∈ N.

Theorem 2.20. Let (Ω,M ,µ) be a finite measurable space. Assume that both
(
hm
)
, h ∈L 0. A SFVMF

(
hm
)

is LSCM to FVMF h if and
only if

[
hm (y)

]
α

is ULSCM to
[
h(y)

]
α

with regards to α.
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Proof. Assume that
(
hm
)

is LSCM to h. Then,

µ
({

y ∈Ω : D
(
hm (y) ,h(y)

)
≥ q
})

is lacunary statistically convergent to zero for every q > 0, i.e.,{
m ∈ N : µ

({
y ∈Ω : D

(
hm (y) ,h(y)

)
≥ q
})
≥ q
}
∈ Λ.

Thus,{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]
max

{∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣ , ∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣}≥ q

})
≥ q

}
∈ Λ.

Therefore, for every q > 0, one obtains{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣≥ q

})
≥ q

}
∈ Λ

and{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣≥ q

})
≥ q

}
∈ Λ,

which yields that

µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣≥ q

})
µSθ→ 0

and

µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣≥ q

})
µSθ2→ 0.

Hence,
[
hm (y)

]
α

is ULSCM to
[
h(y)

]
α

with regards to α.

Next, we suppose that
[
hm (y)

]
α

is ULSCM to
[
h(y)

]
α

with regards to α . Then, for every q > 0, one have

µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣≥ q

})
µSθ→ 0

and

µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣≥ q

})
µSθ→ 0.

Thus,{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣≥ q

})
≥ q

}
∈ Λ

and{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]

∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣≥ q

})
≥ q

}
∈ Λ.

From the last two relations, we get{
m ∈ N : µ

({
y ∈Ω : sup

α∈[0,1]
max

{∣∣∣(hm (y)
)−

α
−
(
h(y)

)−
α

∣∣∣ , ∣∣∣(hm (y)
)+

α
−
(
h(y)

)+
α

∣∣∣}≥ q

})
≥ q

}
∈ Λ,

which gives that{
m ∈ N : µ

({
y ∈Ω : D

(
hm (y) ,h(y)

)
≥ q
})
≥ q
}
∈ Λ.

This means that
(
hm
)

is LSCM to FVMF h.
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[2] Altinok H., Altin Y., Işık M., Statistical convergence and strong p-Cesàro summability of order β in sequences of fuzzy numbers, Iran J. Fuzzy Syst.

9(2) (2012), 65-75.
[3] Altinok H., Et M., Statistical convergence of order (β ,γ) for sequences of fuzzy numbers, Soft Computing, 23 (2019), 6017-6022.
[4] Aytar S., Pehlivan S., Statistical convergence of sequences of fuzzy numbers and sequences of α-cuts, Inter. J. General Systems, 37(2) (2008), 231-237.
[5] Aytar S., Mammadov M.A., Pehlivan S., Statistical limit inferior and limit superior for sequences of fuzzy numbers, Fuzzy Sets Syst. 157(1) (2006),

976-985.
[6] Balcerzak M., Dems K., Komisarski A., Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007),

715-729.
[7] Belen C., Mohiuddine SA., Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), 9821-9826.
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