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Abstract— The applications of artificial intelligence (AI), 

which is a comprehensive information technology, have been 

closely related to game technologies. Today, artificial intelligence-

based game development applications are increasing their 

popularity day by day. In this study, the levelling process of a 2-

dimensional (2D) platform game has been investigated. The game 

developed and called “Renga” has a basic gameplay. Game data 

has been processed through an artificial neural network (ANN), 

k-nearest neighbour, decision and random tree algorithms and 

deep learning model that is trained with gameplay and user 

information. The classification process with the output data 

provides results for the next game level. In this way, the most 

effective playability impression that the developers offer to the 

game users has been created according to game. Furthermore, 

the variety of difficulty calculated with dynamic data by the user 

is provided by Renga, in which new sections/levels are created 

with user-specific assets. Thus, the most efficient gaming 

experience has been transferred to the users. 

 

Index Terms— Artificial Intelligence, Difficulty Adjustment, 

Content Generation, k-Nearest Neighbor, Random Forest, 

Artificial Neural Networks. 

 

I. INTRODUCTION 

MONG the platforms, different types of games that can 

attract the attention of their target users are increasing 

and improving. Video games that contribute to this 

development are very successful in environmental design and 

transferring the realistic behavior of Non-Player Characters 

(NPC) [1]. In video games, which have become an important 

part of the entertainment industry, the goal is to optimize 

players' experience rather than creating the most difficult 

game [2-4]. A good video game has a long learning curve. 

Therefore, it is possible for the artificial intelligence-based-

algorithm to update itself in accordance with the interaction of 

people who learn the game. Research on the content 

production of games helps to develop better quality or 

interesting games. The player's expectation is that the 

difficulty of the game matches his personal gaming skills [5, 
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6]. Therefore, a proper content generation depends on the 

algorithm producing a meaningful output with player 

performance. Depending on the algorithm, the difficulty level 

of the game should increase as the player's abilities develop 

[7]. 

Designing quality content for millions of players in the 

game industry has become the goal of game developers. In [8], 

a procedural level generator based on interactive evolutionary 

algorithm has been introduced for the platform game. Another 

automatic level generator based on Darwin's theory of Natural 

selection was proposed in [9]. In [10], a Rhythm-based 

approach was proposed for 2D Platform content generation. In 

[11], dynamic difficulty adjustment is provided by Polymorph 

approach which changes game difficulty depending on player 

performance. In the literature, there are various studies that are 

designed by machine learning (genetic algorithm, artificial 

neural network, support vector machine) [12-16], 

probabilistically techniques [17], Procedural Content 

Generation (PCG) [18-20] for dynamic game levelling. The 

difficulties caused by the behavior of NPC objects can be 

supported by artificial intelligence applications to maximize a 

user's enjoyment. The use of artificial intelligence in games is 

diversifying and deepening day by day. In [21], Yannanakis 

and Togelius have pointed out the following matters on the 

subject: behavior learning of non-player characters, 

exploration and planning applications, player modeling, 

artificial intelligence game competence applications, 

methodological content production, stories that may vary, the 

formation of realistic environmental movements, artificial 

intelligence game design, use of commercial games, general 

in-game artificial intelligence. 

In artificial intelligence based studies proposed for dynamic 

game leveling, instead of randomly determining the course of 

the game, levelling is done taking into account the player's 

characteristics (aggression, courage, intelligence and 

cooperation) and the appropriate reaction is selected 

depending on these designs. Neural networks successfully 

applied to various games can be considered as a means of 

updating the artificial intelligence system. As an artificial 

intelligence system that can evolve over time, many game 

developers often do not use genetic algorithms because they 

need too much CPU power and are too slow to produce useful 

results [22]. Finite State Machines (FSMs) have often used by 

game developers because it is easy to implement, test, modify, 

and personalize [22]. Increasingly, there has been a tendency 

towards Fuzzy State Machines (FuSMs) since the use of fuzzy 

logic allows the recognition of non-binary conditions [22]. 

Demasi and Cruz used the genetic algorithm technique to 

protect the most appropriate agents according to the player's 

game performance [23]. In addition, there are several studies 
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based on Gaussian Mixture Module with dynamic scripting 

[24, 25]. 

In this study, game levels for Renga, which was developed 

as a 2D platform game, have been identified based on artificial 

intelligence. In this context, perception of difficulty in infinite 

games has been examined, balanced the player performance of 

Renga game and then different game levels have been 

designed according to player ability. As a result of processing 

the game data with artificial intelligence methods (artificial 

neural network, k-nearest neighbor, decision and random tree 

algorithms, deep learning model), it is provided to produce 

game-specific procedurally appropriate content and 

meaningful outputs specific to the player. Algorithmically 

variable game content has been generated by PCG, which 

significantly has reduced the time and cost of development 

processes for game developers. In this way, the most effective 

playability impression that the developers offer to the game 

users has been created according to Renga. Furthermore, the 

variety of difficulty calculated with dynamic data by the user 

is provided by Renga, in which new sections/levels are created 

with user-specific assets. Thus, the most efficient gaming 

experience has been transferred to the users. 

II. PLATFORM GAMES AND RENGA 

In this section, the process and technological developments 

of platform games that have been on the agenda since the 

beginning of video game history are presented. Platform 

games are the first phase of video game history. Bertie the 

Brain is known as the first industrial game developed in the 

1950s. This process continued eight years later with William 

Higinbotham's Tennis for Two. Pong, as the first realization of 

this game, has become one of the platform games [26]. Then, 

game technologies have developed into different categories. 

Productions such as Super Mario, Contra and Metal Slug have 

not lost their popularity despite the emergence of 3D games, 

and then, a new era of video games began with platform 

games such as Limbo, Inside, Ori and the Blind Forest. Many 

of these games have a special place today because they are 

widely distributed and can make their voices heard through 

digital gaming platforms [27].  

After all these similarities and examples that have continued 

its genre, it was decided to perform this study with platform 

games. In the comparative tests, it has been paid attention that 

the developed game (Renga) can work in harmony with the 

selected artificial intelligence method.  

Considering the existence of common objects, platform 

games can generally consist of a character, enemy, interactive 

objects and various platform groups. Although the aim of the 

selected character is to terminate the game parts, it is also 

important to be able to produce the appropriate level according 

to the game performance. One of the goals of designed game 

is to help the developer to design the level by providing 

sufficient data as soon as possible while building the sections. 

In this study, a 2D platform game (Renga) is designed which 

is simple to use and diversifies game assets. The developed 

game has been also introduced globally to the literature. In 

Renga methodological content production is based on an 

artificial intelligence algorithm and the identification data 

obtained in this way contribute to the change of in-game 

dynamics. In addition, a new data set was created by 

processing the data collected over the game. Game design is 

based on basic steps for artificial intelligence methods used in 

the study. The degrees of difficulty in the game depend on the 

numerical properties of the game assets. The main 

characteristics of the interaction of this process are: 

 Simple gameplay, 

 Interaction between assets, 

 Updating the character structure, 

 Contribution to the game score 

 Academic study 

 To provide entertainment to the global users 

Renga, which is compatible with phones with Android 

operating system, is developed by Unity platform. Renga is an 

infinite game that can be played until the player makes a 

mistake. The game engine Unity is widely used in such games 

because it supports 3D modeling and animation design as well 

as 2D game development [28]. Each field in Renga consists of 

a scene whose content is full of game objects (“sprite”, 

“texture”, “prefab” and “object”). The game has 4 scenes 

actively: “Menu”, “howToPlay”, “gameplay” and “end” 

scenes. In the “menu” scene, the data to be tested is collected. 

Users have access to the code file of any scene in Unity 

through information on randomness value, horizontal speed, 

gravity, jump value and distance between obstacles. The game 

process takes place on the "gameplay" scene. A gameplay 

scene for the Renga is illustrated in Fig.1. Only Renga is 

available as game asset in this scene. Background, floor, 

“Aheng” and “Rengec” are dynamically composed. 

 

 
Fig.1. Renga gameplay scene 
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III. ARTIFICIAL INTELLIGENCE BASED GAME 

LEVELING 

In this section, the effects of Renga game for the user, how 

the data is collected and the results obtained with the 

technology and methods used in this process are explained. 

 

A. Data Collection 

In order to control the game, the collected data is used to 

create a level, which affects the type and difficulty of the 

level. The statistical characteristics such as how often the 

player jumped, died, how much he caught Renga cannot be 

directly controlled by the game because of they depend on the 

player’s skill and playing style. In the tests, the game levels 

for a particular player have been dynamically generated as: 

1. A first level is generated with random parameters. 

2. Game features are recorded. 

3. Using recorded game features, a new adapted level is 

generated based on player experience. 

The tests in this study are based on the approximately 1500 

game session played by the 15 player (each user played the 

game at least 5 times with a randomly generated initial value). 

In the simulations, 80% of the input data set was used as 

training data. Sample game feature records of any user 

according to random parameters (seed, speed, gravity, jump, 

distance) are given in Table I. 

 
TABLE I 

RANDOM GAME SAMPLES FOR ANY USER 

PHONE_ID P1 P2 P3 P4 P5 P6 P7 

ABCDEF9876 50 1.0 12 4.0 1.8 0 0 

ABCDEF9876 50 1.0 10 4.0 1.8 0 0 

ABCDEF9876 50 1.0 14 4.0 1.8 0 0 

ABCDEF9876 50 1.0 12 5.5 1.8 0 0 

ABCDEF9876 50 1.0 12 2.5 1.8 0 0 

*P1= seed value, P2= speed value, P3= gravity value, P4= jump value,  

  P5= distance value, P6= static value, P7= score.  

 

The "PlayerPrefs" feature provides access to game 

information within Unity. This data, which was added in the 

database before, was obtained with datas.php file. The web 

service is provided with the WWWForm() object specified in 

Unity. The data is then transferred to the server, 

"http://gameonyou.tk/". Renga is available to users in the 

Google Play Store without academic features. Therefore, the 

data is primarily hosted on the local server created with 

xampp. In addition, the application file for the academic 

version externally is shared with users via the address, 

“http://gameonyou.tk/Renga.apk”. In the file dump named 

dbConnData.php, records are processed by connecting to the 

database with the pdo structure. 

First of all, when the user runs the game for the first time, 

the in-game data is collected and inserted to the database. 

Gameplay data, except for fixed values, were examined by 

increasing or decreasing each value at a certain rate, except for 

a general data type. If any row given in Table 1 is considered; 

as the values changed, the other values remained constant and 

this situation continued with combinations. These records are 

explained in detail as follows: 

Seed: Seed is a fixed value and set to 50. All users' test data 

were used with this seed value in artificial intelligence 

processes. Users who have completed all test values will start 

playing different sections with a different seed value. 

Speed: The default value of 1.0 is the feature that 

determines the speed of Renga during gameplay. With the 

values of 0.8 and 1.2, it was aimed to observe the gameplay 

status of the users. Reaching the Rengecs is necessary for the 

advancement of Renga. 

Gravity: The default value of 10.0 allows vertical 

movement of Renga in a constant direction during gameplay. 

Interactions of 12.0 and 8.0 values in users were examined. If 

Renga hits the ground due to this value, the game will end. 

The user protects Renga from the ground by touching the 

screen during the gameplay. 

Distance: The default is 1.6. This variable specifies the 

value of the distance between the rails. It is differentiated with 

1.0 and 3.0 values. It is inversely proportional to the speed 

value and can change the perception of difficulty. 

Jump: The default value is 4. The effect of the differences 

with the binary values of 5.5 and 2.5 was observed in the 

users. The user can increase the height of the vertical moving 

Renga by the magnitude of this value. 

The importance of jump and gravity values was considered 

when passing over or under the distinction points of Rengecs. 

Distinction points where Renga cannot pass are prevented 

from occurring. When enough data (recorded at 5 different 

times) is collected from the user, the in-game values will 

change. After all these collected data, the results of the related 

user are classified as easy, medium or difficult in designed 

artificial intelligence models. Since the initial data collected 

from the user changes after the new level proposed by the 

artificial intelligence model, the user will be able to continue 

to play the game more efficiently. 

 

B. Examination of Renga Data 

The data collected by the Renga game is sufficient for user-

based difficulty control and adjustment. According to the input 

set given as an example in Table 2, it will be appropriate to 

mention the data that creates the algorithm inputs and the 

features of these data before explaining the artificial 

intelligence model to be created.  

Randomness: It can be defined as the renovation value. All 

assets in the game are created according to a random value. 

The user plays at least 5 games for each data of the same 

randomness value. According to Eq. (1), it is possible for a 

user to present a minimum of 120 result outputs in the test 

environment through the designed artificial intelligence 

models.  
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4!=24→24*5=120   (1) 

 

In this way, new data can be created for difficulty control 

using the in-game values in the different seed values. 

 
TABLE II 

SAMPLE GAME DATA 

PHONE_ID K1 K2 K3 K4 K5 K6 

ABCDEF123 42 1.5 7 2.5 3 6 

ABCDEF123 42 1.5 7 2.5 3 9 

ABCDEF123 42 1.5 7 2.5 3 9 

ABCDEF123 42 1.5 7 2.5 3 10 

ABCDEF123 42 1.5 7 2.5 3 4 

*K1= randomness, K2= horizontal speed, K3= gravity value, K4= jump 

value, K5= distance between obstacles, K6= score.  

 

Horizontal speed: The path taken from the beginning of the 

game by the “K2’ values in Table 2. According to this table; 

 

K2 = 0,016*1,5=0,024     (2) 

 

In Eq. (2), 0.024 units of horizontal position changes occur 

for each frame per second. Increasing horizontal speed, which 

is one of the inputs in the artificial intelligence model, will 

increase the perception of difficulty in the game cause the user 

to be in easy class. 

Gravity: It is vertical movement value, created with the 

“Rigidbody” feature, assigned to the Renga object from the 

beginning of the game. According to the gravity values given 

in Table 2 and equation (3), 0.112 unit changes occur for each 

frame. 

 

 K3 = 0,016*7 =0,112    (3) 

 

Increasing this value is inversely proportional to the jump 

value. There should be a balance between these values. 

Increasing this value is inversely proportional to the jump 

value. Increasing the value increases the difficulty, and the 

fact that it is too low makes the game impossible. 

Jump: This variable value of action which user interacts 

with. Each time the user touches the screen, Renga will move 

vertically upwards by 2.5 units. During this movement, gravity 

also continues the downward movement. The accelerated 

Renga starts to move down again vertically. If the value is too 

high, even the lowest gain will lead to an impossible game. 

Distance between obstacles: It is the distance unit between 

Rengecs. There is a 3-unit distance between the Rengecs, 

which are proportioned by two color segments (yellow and 

red) according to their seed value. Increasing this value makes 

the game easier, while decreasing it can significantly 

differentiate the perception of difficulty in the user experience. 

Score: This value determines the player's highest gain in a 

game process. It also represents the number of Rengec that 

could be passed. It is the most important factor in the 

classification of difficulties for users. These data are 

differentiated in the results section. 

During the Renga design, many different technical fields 

have been used besides the package programs. In the 

following sections, used artificial intelligence algorithms and 

findings are presented. 

 

C. Methods 

In this study, the recursively used data was tested in various 

artificial intelligence models such as k-nearest neighbor, 

random forest, deep learning and artificial neural networks in 

the category of classification algorithms and analyzed through 

confusion matrix. Success and error coefficients were 

determined based on the variables within each method and 

were detailed for future studies. 

 

1) k-Nearest Neighbor 

The k-nearest neighbor method performs the classification 

process based on similarities where the data is clustered in 

cartesian plane. According to the selected value of k, which 

cluster the data belongs to is determined [29]. The pseudo-

code expression for this algorithm is given as follows: 

 

% X: training data, Y: class labels of X, x: unknown sample  

 Determine parameter k: the number of  nearest 

neighbor 

 Classify (X, Y, x)  

 for i = 1 to m do 

 Compute distances d(XI,x) between the query-

instance and all training data. 

 end for 

 Compute set I containing indices for the k smallest 

distances d(XI,x). 

 return majority of the category label for {YI} 

 

2) Random Forest 

Random forests, which are commonly used in classification 

or regression processes, consist of a large number of 

individual decision trees [30]. Random forest is an efficient 

tree algorithm that can model game data collected from 

different users in a compatible way. The pseudo-code for this 

algorithm is given as follows [31]: 

 

 Generate c classifiers 

 for i = 1 to c do 

 Randomly sample the training data D with 

replacement to produce Di  

 Create a root node, Ni containing Di. 

 Call BuildTree(Ni) 

 end for 

BuildTree(N): 

 if N contains instances of only one class then  

 return  

 else 
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 Randomly select x 

 Select the feature F with the highest information 

gain to split on 

 Create f child nodes of N , N1,...,Nf , where F has f 

possible values ( F1,…,Ff) 

 for i = 1 to f do 

 Set the contents of Ni to Di, where Di is all 

instances in N that match  

 Fi 

 Call BuildTree(Ni) 

 end for 

 end if 

 

3) Deep Learning 

Deep learning is a subfield of machine learning framework 

that involves one or more layered artificial neural networks. 

The difference from artificial neural networks is the ability to 

perform more operations as given in [32, 33]. In this study, 

deep learning algorithms were used to see the contribution of 

newly added game-data during training.  

 

4) Artificial Neural Network 

Artificial Neural Network is a computational model inspired 

by biological neural networks. An artificial neural network 

may comprise a plurality of neurons arranged in a series of 

layers. The input layer receives various forms of information. 

These data are passed through one or more hidden layers and 

converted to the output unit where the input can be used. An 

example of pseudo-code for back-propagation algorithm in 

training ANN is given as [34]: 

 

% X: training data of size mxn, y: class labels of X, w: the 

weights for respective layers, l: the number of layers  

% D(l)
ij the error for all l, i, j, t(l)

ij = 0, for all l, i, j. 

 for i = 1 to m do 

 al = feedforward(x(i), w) 

 dl = a(L)-y(i) 

 t(l)
ij = t(l)

ij + al
j * t(l+1)

i 

 if j ≠ 0 then  

 D(l)
ij = (1/m)* t(l)

ij + λw(l)
ij 

 else 

 D(l)
ij = (1/m)* t(l)

ij, where (d/dw(l)
ij )*j(w)= D(l)

ij 

 end if 

 end for 

IV. SIMULATION RESULTS 

In this study, it is assumed that all users have played the 

game for the first time. The data set used for Renga consists of 

data from multiple users. Although the values for the 

application are the same, differences in points affect the result. 

The main reason is that the records are classified as hard, 

medium and easy according to the data content called “score“. 

As a result of the tests, it was found that the most important 

factors affecting the score were gravity and speed variables. In 

the experimental tests, the simulations were tried on the 

artificial intelligence methods mentioned above with many 

different parameters and the most successful results were 

recorded. The results provide the level identification 

information for the Renga game. This data can be used to 

provide a more efficient level and in-game dynamics to the 

players. In the tables below, the best performance rates 

obtained for artificial intelligence methods are given. 

 
TABLE III 

PERFORMANCE RATES IN DEEP LEARNING 

 Hard Medium Easy Consistency 

Hard 
(Estimated) 

9 20 0 % 31.03 

Medium 
(Estimated)  

12 9 10 % 29.03 

Easy  
(Estimated) 

92 151 345 % 58.67 

Singular 

Performance 
% 7.96 % 5.00 % 97.18  

 

In deep learning tests, data has been trained according to the 

model of 2 hidden layer network. The best results for the tests 

with different activation functions were obtained in maxout 

function. The performance of the deep learning algorithm 

according to the learning rate (0.6) in the test data is %56.02.  

 
TABLE IV 

PERFORMANCE RATES IN k-NEAREST NEIGHBOR 

 Hard Medium Easy Consistency 

Hard 
(Estimated) 

42 50 0 % 45.65 

Medium 
(Estimated)  

78 154 0 % 66.38 

Easy  
(Estimated) 

0 0 0 % 0.0 

Singular 

Performance 
% 35.00 % 75.49 % 0.0  

 

Many tests have been performed with different k values for 

the k-nearest neighbor method which classifies according to 

similarities in the data. According to the simulation results, the 

best performance of the algorithm with the related learning 

rate was obtained for k = 5. The performance of the k-nearest 

neighbor algorithm according to the learning rate (0.8) in the 

test data is %60.49. It is generally considered that the k-nn 

method should not be used in inconsistent data because it has 

different gains for variable user types. 

 
TABLE V 

PERFORMANCE RATES IN RANDOM FOREST 

 Hard Medium Easy Consistency 

Hard 
(Estimated) 

4 1 0 % 80.00 

Medium 
(Estimated)  

13 40 17 % 57.14 

Easy  
(Estimated) 

27 48 174 % 69.88 

Singular 

Performance 
% 9.09 % 44.94 % 91.10  

 

As shown in Table 5, the change of algorithmic parameters 

for random forest did not bring an effective difference to the 

results. For this reason, the samples were differentiated and 

the findings were separated according to linear-complex 

samples. The performance of the random forest algorithm 

according to the learning rate (0.8) in the test data is %63.89. 
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The process that leads to the measurement of the level of the 

game allows the new values to be generated by the obtained 

values to be tested on the same users and thus to determine the 

new perception of difficulty. The decision tree structures in 

the random forest algorithm according to gravity and speed 

variables, which is one of the most important factors affecting 

the score, are presented in Figure 2 and Figure 3. 

 

 
Fig.2. Decision tree method via gravity 

 

 

 
Fig.3. Decision tree method via horizontal speed 

 
TABLE VI 

PERFORMANCE RATES IN ARTIFICIAL NEURAL NETWORK 

 Hard Medium Easy Consistency 

Hard 
(Estimated) 

0 0 0 % 0.0 

Medium 
(Estimated)  

15 28 12 % 50.91 

Easy  
(Estimated) 

29 61 179 % 66.54 

Singular 

Performance 
% 0.00 % 31.46 %93.72  

 

The performance of the ANN algorithm according to the 

learning rate (0.8) in the test data is %63.58. In the 

experimental simulations, one hidden layer, one input layer 

and one output layer have been used for the ANN algorithm. 

The best results for the tests with different activation functions 

were obtained in sigmoid function for ANN implementation. 

According to the tests, ANN method is the second most 

efficient algorithm.  However, it was found that the hard tag 

could not be predicted by the data sets mentioned. 

V. CONCLUSION 

In this paper, a level identification procedure has been 

performed with different methods and different parameters. 

This classification process has been tested on the users of 

Renga, an infinite game. The proposed structure provides an 

online gaming adaptation mechanism that can be used to 

effectively optimize the player experience. It is seen that the 

best method used in the study is the random forest algorithm. 

Furthermore, the random forest algorithm provided the best 

classification distribution. Besides the success rate, it is seen 

that it constitutes an efficient method for classification. The 

models of decision trees it offers are guiding and can provide 

high benefits. In a data set classification in which users' game 

identities are included, it is anticipated that new studies may 

emerge. In this way, the game can be played over certain basic 

users with certain values and data collection can make the 

leveling work more efficient. According to the results, the in-

game values offered to the users gave positive results and it 

was observed that the game pleasure of the users was 

satisfactory. A short way have been shown to developers to 

present this experience, which saves time for improvements. 

The evaluations that can be made through this game can give 

an idea to be applied to other platform games. In the later 

stages of the studies, it was paved the way for its application 

in platform games with different genres and rich content.  
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