
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Abstract— The applications of artificial intelligence (AI),

which is a comprehensive information technology, have been

closely related to game technologies. Today, artificial intelligence-

based game development applications are increasing their

popularity day by day. In this study, the levelling process of a 2-

dimensional (2D) platform game has been investigated. The game

developed and called “Renga” has a basic gameplay. Game data

has been processed through an artificial neural network (ANN),

k-nearest neighbour, decision and random tree algorithms and

deep learning model that is trained with gameplay and user

information. The classification process with the output data

provides results for the next game level. In this way, the most

effective playability impression that the developers offer to the

game users has been created according to game. Furthermore,

the variety of difficulty calculated with dynamic data by the user

is provided by Renga, in which new sections/levels are created

with user-specific assets. Thus, the most efficient gaming

experience has been transferred to the users.

Index Terms— Artificial Intelligence, Difficulty Adjustment,

Content Generation, k-Nearest Neighbor, Random Forest,

Artificial Neural Networks.

I. INTRODUCTION

MONG the platforms, different types of games that can

attract the attention of their target users are increasing

and improving. Video games that contribute to this

development are very successful in environmental design and

transferring the realistic behavior of Non-Player Characters

(NPC) [1]. In video games, which have become an important

part of the entertainment industry, the goal is to optimize

players' experience rather than creating the most difficult

game [2-4]. A good video game has a long learning curve.

Therefore, it is possible for the artificial intelligence-based-

algorithm to update itself in accordance with the interaction of

people who learn the game. Research on the content

production of games helps to develop better quality or

interesting games. The player's expectation is that the

difficulty of the game matches his personal gaming skills [5,

YUNUS SARICA, is with Department of Computer Engineering, University
of Pamukkale University, Denizli/Turkey,(e-mail: yunusssarica@gmail.com).

https://orcid.org/0000-0002-1969-9005

MERIC CETIN, is with Department of Computer Engineering, University of
Pamukkale University, Denizli/Turkey,(e-mail: mcetin@pau.edu.tr).

https://orcid.org/0000-0002-7871-4850,
*Corresponding Author.

Manuscript received November 05, 2019; accepted April 04, 2020.
DOI: 10.17694/bajece.642973

6]. Therefore, a proper content generation depends on the

algorithm producing a meaningful output with player

performance. Depending on the algorithm, the difficulty level

of the game should increase as the player's abilities develop

[7].

Designing quality content for millions of players in the

game industry has become the goal of game developers. In [8],

a procedural level generator based on interactive evolutionary

algorithm has been introduced for the platform game. Another

automatic level generator based on Darwin's theory of Natural

selection was proposed in [9]. In [10], a Rhythm-based

approach was proposed for 2D Platform content generation. In

[11], dynamic difficulty adjustment is provided by Polymorph

approach which changes game difficulty depending on player

performance. In the literature, there are various studies that are

designed by machine learning (genetic algorithm, artificial

neural network, support vector machine) [12-16],

probabilistically techniques [17], Procedural Content

Generation (PCG) [18-20] for dynamic game levelling. The

difficulties caused by the behavior of NPC objects can be

supported by artificial intelligence applications to maximize a

user's enjoyment. The use of artificial intelligence in games is

diversifying and deepening day by day. In [21], Yannanakis

and Togelius have pointed out the following matters on the

subject: behavior learning of non-player characters,

exploration and planning applications, player modeling,

artificial intelligence game competence applications,

methodological content production, stories that may vary, the

formation of realistic environmental movements, artificial

intelligence game design, use of commercial games, general

in-game artificial intelligence.

In artificial intelligence based studies proposed for dynamic

game leveling, instead of randomly determining the course of

the game, levelling is done taking into account the player's

characteristics (aggression, courage, intelligence and

cooperation) and the appropriate reaction is selected

depending on these designs. Neural networks successfully

applied to various games can be considered as a means of

updating the artificial intelligence system. As an artificial

intelligence system that can evolve over time, many game

developers often do not use genetic algorithms because they

need too much CPU power and are too slow to produce useful

results [22]. Finite State Machines (FSMs) have often used by

game developers because it is easy to implement, test, modify,

and personalize [22]. Increasingly, there has been a tendency

towards Fuzzy State Machines (FuSMs) since the use of fuzzy

logic allows the recognition of non-binary conditions [22].

Demasi and Cruz used the genetic algorithm technique to

protect the most appropriate agents according to the player's

game performance [23]. In addition, there are several studies

Artificial Intelligence Based Game Levelling

Y. SARICA and M. CETIN* 

A

147

http://dergipark.gov.tr/bajece
mailto:yunusssarica@gmail.com
mailto:mcetin@pau.edu.tr

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

based on Gaussian Mixture Module with dynamic scripting

[24, 25].

In this study, game levels for Renga, which was developed

as a 2D platform game, have been identified based on artificial

intelligence. In this context, perception of difficulty in infinite

games has been examined, balanced the player performance of

Renga game and then different game levels have been

designed according to player ability. As a result of processing

the game data with artificial intelligence methods (artificial

neural network, k-nearest neighbor, decision and random tree

algorithms, deep learning model), it is provided to produce

game-specific procedurally appropriate content and

meaningful outputs specific to the player. Algorithmically

variable game content has been generated by PCG, which

significantly has reduced the time and cost of development

processes for game developers. In this way, the most effective

playability impression that the developers offer to the game

users has been created according to Renga. Furthermore, the

variety of difficulty calculated with dynamic data by the user

is provided by Renga, in which new sections/levels are created

with user-specific assets. Thus, the most efficient gaming

experience has been transferred to the users.

II. PLATFORM GAMES AND RENGA

In this section, the process and technological developments

of platform games that have been on the agenda since the

beginning of video game history are presented. Platform

games are the first phase of video game history. Bertie the

Brain is known as the first industrial game developed in the

1950s. This process continued eight years later with William

Higinbotham's Tennis for Two. Pong, as the first realization of

this game, has become one of the platform games [26]. Then,

game technologies have developed into different categories.

Productions such as Super Mario, Contra and Metal Slug have

not lost their popularity despite the emergence of 3D games,

and then, a new era of video games began with platform

games such as Limbo, Inside, Ori and the Blind Forest. Many

of these games have a special place today because they are

widely distributed and can make their voices heard through

digital gaming platforms [27].

After all these similarities and examples that have continued

its genre, it was decided to perform this study with platform

games. In the comparative tests, it has been paid attention that

the developed game (Renga) can work in harmony with the

selected artificial intelligence method.

Considering the existence of common objects, platform

games can generally consist of a character, enemy, interactive

objects and various platform groups. Although the aim of the

selected character is to terminate the game parts, it is also

important to be able to produce the appropriate level according

to the game performance. One of the goals of designed game

is to help the developer to design the level by providing

sufficient data as soon as possible while building the sections.

In this study, a 2D platform game (Renga) is designed which

is simple to use and diversifies game assets. The developed

game has been also introduced globally to the literature. In

Renga methodological content production is based on an

artificial intelligence algorithm and the identification data

obtained in this way contribute to the change of in-game

dynamics. In addition, a new data set was created by

processing the data collected over the game. Game design is

based on basic steps for artificial intelligence methods used in

the study. The degrees of difficulty in the game depend on the

numerical properties of the game assets. The main

characteristics of the interaction of this process are:

 Simple gameplay,

 Interaction between assets,

 Updating the character structure,

 Contribution to the game score

 Academic study

 To provide entertainment to the global users

Renga, which is compatible with phones with Android

operating system, is developed by Unity platform. Renga is an

infinite game that can be played until the player makes a

mistake. The game engine Unity is widely used in such games

because it supports 3D modeling and animation design as well

as 2D game development [28]. Each field in Renga consists of

a scene whose content is full of game objects (“sprite”,

“texture”, “prefab” and “object”). The game has 4 scenes

actively: “Menu”, “howToPlay”, “gameplay” and “end”

scenes. In the “menu” scene, the data to be tested is collected.

Users have access to the code file of any scene in Unity

through information on randomness value, horizontal speed,

gravity, jump value and distance between obstacles. The game

process takes place on the "gameplay" scene. A gameplay

scene for the Renga is illustrated in Fig.1. Only Renga is

available as game asset in this scene. Background, floor,

“Aheng” and “Rengec” are dynamically composed.

Fig.1. Renga gameplay scene

148

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

III. ARTIFICIAL INTELLIGENCE BASED GAME

LEVELING

In this section, the effects of Renga game for the user, how

the data is collected and the results obtained with the

technology and methods used in this process are explained.

A. Data Collection

In order to control the game, the collected data is used to

create a level, which affects the type and difficulty of the

level. The statistical characteristics such as how often the

player jumped, died, how much he caught Renga cannot be

directly controlled by the game because of they depend on the

player’s skill and playing style. In the tests, the game levels

for a particular player have been dynamically generated as:

1. A first level is generated with random parameters.

2. Game features are recorded.

3. Using recorded game features, a new adapted level is

generated based on player experience.

The tests in this study are based on the approximately 1500

game session played by the 15 player (each user played the

game at least 5 times with a randomly generated initial value).

In the simulations, 80% of the input data set was used as

training data. Sample game feature records of any user

according to random parameters (seed, speed, gravity, jump,

distance) are given in Table I.

TABLE I

RANDOM GAME SAMPLES FOR ANY USER

PHONE_ID P1 P2 P3 P4 P5 P6 P7

ABCDEF9876 50 1.0 12 4.0 1.8 0 0

ABCDEF9876 50 1.0 10 4.0 1.8 0 0

ABCDEF9876 50 1.0 14 4.0 1.8 0 0

ABCDEF9876 50 1.0 12 5.5 1.8 0 0

ABCDEF9876 50 1.0 12 2.5 1.8 0 0

*P1= seed value, P2= speed value, P3= gravity value, P4= jump value,

 P5= distance value, P6= static value, P7= score.

The "PlayerPrefs" feature provides access to game

information within Unity. This data, which was added in the

database before, was obtained with datas.php file. The web

service is provided with the WWWForm() object specified in

Unity. The data is then transferred to the server,

"http://gameonyou.tk/". Renga is available to users in the

Google Play Store without academic features. Therefore, the

data is primarily hosted on the local server created with

xampp. In addition, the application file for the academic

version externally is shared with users via the address,

“http://gameonyou.tk/Renga.apk”. In the file dump named

dbConnData.php, records are processed by connecting to the

database with the pdo structure.

First of all, when the user runs the game for the first time,

the in-game data is collected and inserted to the database.

Gameplay data, except for fixed values, were examined by

increasing or decreasing each value at a certain rate, except for

a general data type. If any row given in Table 1 is considered;

as the values changed, the other values remained constant and

this situation continued with combinations. These records are

explained in detail as follows:

Seed: Seed is a fixed value and set to 50. All users' test data

were used with this seed value in artificial intelligence

processes. Users who have completed all test values will start

playing different sections with a different seed value.

Speed: The default value of 1.0 is the feature that

determines the speed of Renga during gameplay. With the

values of 0.8 and 1.2, it was aimed to observe the gameplay

status of the users. Reaching the Rengecs is necessary for the

advancement of Renga.

Gravity: The default value of 10.0 allows vertical

movement of Renga in a constant direction during gameplay.

Interactions of 12.0 and 8.0 values in users were examined. If

Renga hits the ground due to this value, the game will end.

The user protects Renga from the ground by touching the

screen during the gameplay.

Distance: The default is 1.6. This variable specifies the

value of the distance between the rails. It is differentiated with

1.0 and 3.0 values. It is inversely proportional to the speed

value and can change the perception of difficulty.

Jump: The default value is 4. The effect of the differences

with the binary values of 5.5 and 2.5 was observed in the

users. The user can increase the height of the vertical moving

Renga by the magnitude of this value.

The importance of jump and gravity values was considered

when passing over or under the distinction points of Rengecs.

Distinction points where Renga cannot pass are prevented

from occurring. When enough data (recorded at 5 different

times) is collected from the user, the in-game values will

change. After all these collected data, the results of the related

user are classified as easy, medium or difficult in designed

artificial intelligence models. Since the initial data collected

from the user changes after the new level proposed by the

artificial intelligence model, the user will be able to continue

to play the game more efficiently.

B. Examination of Renga Data

The data collected by the Renga game is sufficient for user-

based difficulty control and adjustment. According to the input

set given as an example in Table 2, it will be appropriate to

mention the data that creates the algorithm inputs and the

features of these data before explaining the artificial

intelligence model to be created.

Randomness: It can be defined as the renovation value. All

assets in the game are created according to a random value.

The user plays at least 5 games for each data of the same

randomness value. According to Eq. (1), it is possible for a

user to present a minimum of 120 result outputs in the test

environment through the designed artificial intelligence

models.

149

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

4!=24→24*5=120 (1)

In this way, new data can be created for difficulty control

using the in-game values in the different seed values.

TABLE II

SAMPLE GAME DATA

PHONE_ID K1 K2 K3 K4 K5 K6

ABCDEF123 42 1.5 7 2.5 3 6

ABCDEF123 42 1.5 7 2.5 3 9

ABCDEF123 42 1.5 7 2.5 3 9

ABCDEF123 42 1.5 7 2.5 3 10

ABCDEF123 42 1.5 7 2.5 3 4

*K1= randomness, K2= horizontal speed, K3= gravity value, K4= jump

value, K5= distance between obstacles, K6= score.

Horizontal speed: The path taken from the beginning of the

game by the “K2’ values in Table 2. According to this table;

K2 = 0,016*1,5=0,024 (2)

In Eq. (2), 0.024 units of horizontal position changes occur

for each frame per second. Increasing horizontal speed, which

is one of the inputs in the artificial intelligence model, will

increase the perception of difficulty in the game cause the user

to be in easy class.

Gravity: It is vertical movement value, created with the

“Rigidbody” feature, assigned to the Renga object from the

beginning of the game. According to the gravity values given

in Table 2 and equation (3), 0.112 unit changes occur for each

frame.

 K3 = 0,016*7 =0,112 (3)

Increasing this value is inversely proportional to the jump

value. There should be a balance between these values.

Increasing this value is inversely proportional to the jump

value. Increasing the value increases the difficulty, and the

fact that it is too low makes the game impossible.

Jump: This variable value of action which user interacts

with. Each time the user touches the screen, Renga will move

vertically upwards by 2.5 units. During this movement, gravity

also continues the downward movement. The accelerated

Renga starts to move down again vertically. If the value is too

high, even the lowest gain will lead to an impossible game.

Distance between obstacles: It is the distance unit between

Rengecs. There is a 3-unit distance between the Rengecs,

which are proportioned by two color segments (yellow and

red) according to their seed value. Increasing this value makes

the game easier, while decreasing it can significantly

differentiate the perception of difficulty in the user experience.

Score: This value determines the player's highest gain in a

game process. It also represents the number of Rengec that

could be passed. It is the most important factor in the

classification of difficulties for users. These data are

differentiated in the results section.

During the Renga design, many different technical fields

have been used besides the package programs. In the

following sections, used artificial intelligence algorithms and

findings are presented.

C. Methods

In this study, the recursively used data was tested in various

artificial intelligence models such as k-nearest neighbor,

random forest, deep learning and artificial neural networks in

the category of classification algorithms and analyzed through

confusion matrix. Success and error coefficients were

determined based on the variables within each method and

were detailed for future studies.

1) k-Nearest Neighbor

The k-nearest neighbor method performs the classification

process based on similarities where the data is clustered in

cartesian plane. According to the selected value of k, which

cluster the data belongs to is determined [29]. The pseudo-

code expression for this algorithm is given as follows:

% X: training data, Y: class labels of X, x: unknown sample

 Determine parameter k: the number of nearest

neighbor

 Classify (X, Y, x)

 for i = 1 to m do

 Compute distances d(XI,x) between the query-

instance and all training data.

 end for

 Compute set I containing indices for the k smallest

distances d(XI,x).

 return majority of the category label for {YI}

2) Random Forest

Random forests, which are commonly used in classification

or regression processes, consist of a large number of

individual decision trees [30]. Random forest is an efficient

tree algorithm that can model game data collected from

different users in a compatible way. The pseudo-code for this

algorithm is given as follows [31]:

 Generate c classifiers

 for i = 1 to c do

 Randomly sample the training data D with

replacement to produce Di

 Create a root node, Ni containing Di.

 Call BuildTree(Ni)

 end for

BuildTree(N):

 if N contains instances of only one class then

 return

 else

150

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

 Randomly select x

 Select the feature F with the highest information

gain to split on

 Create f child nodes of N , N1,...,Nf , where F has f

possible values (F1,…,Ff)

 for i = 1 to f do

 Set the contents of Ni to Di, where Di is all

instances in N that match

 Fi

 Call BuildTree(Ni)

 end for

 end if

3) Deep Learning

Deep learning is a subfield of machine learning framework

that involves one or more layered artificial neural networks.

The difference from artificial neural networks is the ability to

perform more operations as given in [32, 33]. In this study,

deep learning algorithms were used to see the contribution of

newly added game-data during training.

4) Artificial Neural Network

Artificial Neural Network is a computational model inspired

by biological neural networks. An artificial neural network

may comprise a plurality of neurons arranged in a series of

layers. The input layer receives various forms of information.

These data are passed through one or more hidden layers and

converted to the output unit where the input can be used. An

example of pseudo-code for back-propagation algorithm in

training ANN is given as [34]:

% X: training data of size mxn, y: class labels of X, w: the

weights for respective layers, l: the number of layers

% D(l)
ij the error for all l, i, j, t(l)

ij = 0, for all l, i, j.

 for i = 1 to m do

 al = feedforward(x(i), w)

 dl = a(L)-y(i)

 t(l)
ij = t(l)

ij + al
j * t(l+1)

i

 if j ≠ 0 then

 D(l)
ij = (1/m)* t(l)

ij + λw(l)
ij

 else

 D(l)
ij = (1/m)* t(l)

ij, where (d/dw(l)
ij)*j(w)= D(l)

ij

 end if

 end for

IV. SIMULATION RESULTS

In this study, it is assumed that all users have played the

game for the first time. The data set used for Renga consists of

data from multiple users. Although the values for the

application are the same, differences in points affect the result.

The main reason is that the records are classified as hard,

medium and easy according to the data content called “score“.

As a result of the tests, it was found that the most important

factors affecting the score were gravity and speed variables. In

the experimental tests, the simulations were tried on the

artificial intelligence methods mentioned above with many

different parameters and the most successful results were

recorded. The results provide the level identification

information for the Renga game. This data can be used to

provide a more efficient level and in-game dynamics to the

players. In the tables below, the best performance rates

obtained for artificial intelligence methods are given.

TABLE III

PERFORMANCE RATES IN DEEP LEARNING

 Hard Medium Easy Consistency

Hard
(Estimated)

9 20 0 % 31.03

Medium
(Estimated)

12 9 10 % 29.03

Easy
(Estimated)

92 151 345 % 58.67

Singular

Performance
% 7.96 % 5.00 % 97.18

In deep learning tests, data has been trained according to the

model of 2 hidden layer network. The best results for the tests

with different activation functions were obtained in maxout

function. The performance of the deep learning algorithm

according to the learning rate (0.6) in the test data is %56.02.

TABLE IV

PERFORMANCE RATES IN k-NEAREST NEIGHBOR

 Hard Medium Easy Consistency

Hard
(Estimated)

42 50 0 % 45.65

Medium
(Estimated)

78 154 0 % 66.38

Easy
(Estimated)

0 0 0 % 0.0

Singular

Performance
% 35.00 % 75.49 % 0.0

Many tests have been performed with different k values for

the k-nearest neighbor method which classifies according to

similarities in the data. According to the simulation results, the

best performance of the algorithm with the related learning

rate was obtained for k = 5. The performance of the k-nearest

neighbor algorithm according to the learning rate (0.8) in the

test data is %60.49. It is generally considered that the k-nn

method should not be used in inconsistent data because it has

different gains for variable user types.

TABLE V

PERFORMANCE RATES IN RANDOM FOREST

 Hard Medium Easy Consistency

Hard
(Estimated)

4 1 0 % 80.00

Medium
(Estimated)

13 40 17 % 57.14

Easy
(Estimated)

27 48 174 % 69.88

Singular

Performance
% 9.09 % 44.94 % 91.10

As shown in Table 5, the change of algorithmic parameters

for random forest did not bring an effective difference to the

results. For this reason, the samples were differentiated and

the findings were separated according to linear-complex

samples. The performance of the random forest algorithm

according to the learning rate (0.8) in the test data is %63.89.

151

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

The process that leads to the measurement of the level of the

game allows the new values to be generated by the obtained

values to be tested on the same users and thus to determine the

new perception of difficulty. The decision tree structures in

the random forest algorithm according to gravity and speed

variables, which is one of the most important factors affecting

the score, are presented in Figure 2 and Figure 3.

Fig.2. Decision tree method via gravity

Fig.3. Decision tree method via horizontal speed

TABLE VI

PERFORMANCE RATES IN ARTIFICIAL NEURAL NETWORK

 Hard Medium Easy Consistency

Hard
(Estimated)

0 0 0 % 0.0

Medium
(Estimated)

15 28 12 % 50.91

Easy
(Estimated)

29 61 179 % 66.54

Singular

Performance
% 0.00 % 31.46 %93.72

The performance of the ANN algorithm according to the

learning rate (0.8) in the test data is %63.58. In the

experimental simulations, one hidden layer, one input layer

and one output layer have been used for the ANN algorithm.

The best results for the tests with different activation functions

were obtained in sigmoid function for ANN implementation.

According to the tests, ANN method is the second most

efficient algorithm. However, it was found that the hard tag

could not be predicted by the data sets mentioned.

V. CONCLUSION

In this paper, a level identification procedure has been

performed with different methods and different parameters.

This classification process has been tested on the users of

Renga, an infinite game. The proposed structure provides an

online gaming adaptation mechanism that can be used to

effectively optimize the player experience. It is seen that the

best method used in the study is the random forest algorithm.

Furthermore, the random forest algorithm provided the best

classification distribution. Besides the success rate, it is seen

that it constitutes an efficient method for classification. The

models of decision trees it offers are guiding and can provide

high benefits. In a data set classification in which users' game

identities are included, it is anticipated that new studies may

emerge. In this way, the game can be played over certain basic

users with certain values and data collection can make the

leveling work more efficient. According to the results, the in-

game values offered to the users gave positive results and it

was observed that the game pleasure of the users was

satisfactory. A short way have been shown to developers to

present this experience, which saves time for improvements.

The evaluations that can be made through this game can give

an idea to be applied to other platform games. In the later

stages of the studies, it was paved the way for its application

in platform games with different genres and rich content.

ACKNOWLEDGMENT

This study was supported by Scientific Research

Coordination Unit of Pamukkale University under the project

number 2018FEBE003.

REFERENCES

[1] Y. Sarica “Game Levelling with Artificial Intelligence.” Master Degree

Thesis, Pamukkale University, The Graduate School of Natural and
Applied Science, 2019

[2] A. J. Baldwin. “Balancing act: the effect of dynamic difficulty
adjustment in competitive multiplayer video games”, 2016.

[3] Y. Zhang, S. He, J. Wang, Y. Gao, J. Yang, X. Yu, L. Sha. “Optimizing
player's satisfaction through DDA of game AI by UCT for the Game
Dead-End”. In Natural Computation, Sixth International Conference
on,Vol. 8, 2010, pp. 4161-4165.

[4] J. P. Gee. “What video games have to teach us about learning and
literacy”. Computers in Entertainment, 1(1), 2003, 20-20.

[5] M. Csikszentmihalyi. “Flow and the psychology of discovery and
invention”. Harper Perennial, New York, 1997, 39.

[6] R. Hunicke. “The case for dynamic difficulty adjustment in games”. In
Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in computer entertainment technology. 2005, pp. 429-433.

[7] J. Sinclair. "Feedback control for exergames". Theses: Doctorates and
Masters, 2011

[8] M. Kerssemakers, J. Tuxen, J. Togelius, G. N. Yannakakis. “A
procedural procedural level generator generator”. In 2012 IEEE

152

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Conference on Computational Intelligence and Games, 2012, pp. 335-
341.

[9] F. Mourato, M. P. dos Santos, F. Birra. “Automatic level generation for
platform videogames using genetic algorithms”. In Proceedings of the
8th International Conference on Advances in Computer Entertainment
Technology, 2011, p. 8.

[10] G. Smith, M. Treanor, J. Whitehead, M. Mateas, (). Rhythm-based
level generation for 2D platformers. In Proceedings of the 4th
International Conference on Foundations of Digital Games, 2009, pp.
175-182).

[11] M. Jennings-Teats, G. Smith, N. Wardrip-Fruin. “Polymorph: dynamic
difficulty adjustment through level generation”. In Proceedings of the
2010 Workshop on Procedural Content Generation in Games 2010, p.
11.

[12] F. Mourato, M. P. dos Santos, F. Birra. “Automatic level generation for
platform videogames using genetic algorithms”. In Proceedings of the
8th International Conference on Advances in Computer Entertainment
Technology 2011, p. 8

[13] L. Ferreira, C. Toledo. “A search-based approach for generating angry
birds levels”. In Computational intelligence and games, 2014.

[14] L. Galway, D. Charles, M. Black. “Machine learning in digital games: a
survey”. Artificial Intelligence Review, 29(2), 2008, 123-161.

[15] P. Spronck, I. Sprinkhuizen-Kuyper, E. Postma. “Online adaptation of
game opponent AI in simulation and in practice”. In Proceedings of the
4th International Conference on Intelligent Games and Simulation,
2003, pp. 93-100.

[16] D. Johnson, J. Wiles. “Computer games with intelligence”. In Fuzzy
Systems. The 10th IEEE International Conference on, Vol. 3, 2001, pp.
1355-1358.

[17] M. Persson. “Infinite Mario bros”. 2008, Online Game.
[18] W. Baghdadi, F. S. Eddin, R. Al-Omari, Z. Alhalawani, M. Shaker, N.

Shaker. “A procedural method for automatic generation of spelunky
levels”. In European Conference on the Applications of Evolutionary
Computation, 2015, pp. 305-317.

[19] G. Smith, M. Treanor, J. Whitehead, M. Mateas. “Rhythm-based level
generation for 2D platformers”. In Proceedings of the 4th International
Conference on Foundations of Digital Games, 2009, pp. 175-182.

[20] V. der Linden, R. R. Lopes, R. Bidarra, “Designing procedurally
generated levels”, In Proceedings of the second workshop on Artificial
Intelligence in the Game Design Process, 2013.

[21] G. N. Yannakakis, J. Togelius. “A panorama of artificial and
computational intelligence in games”. IEEE Transactions on
Computational Intelligence and AI in Games, 7(4), 2014, 317-335.

[22] S. Woodcock, J. E. Laird, D. Pottinger, “Game AI: The state of the
industry”. Game Developer Magazine, 8,c2000.

[23] P. Spronck, I. Sprinkhuizen-Kuyper, E. Postma. “Difficulty scaling of
game AI”. In Proceedings of the 5th International Conference on
Intelligent Games and Simulation, 2004, pp. 33-37.

[24] S. Lee, K. Jung. “Dynamic game level design using gaussian mixture
model”. In Pacific Rim International Conference on Artificial
Intelligence, 2006, pp. 955-959.

[25] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, E. Postma. “Adaptive
game AI with dynamic scripting”. Machine Learning, 63(3), 2006, 217-
248.

[26] S. L. Kent. “The Ultimate History of Video Games: From Pong to
Pokemon-The Story Behind the Craze That Touched Our Lives and
Changed the World”, 2001, New York: Three Rivers Press.

[27] J. Togelius, S. Karakovskiy, J. Koutník, J. Schmidhuber. “Super Mario
Evolution. In Computational Intelligence and Games”, IEEE
Symposium, CIG 2009, pp. 156-161.

[28] J. K. Haas. “A History of the Unity Game Engine”, 2014.
[29] B. Tay, J. K. Hyun, S. Oh. “A machine learning approach for

specification of spinal cord injuries using fractional anisotropy values
obtained from diffusion tensor images”. Computational and
mathematical methods in medicine, 2014.

[30] L. Breiman. “Random forests”. Machine learning, 45(1), 2001, 5-32.
[31] N. Sirikulviriya, S. Sinthupinyo. “Integration of rules from a random

forest”. In International Conference on Information and Electronics
Engineering, Vol. 6, 2011pp. 194-198.

[32] Y. LeCun, Y. Bengio, G. Hinton. “Deep learning”. Nature, 521(7553),
2015, 436-444.

[33] X. Yao. “Evolving artificial neural networks”. Proceedings of the
IEEE, 87(9), 1999, 1423-1447.

[34] H. Guo, H. Nguyen, D. A. Vu, X. N. Bui. “Forecasting mining capital
cost for open-pit mining projects based on artificial neural network
approach”. Resources Policy, 101474, 2019.

BIOGRAPHIES

YUNUS SARICA was born in Van,

Turkey, in 1993. He received the B.S.

and M.S. degrees in computer

engineering from the Pamukkale

University, Denizli. Since 2015, he has

been working as a computer engineer.

Since 2015, he had been a Research

Assistant with the Computer Engineering

Department, Pamukkale University,

Denizli, through the M.S. degree. His research interests

include game programming, artificial intelligence, desktop and

web application programming. Beside these, he is interested in

amateur theatre acting, voice-over and contemporary visual

technologies.

MERIC CETIN received B.Sc in

Electrical & Electronics Engineering from

Pamukkale University in 2003; M.Sc. in

Electrical & Electronics Engineering from

Institute of Natural Sciences, Pamukkale

University, in 2006. She obtained Ph.D.

degree in Electrical & Electronics

Engineering from Pamukkale University in

2015. She is currently an Assistant Professor at the Computer

Engineering Department, Pamukkale University. Her research

interests are in model predictive control, machine learning,

and adaptive control with computational intelligence

techniques. Dr. Cetin is a member of the European Embedded

Control Institute and reviewer of several international

journals.

153

http://dergipark.gov.tr/bajece

