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Abstract
In this paper, we introduce the concepts of the Ulam-Hyers-Rassias stability and the limit shadowing property of
a fixed point problem and the P-property of a mapping in partial cone b-metric space. Also, we give such results
by using the mapping which is studied by Fernandez et al. (Filomat 30(10) (2016)) in partial cone b-metric space
and provide some numerical examples to support our results. The results presented here extend and improve
some recent results announced in the current literature.
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1. Introduction
Fixed point theory plays an important role in applications of many branches of mathematics. There has been a number of
generalizations of metric spaces. One of them is a b-metric space which is introduced by Czerwik [1]. After that a series of
articles has been dedicated to the improvement of fixed point theory. In 2011, Hussain and Shah [2] introduced the concept of
cone b-metric space and studied some topological properties. At the same year, Sönmez [3] introduced the concept of partial
cone metric space and proved some important fixed point theorems in such spaces. In 2016, Fernandez et al. [4] introduced the
concept of partial cone b-metric space which is a generalization of cone b-metric space and partial cone metric space. They also
established the following fixed point result for asymptotically regular sequences in the setting of partial cone b-metric space.

Theorem 1.1. (see [4, Theorem 5.1]) Let (X , pb) be a complete partial cone b-metric space, P be a normal cone with the
normal constant K and T : X → X be a mapping satisfying the inequality

pb(T x,Ty)≤ a1 pb(x,T x)+a2 pb(y,Ty)+a3 pb(x,Ty)+a4 pb(y,T x)+a5 pb(x,y) (1.1)

for all x,y ∈ X , where a1,a2,a3,a4,a5 are non-negative real numbers and satisfy the condition a3 +a4 +a5 < 1. If there exists
an asymptotically T -regular sequence in X , then T has a unique fixed point.

In this paper, we consider the mapping satisfying (1.1) in partial cone b-metric space. This paper contains four sections. In
section 2, we give basic definitions and a detailed overview of the fundamental results. In section 3, we prove the Ulam-Hyers-
Rassias stability and the limit shadowing property of the fixed point problem. In section 4, we present the P-property result of
the mapping. Our results can be viewed as refinement and generalization of several well-known results in partial cone metric
space and cone b-metric space.
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2. Preliminaries
Let (E,‖.‖) be a real Banach space. A subset P of E is called a cone if and only if

(1) P is closed, nonempty and P 6= {θ};
(2) ax+by ∈ P for all x,y ∈ P and a,b≥ 0;
(3) P∩ (−P) = {θ}.
Given a cone P⊆ E, we define a partial ordering ≤ on E with respect to P by x≤ y if and only if y− x ∈ P. We shall write

x < y to indicate that x≤ y but x 6= y, while x� y will stand for y− x ∈ intP (the interior of P). A cone P is called normal if
there is a number K > 0 such that for all x,y ∈ E, θ ≤ x≤ y implies that

‖x‖ ≤ K ‖y‖ . (2.1)

The least positive number satisfying (2.1) is called the normal constant of P. It is clear that K ≥ 1.

Definition 2.1. (see [2]) Let X be a nonempty set, and let P be a cone in a real Banach space E. A vector-valued function
d : X×X → P is said to be cone b-metric with the constant s≥ 1 if the following conditions are satisfied:

(1) θ ≤ d(x,y), for all x,y ∈ X , and d(x,y) = θ if and only if x = y;
(2) d(x,y) = d(y,x) for all x,y ∈ X ;
(3) d(x,y)≤ s[d(x,z)+d(z,y)] for all x,y,z ∈ X .

Then the pair (X ,d) is called a cone b-metric space.

Definition 2.2. (see [3]) Let X be a nonempty set, and let P be a cone in a real Banach space E. A partial cone metric on X is a
function p : X×X → P such that, for all x,y,z ∈ X :

(1) x = y if and only if p(x,x) = p(x,y) = p(y,y);
(2) θ ≤ p(x,x)≤ p(x,y);
(3) p(x,y) = p(y,x);
(4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

In this case, the pair (X , p) is called a partial cone metric space.

Definition 2.3. (see [4, Definition 3.1]) Let X be a nonempty set, and let P be a cone in a real Banach space E. A partial cone
b-metric on X is a function pb : X×X → P such that, for all x,y,z ∈ X :

(1) x = y⇐⇒ pb(x,x) = pb(x,y) = pb(y,y);
(2) θ ≤ pb(x,x)≤ pb(x,y);
(3) pb(x,y) = pb(y,x);
(4) pb(x,y)≤ s[pb(x,z)+ pb(z,y)]− pb(z,z).

Then the pair (X , pb) is called a partial cone b-metric space. The number s≥ 1 is called the coefficient of (X , pb).

In partial cone b-metric space (X , pb), if x,y ∈ X and pb(x,y) = θ , then x = y, but the converse may not be true. It is clear
that every partial cone metric space is a partial cone b-metric space with the coefficient s = 1 and every cone b-metric space is a
partial cone b-metric space with the same coefficient and zero self distance. However, the converse of these facts does not
necessarily hold.

Example 2.4. (see [4]) (i) Let E = R2, P = {(x,y) ∈ E : x,y ≥ 0}, X = [0,∞), p > 1 be a constant and pb : X ×X → P be
defined by

pb(x,y) = ((max{x,y})p + |x− y|p ,α (max{x,y})p)+ |x− y|p))

for all x,y ∈ X , where α ≥ 0 is a constant. Then (X , pb) is a partial cone b-metric space with coefficient s = 2p > 1. But it is
not a partial cone metric space.

(ii) Let E = R2, P = {(x,y) ∈ E : x,y≥ 0}, X = [0,∞), p > 1 be a constant and pb : X×X → P be defined by

pb(x,y) = ((max{x,y})p ,α (max{x,y})p)

for all x,y ∈ X , where α ≥ 0 is a constant. Then (X , pb) is a partial cone b-metric space which is not a cone b-metric space.

Definition 2.5. (see [4]) Let (X , pb) be a partial cone b-metric space, {xn} be a sequence in X and x ∈ X . We say that {xn} is:
(i) convergent to x and x is called a limit of {xn} if

lim
n→∞

pb(xn,x) = lim
n→∞

pb(xn,xn) = pb(x,x).

(ii) Cauchy sequence if there is a ∈ P such that for every ε > 0 there is N such that for all n,m > N, ‖pb(xn,xm)−a‖< ε.
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Definition 2.6. (see [4]) A partial cone b-metric space (X , pb) is said to be complete if every Cauchy sequence in (X , pb) is
convergent in (X , pb).

Theorem 2.7. (see [4]) Let (X , pb) be a partial cone b-metric space and P be a normal cone with a normal constant K. Let
x ∈ X and {xn} be a sequence in X. Then

(i) {xn} converges to x if and only if pb(xn,x)→ pb(x,x) as n→ ∞.
(ii) pb(xn,xn)→ pb(x,x) as n→ ∞ if pb(xn,x)→ pb(x,x) as n→ ∞.

Definition 2.8. (see [4, Definition 4.1]) Let (X , pb) be a partial cone b-metric space. A sequence {xn} in X is said to be
asymptotically T -regular if limn→∞ pb(xn,T xn) = θ .

3. The Ulam-Hyers-Rassias stability and the limit shadowing property results
Speaking of the stability problem of functional equations, we follow a question raised in 1940 by Ulam, concerning approximate
homomorphisms of groups (see [5]). Hyers [6] gave the first affirmative partial answer to the question of Ulam for Banach
spaces in 1941 and after the fact, this type of stability is called the Ulam-Hyers stability. Hyers’s theorem was generalized
by Aoki [7] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference.
Rassias [8] attempted to weaken the condition for the bound of the norm of the Cauchy difference as follows:

‖ f (x+ y)− f (x)− f (y)‖ ≤ ε(‖x‖p +‖y‖p)

and derived Hyers’s theorem. The work of Rassias has influenced a number of mathematicians to develop the notion what is
now a days referred to as Ulam-Hyers-Rassias stability of linear mappings. Since then, stability of other functional equations,
differential equations, and of various integral equations has been extensively investigated by many mathematicians (see
[9, 10, 11, 12, 13]).

Now, we introduce the concept of Ulam-Hyers-Rassias stability of a fixed point problem in partial cone b-metric space.

Definition 3.1. Let (X , pb) be a partial cone b-metric space and T : X → X be a mapping. A fixed point problem

T x = x (3.1)

has Ulam-Hyers-Rassias stability if and only if there exists the function σ : [0,∞)→ [0,∞) which is increasing, continuous at 0
and σ(0) = 0 such that for ε > 0 and y∗ ∈ X which is an ε-solution of the fixed point equation (3.1), that is, y∗ satisfied the
inequality

‖pb(y∗,Ty∗)‖ ≤ σ(t),

there exists a solution x∗ ∈ X of (3.1) such that

‖pb(x∗,y∗)‖ ≤ c1.σ(t)

for some c1 > 0.

Remark 3.2. If the function σ is defined by σ(t) = ε for all t ≥ 0 where ε > 0, then the fixed point equation (3.1) has
Ulam-Hyers stability.

Next, we prove that the fixed point equation (3.1) has the Ulam-Hyers-Rassias stability.

Theorem 3.3. Let (X , pb) be a complete partial cone b-metric space, P be a normal cone with the normal constant K and
T : X → X be a mapping satisfying the inequality

pb(T x,Ty)≤ a1 pb(x,T x)+a2 pb(y,Ty)+a3 pb(x,Ty)+a4 pb(y,T x)+a5 pb(x,y) (3.2)

for all x,y ∈ X , where a1,a2,a3,a4,a5 are non-negative real numbers such that the condition s(a1 +a3s+a4 +a5)< 1 holds. If
there exists an asymptotically T -regular sequence in X , then the fixed point problem (3.1) has the Ulam-Hyers-Rassias stability.

Proof. Since a3 +a4 +a5 < s(a1 +a3s+a4 +a5)< 1, then all hypotheses of Theorem 1.1 are satisfied. Hence, we can say
that the mapping T has a unique fixed point x∗ ∈ X . Let ε > 0 and y∗ ∈ X be a ε-solution of (3.1), that is,

‖pb(y∗,Ty∗)‖ ≤ σ(t).
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Now we have

pb(x∗,y∗) = pb(T x∗,y∗)

≤ s[pb(T x∗,Ty∗)+ pb(Ty∗,y∗)]− pb(Ty∗,Ty∗)

≤ spb(T x∗,Ty∗)+ spb(Ty∗,y∗). (3.3)

Also, we obtain

spb(T x∗,Ty∗)

≤ s[a1 pb(x∗,T x∗)+a2 pb(y∗,Ty∗)+a3 pb(x∗,Ty∗)+a4 pb(y∗,T x∗)+a5 pb(x∗,y∗)]

≤ a1spb(x∗,y∗)+a2spb(y∗,Ty∗)+a3s[s(pb(x∗,y∗)+ pb(y∗,Ty∗))− pb(y∗,y∗)]+a4spb(y∗,x∗)+a5spb(x∗,y∗)

≤ a1spb(x∗,y∗)+a2spb(y∗,Ty∗)+a3s2 pb(x∗,y∗)+a3s2 pb(y∗,Ty∗)+a4spb(y∗,x∗)+a5spb(x∗,y∗). (3.4)

Combining (3.3) and (3.4), we have[
1− (a1s+a3s2 +a4s+a5s)

]
pb(x∗,y∗)≤

(
a2s+a3s2 + s

)
pb(y∗,Ty∗).

Hence, we get

‖pb(x∗,y∗)‖ ≤ K.
a2s+a3s2 + s

1− s(a1 +a3s+a4 +a5)
‖pb(y∗,Ty∗)‖ .

Therefore, we obtain

‖pb(x∗,y∗)‖ ≤ c1σ(t)

where

c1 = K.
a2s+a3s2 + s

1− s(a1 +a3s+a4 +a5)
> 0.

This completes the proof.

The following example illustrates Theorem 3.3.

Example 3.4. Let (X , pb) be a complete partial cone b-metric space which is defined as in Example 2.4 (i) such that p = 2 and
s = 4. Let T be a self mapping of X such that T x = 2x

5 for all x ∈ X . Then, the mapping T satisfies the contractive condition
(3.2) with a1 = a2 = a3 = a4 = 0 and a5 =

1
5 . It is clearly seen that 0 is the unique fixed point of T. Assume that ε > 0 and

y∗ ∈ X is an ε-solution of the fixed point problem of T, that is,

‖pb(y∗,Ty∗)‖ ≤ σ(t).

If we take K = 1, we get

‖pb(0,y∗)‖ ≤ 20.σ(t),

and so the fixed point problem (3.1) has the Ulam-Hyers-Rassias stability.

Corollary 3.5. Under the assumptions of Theorem 3.3, the fixed point problem (3.1) has the Ulam-Hyers stability, that is, for
every y∗ ∈ X and ε > 0 with ‖pb(y∗,Ty∗)‖ ≤ ε, there exists a unique x∗ ∈ X such that

T x∗ = x∗ and ‖pb(x∗,y∗)‖ ≤ c1ε

for some c1 > 0.

The following example demonstrates Corollary 3.5.

Example 3.6. Let (X , pb) be a complete partial cone b-metric space which is defined as in Example 2.4 (ii) such that p = 2,
and let T be a self mapping of X such that T x = x

4 for all x ∈ X . Then, the mapping T satisfies the contractive condition (3.2)
with a1 = a2 = a3 = a4 = 0 and a5 =

1
3 . It is clearly seen that 0 is the unique fixed point of T. If we take K = 1, we get

‖pb(0,y∗)‖ ≤ 6.ε,

and so the fixed point problem (3.1) has the Ulam-Hyers stability.
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The limit shadowing property of a fixed point problem have evoked much interest to many researchers, for example,
Sintunavarat [12], Pilyugin [14].

In 2014, Sintunavarat [12] introduced the limit shadowing property of a fixed point problem in metric spaces.

Definition 3.7. (see [12]) Let (X ,d) be a metric space and T : X → X be a mapping. We say that the fixed point problem of T
has the limit shadowing property in X if for any sequence {xn} in X satisfying limn→∞ d(xn,T xn) = 0, it follows that there
exists x∗ ∈ X such that limn→∞ d(T nx∗,xn) = 0.

Similarly, we define the limit shadowing property of a fixed point problem in partial cone b-metric space.

Definition 3.8. Let (X , pb) be a partial cone b-metric space and T : X → X be a mapping. We say that the fixed point problem
of T has the limit shadowing property in X if for any sequence {xn} in X satisfying limn→∞ pb(xn,T xn) = θ , it follows that
there exists x∗ ∈ X such that limn→∞ pb(T nx∗,xn) = θ .

Now, we prove that the fixed point equation (3.1) has the limit shadowing property.

Theorem 3.9. Let (X , pb) be a complete partial cone b-metric space, P be a normal cone and T : X → X be a mapping
satisfying (3.2) with a3 +a4 +a5 < 1. If there exists an asymptotically T -regular sequence in X , then the fixed point problem of
T has the limit shadowing property in X .

Proof. Let {xn} is an asymptotically T -regular sequence in X . Then we say that

lim
n→∞

pb(xn,T xn) = θ .

Also, from Theorem 1.1, the mapping T has a unique fixed point x∗ ∈ X and the sequence {xn} converges to x∗. Therefore, we
can write

lim
n→∞

pb(xn,T nx∗) = lim
n→∞

pb(xn,x∗) = θ .

This completes the proof.

The following example illustrates Theorem 3.9.

Example 3.10. Let (X , pb) and T be defined as in Example 3.6. Choose a sequence {xn}, xn 6= 0 for any positive integer n,
which converges to zero. Then {xn} is an asymptotically T -regular sequence in (X , pb). We can see that there is x∗ = 0 ∈ X
such that

lim
n→∞

pb(T nx∗,xn) = lim
n→∞

pb(0,xn) = lim
n→∞

(x2
n,αx2

n)

= (0,α0)
= θ .

Hence the fixed point problem of T has the limit shadowing property.

4. The P-property result

Rhoades defined the P-property on metric spaces in his works [15], [16] and [17]. Denote, as usual, by F(T ) the set of fixed
points of the mapping T : X → X . We say that a self-mapping T has the P-property whenever F(T ) = F(T n) for all n≥ 1, that
is, it has no periodic points. Note that F(T )⊆ F(T n) for all n≥ 1. It is clear that if T is a mapping which has a fixed point x∗,
then x∗ is also a fixed point of T n for all n≥ 1. It is well known that the converse is not true. However if a mapping T satisfies
F(T n)⊆ F(T ) for all n≥ 1, then it is said to have the P-property.

In 2018, Huang et al. [18] gave a characterization for the P-property in b-metric space.

Theorem 4.1. (see [18]) Let (X ,d) be a b-metric space with coefficient s≥ 1. Let T : X→ X be a mapping such that F(T ) 6= /0
and

d(T x,T 2x)≤ λd(x,T x)

for all x ∈ X , where 0≤ λ < 1 is a constant. Then the mapping T has the P-property.

Now, we generalize Theorem 4.1 to partial cone b-metric space.
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Theorem 4.2. Let (X , pb) be a partial cone b-metric space, P be a normal cone with the normal constant K and T : X → X be
a mapping such that F(T ) 6= /0. Then T has the P-property if it is satisfied the following inequality

pb(T x,T 2x)≤ λ pb(x,T x)

where 0≤ λ < 1.

Proof. We always assume that n > 1, since the statement for n = 1 is trivial. Let x∗ ∈ F(T n). By the hypotheses, it is clear that

pb(x∗,T x∗) = pb(T T n−1x∗,T 2T n−1x∗)≤ λ pb(T n−1x∗,T nx∗)

= λ pb(T T n−2x∗,T 2T n−2x∗)

≤ λ
2 pb(T n−2x∗,T n−1x∗)≤ ...≤ λ

n pb(x∗,T x∗).

Since P is a normal cone with the normal constant K, then we have

‖pb(x∗,T x∗)‖ ≤ Kλ
n ‖pb(x∗,T x∗)‖→ 0 as n→ ∞.

Hence, we get pb(x∗,T x∗) = θ , that is, x∗ ∈ F(T ).

Next we prove that the mapping T has the P-property.

Theorem 4.3. Let (X , pb) be a complete partial cone b-metric space, P be a normal cone and T : X → X be a mapping
satisfying the inequality (3.2) with a1 +a2 +2sa3 +a4 +a5 < 1. Then the mapping T has the P-property.

Proof. Noting a3 +a4 +a5 < a1 +a2 +2sa3 +a4 +a5 < 1, by Theorem 1.1, we get x∗ ∈ F(T ). Using (3.2), we obtain

pb(T x,T 2x)

= pb(T x,T T x)

≤ a1 pb(x,T x)+a2 pb(T x,T 2x)+a3 pb(x,T 2x)+a4 pb(T x,T x)+a5 pb(x,T x)

≤ a1 pb(x,T x)+a2 pb(T x,T 2x)+a3[s(pb(x,T x)+ pb(T x,T 2x))− pb(T x,T x)]+a4 pb(T x,T x)+a5 pb(x,T x)

≤ a1 pb(x,T x)+a2 pb(T x,T 2x)+a3spb(x,T x)+a3spb(T x,T 2x)+a4 pb(T x,x)+a5 pb(x,T x).

Hence, we have

pb(T x,T 2x)≤ a1 + sa3 +a4 +a5

1− (a2 + sa3)
pb(x,T x).

Therefore, we obtain

pb(T x,T 2x)≤ λ .pb(x,T x)

where λ = a1+sa3+a4+a5
1−(a2+sa3)

< 1. Consequently, by Theorem 4.2, the mapping T has the P-property.

Finally, we give an example to support Theorem 4.3.

Example 4.4. Let (X , pb) and T be the same as in Example 3.6. If we take a1 = a2 = a3 = a4 = 0 and a5 =
1
16 , then we get

pb(T x,T 2x) = pb

( x
4
,

x
16

)
=

(
x2

16
,α

x2

16

)
=

1
16

pb

(
x,

x
4

)
=

1
16

pb (x,T x)

and so the mapping T has the P-property.

Conclusion
In this paper, based on the class of mappings studied by Fernandez et al. [4], we have proved the Ulam-Hyers-Rassias stability
and the limit shadowing property results of a fixed point problem and the P-property of a mapping in partial cone b-metric
space. If P = [0,∞) and s = 1 are taken in our results, the similar results are obtained in partial metric space.
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