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Abstract. Let R be a commutative semiring with nonzero identity and H
be an arbitrary multiplicatively closed subset R. The generalized identity-

summand graph of R is the (simple) graph GH(R) with all elements of R as

the vertices, and two distinct vertices x and y are adjacent if and only if x+y ∈
H. In this paper, we study some basic properties of GH(R). Moreover, we

characterize the planarity, chromatic number, clique number and independence

number of GH(R).

1. Introduction

Semirings provide useful instruments to solve problems in many areas of informa-
tion sciences and applied mathematics such as optimization theory, graph theory,
automata theory, coding theory and analysis of computer programs, because the
structure of semiring provides a useful algebraic technique for investigating and
modelling the key factors in these problems.

Over the last few years, the study of algebraic structures by graphs has been
done and several interesting results have been obtained (see [1,2,4,5,10,11,13–17]).
For instance, the total graph of a commutative ring R is a simple graph whose
vertex set is R, and two distinct vertices a and b are adjacent if a+ b is a zero divi-
sor of R (the set of all zero-divisor elements of R is denoted by Z(R))(see [3, 18]).
Recently, in [9], the authors considered the identity summand graph of a commu-
tative semiring R denoted by Γ(R), as the simple graph with the set of vertices
{x ∈ R \ {1} : x + y = 1 for some y ∈ R \ {1}}, where two distinct vertices x and
y are adjacent if and only if x + y = 1. Moreover, the identity-summand graph
with respect to co-ideal I denoted by ΓI(R) is a graph with vertices as elements
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SI(R) = {x ∈ R \ I : x+ y ∈ I for some y ∈ R \ I}, where two distinct vertices x
and y are adjacent if and only if x+ y ∈ I [12].

Let H be a nonempty subset of a semiring R with nonzero identity. H is said
to be multiplicatively closed if xy ∈ H, for all x and y of H. Also, a subset H of R
is called saturated if xy ∈ H if and only if x, y ∈ H. For a multiplicatively closed
subset H of R, we define the generalized identity-summand graph of R, denoted by
GH(R), as a simple graph, with vertex set R and two distinct vertices x and y being
adjacent if and only if x + y ∈ H. Since the subsets Z(R) of R is multiplicatively
closed, GH(R) is a natural generalization of the total graph of R. Hence the total
graph is a well-known graph of this type. Moreover, if H is a co-ideal of R, then
ΓH(R) is a subgraph of GH(R).

We summarize the contents of this article as follows. In Section 2, we inves-
tigate the basic properties of generalized identity-summand graph, for instance ,
the degree of the vertices and connectivity. Also, We consider the possible inte-
gers for the diameter and the girth of the graph GH(R). We investigate the case
that H is a saturated multiplicatively closed subset of R. We prove a subset H
of R is saturated if and only if R \ H is a union of some prime ideals. Therefore
R \ H =

⋃
j∈J Mj for some prime ideals Mj with j ∈ J . Set I :=

⋂
j∈J Mj . If I

is a Q-ideal of R, then set H̃ := {q + I : h ∈ q + I for some h ∈ H}. We show

that the newly constructed subset H̃ is a saturated multiplicatively closed subset of
R/I and study the relationship between the combinatorial properties of the graphs
GH(R) and GH̃(R/I). Further, we consider the graph GH(R), when it is complete,
complete r-partite, complete 2-partite and regular graph. It is proved that GH(R)
is complete 2-partite if and only if it is star graph. In Section 3, we consider and
study the planar property, clique number, chromatic number and independence
number of GH(R). We will show that ω(GH(R)) = χ(GH(R)) and completely de-
termine the chromatic number, clique number and independence number of GH(R).

Now, we are going to recall some notations and definitions of graph theory
from [6], which are needed in this paper. Let G be a graph. By E(G) and V (G)
we will denote the set of all edges and vertices, respectively. A graph G is called
connected provided that there exists a path between any two distinct vertices. Oth-
erwise, G is said to be disconnected. The distance between two distinct vertices a
and b is the length of the shortest path connecting them, denoted by d(a, b), (if such
a path does not exist, then d(a, b) = ∞, also d(a, a) = 0). The diameter of a graph
G, denoted by diam(G), is equal to sup{d(a, b) : a and b are distinct vertices of G}.
The girth of a graph G denoted gr(G), is the length of a shortest cycle in G, pro-
vided that G contains a cycle; otherwise gr(G) = ∞. For a given vertex x ∈ V (G),
the neighborhood set of x is the set N(x) = {a ∈ V (G) : a is adjacent to x}. A
graph G is called complete, if every pair of distinct vertices is connected by a
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unique edge. The notation Kn will denote the complete graph on n vertices. A
complete r-partite graph is one in which each vertex is joined to every vertex that
is not in the same subset. A complete r-partite graph with part sizes m1, ...,mr

is denoted by Km1,m2,...,mr
. We will sometimes call K1,n a star graph. Let G be

a graph. A coloring of a graph G is an assignment one color to each vertex of G
such that distinct colors are assigned to adjacent vertices. If one used n colors for
the coloring of G, then it is referred to as an n-coloring. If G has n-coloring, then
G is called n-colorable. The minimum positive integer n for which a graph G is
n-colorable is called the chromatic number of G, and is denoted by χ(G). A graph
G is said to be totally disconnected, if no two vertices of G are adjacent. Every
complete subgraph of a graph G is called a clique of G, and the number of vertices
in the largest clique of graph G, denoted by ω(G), is called the clique number of G.
In a graph G = (V,E), a subset S of V is said to be an independent set provided
that the subgraph induced by S is totally disconnected. The independence number
is the maximum size of an independent set in G and denoted by α(G). A graph
G is called a null graph if whose vertex-set is empty and a graph whose edge-set
is empty is said to be an empty graph. Let G be a graph with edge set E. Also,
suppose that there exists a family of edge-disjoint subgraphs {Gi}i∈I of G. Then
we put G = ⊕i∈IGi. Furthermore, in the case that Gi

∼= H for every i ∈ I, we set
G = ⊕|I|H.

An algebraic system (R,+, .) is called a commutative semiring provided that
(R,+) and (R, .) are commutative semigroups, connected by a(b + c) = ab + ac
for all a, b, c ∈ R, and there exist 0, 1 ∈ R such that r + 0 = r and r0 = 0r = 0
and r1 = 1r = r for each r ∈ R. Throughout this paper, all semirings considered
will be assumed to be commutative semirings with a non-zero identity. Let R be a
semiring. A non-empty subset I of R is called co-ideal (resp. ideal), if it is closed
under multiplication (rep. under addition) and satisfies the condition r + a ∈ I
(resp. ra ∈ I) for all a ∈ I and r ∈ R (so 0 ∈ I (resp. 1 ∈ I) if and only if I = R).
A co-ideal I of a semiring R is said to be a strong co-ideal, if 1 ∈ I. A co-ideal
(resp. ideal) I of R is called k-ideal or subtractive, if ab ∈ I and b ∈ I imply that
a ∈ I (resp. a+ b ∈ I and a ∈ I imply that b ∈ I), for each a, b ∈ R. A proper ideal
P of R is called prime if xy ∈ P , then x ∈ P or y ∈ P . A proper co-ideal M of R
is said to be prime, if x+ y ∈ M , then x ∈ M or y ∈ M [8]. A semiring R is called
I-semiring, if r + 1 = 1 for all r ∈ R. A semiring R is called idempotent if x2 = x
for all x ∈ R. Let I be a proper ideal of R. Then I is said to be maximal if R is
the only ideal having I. The notation Jac(R) will denote the jacobson radical of R
which is the intersection of all maximal ideals of R. Let I be an ideal of a semiring
R. Then I is said to be a partitioning ideal (= Q-ideal) provided that there exists
a subset Q of R such that

(1) R = ∪{q + I : q ∈ Q},
(2) If q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) ̸= ∅ if and only if q1 = q2.
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If I is a Q-ideal of a semiring R, the we set

R/I := {q + I : q ∈ Q}.

Thus R/I is a semiring under the binary operations ⊕ and ⊙ defined as follows:
(q1 + I) ⊕ (q2 + I) = q3 + I where q3 ∈ Q is the unique element such that

q1 + q2 + I ⊆ q3 + I.
(q1 + I) ⊙ (q2 + I) = q4 + I where q4 ∈ Q is the unique element such that

q1q2 + I ⊆ q4 + I. Semiring R/I is said to be the quotient semiring of R by I. By
definition of Q-ideal, there exists a unique q0 ∈ Q such that 0 + I ⊆ q0 + I. Then
q0 + I is a zero element of R/I. Clearly, if R is an idempotent I-semiring, then so
is R/I ( [7]). Dual notion of Q-ideal (Q-co-ideal) was defined in [8].

2. Basic structure GH(R)

Throughout this paper, R is a I-semiring and H is a multiplicatively closed
subset of R.

Lemma 1. The following statements hold:
(i) If 0 ∈ H, then N(0) = H \ {0} and if 0 /∈ H, then N(0) = H.
(ii) If 1 ∈ H, then N(1) = R \ {1} and if 1 /∈ H, then N(1) = ∅.

Proof. (i) Since 0 + x = x ∈ H for all x ∈ H and 0 ∈ H, N(0) = H \ {0}.
Otherwise, N(0) = H. This proves (i). Since 1+x = 1 for all x ∈ R, the statement
(ii) holds. □

Theorem 1. GH(R) is connected if and only if 1 ∈ H. Moreover, if GH(R) is
connected, then diam(GH(R)) ≤ 2.

Proof. If 1 ∈ H, then deg(1) = |R| − 1 by Lemma 1 (ii); so GH(R) is connected.
Conversely, if GH(R) is connected, then deg(1) ̸= 0 which implies that 1 ∈ H by
Lemma 1 (ii). Finally, let x and y be distinct elements of R. If x + y ∈ H, then
x − y is a path in GH(R). So we may assume that x + y /∈ H. Now the assertion
follows the fact that x− 1− y is a path in GH(R). □

Proposition 1. The following statements hold:
(1) GH(R) is complete if and only if R = H or H = R \ {0}.
(2) GH(R) is regular if and only if it is either complete or totally disconnected.

Proof. (1) Let GH(R) be complete. Thus 0 is connected to every element of R\{0},
and so 0 + x ∈ H for every x ∈ R \ {0}. So R \ {0} ⊆ H. Therefore R = H or
H = R \ {0}. The converse is clear. Note that if x+ y = 0, then x = x+ x+ y =
x(1 + 1) + y = x+ y = 0, because R is an I-semiring.

(2) Assume that GH(R) is regular and that is not totally disconnected. By
Theorem 1, 1 ∈ H; so deg(1) = |R|−1. ThenGH(R) is regular gives deg(y) = |R|−1
for all y ∈ R; hence GH(R) is complete. The other implication is clear. □
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In the following, the notation max(R) denotes the set of all maximal ideals of
R.

Theorem 2. If 1 ∈ H, then gr(GH(R)) ∈ {3,∞}.

Proof. Assume that |max(R)| ≥ 2 and let M1,M2 ∈ max(R). Since x + y = 1,
for some x ∈ M1 and y ∈ M2, we have 1 − x − y − 1 is a cycle in GH(R); hence
gr(GH(R)) = 3. So we may assume that |max(R)| = 1. If H = {1}, then the
graph GH(R) is a star graph which implies that gr(GH(R)) = ∞. Now suppose
that |H| = 2. If H = {0, 1}, then the graph GH(R) is a star graph which implies
that gr(GH(R)) = ∞, because x+ y = 0 implies x = 0 and y = 0 for each x, y ∈ R.
Otherwise, H = {1, r}, where r ̸= 0. Then the cycle 1 − r − 0 − 1 is the shortest
cycle in the graph GH(R). So gr(GH(R)) = 3. If |H| ≥ 3, then there is an element
r ∈ H such that r ̸= 0, 1. Now the cycle 1 − r − 0 − 1 is the shortest cycle in the
graph GH(R) which implies that gr(GH(R)) = 3.

□

The remaining of this section, we assume that R is an idempotent I-semiring,
H is a saturated subset of R and H ̸= R. Note that if 0 ∈ H, then H = R, and so,
by Proposition 1, the graph GH(R) is complete.

Proposition 2. Assume that |R| ≥ 3. If |H| ≥ 2, then every vertex of the graph
GH(R) lies in a cycle of length 3, and so gr(GH(R)) = 3.

Proof. By assumption, there is an element x ∈ H with x ̸= 1. If y ̸= 1, x is an
arbitrary element in R, then x(x+ y) = x+ xy = x ∈ H. Therefore x+ y ∈ H and
we have the cycle 1− y − x− 1, as required. □

Theorem 3. Let |H| = 1. Then the following hold:
(i) deg(a) = 1 for all a ∈ Jac(R).
(ii) If |max(R)| ≥ 2, then every vertex in graph GH(R) \ Jac(R) lies in a cycle

of length 3.

Proof. (i) Since |H| = 1, we have H = {1}. Let x ∈ Jac(R). Since 1 + y = 1 ∈ H,
1 is adjacent to every vertex y in GH(R) which implies that deg(x) ≥ 1. Suppose
the result is false. Let deg(x) ≥ 2. So there is 1 ̸= y ∈ R such that x and y are
adjacent (note that 1 + x = 1 ∈ H = {1}), so x + y = 1. One can find a maximal
ideal M of R such that y ∈ M . Hence 1 = x + y ∈ M , which is impossible. So
deg(a) = 1 for all a ∈ Jac(R).

(ii) Assume that x is an arbitrary vertex in GH(R) \ Jac(R). Thus x /∈ M , for
some maximal ideal M of R. Thus xR+M = R, and so there exist r ∈ R,m ∈ M
such that xr +m = 1. Hence x +m = x + xr +m = 1 + x = 1. If m ∈ Jac(R),
then x+m ∈ M ′, for some maximal ideal M ′ of R (we can find the maximal ideal
M ′ such that x ∈ M ′), which is a contradiction. Hence, we can consider the cycle
x−m− 1− x in GH(R) \ Jac(R). □
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Lemma 2. The following statements hold:
(1) If I is an ideal of R and a+ b ∈ I, for some a, b ∈ R, then a, b ∈ I.
(2) Every ideal of R is k-ideal.

Proof. (1) Let I be an ideal of R and a+ b ∈ I, for some a, b ∈ R. Then

a = a(1 + b) = a+ ab = a(a+ b) ∈ I.

Similarly, b ∈ I.
(2) It is clear from (1). □

Proposition 3. (1) The following statements are equivalent on a subset H of R:
(i) H is saturated.
(ii) R \H =

⋃
i∈Λ Mi, for some prime ideals Mi of R.

(2) H is a saturated multiplicatively closed subset of R if and only if H is a co-
ideal of R. Moreover, H =

⋂
j∈J Pj, where {Pj}j∈J is the set of all prime co-ideals

of R containing H.
(3) P is a prime co-ideal of R if and only if R \ P is a prime ideal of R.
(4) Let H be a subset of R. Then P is a minimal prime co-ideal of R containing

H if and only if R \ P is an ideal of R which is maximal with disjoint from H.

Proof. (1) (i) ⇒ (ii) Let x ∈ R \ H. Set
∑

= {I : I is an ideal of R, I ∩ H =
∅ andx ∈ I}. Since Rx ∈

∑
,
∑

̸= ∅. By Zorn,s Lemma,
∑

has a maximal element
P . It can be easily seen that P is a prime ideal. Therefore every x ̸∈ H has been
inserted in a prime ideal disjoint from H. This proves (2).

(ii) ⇒ (i) It is clear.
(2) Let H be saturated. Then R \ H =

⋃
i∈Λ Mi, for some prime ideals Mi of

R, by (1). Let a ∈ H and r ∈ R. If r + a /∈ H, then r + a ∈ Mi, for some i ∈ Λ.
Therefore by Lemma 2(1), a ∈ Mi, a contradiction. Therefore H is a co-ideal of R.
The converse is clear from [12, Proposition 2.1(1)]. Therefore H =

⋂
j∈J Pj , where

{Pj}j∈J is the set of all prime strong co-ideals of R containing S, by [12, Theorem
4.6].

(3) Assume that P is a prime co-ideal of R. Let x ∈ R−P and r ∈ R. If rx ∈ P ,
then r, x ∈ P , by [12, Proposition 2.1(1)], a contradiction. Thus rx ∈ R − P . Let
x, y ∈ R − P . If x + y ∈ P , then either x ∈ P or y ∈ P , which is impossible.
Therefore x+ y ∈ R− P . This implies that R− P is an ideal of R. It is clear that
R − P is a prime ideal. Conversely, let T be a prime ideal of R. Let x ∈ R − T
and r ∈ R. If r + x ∈ T , then r, x ∈ T , by Lemma 2. Thus r + x ∈ R − T . Let
x, y ∈ R − T . If xy ∈ T , then either x ∈ T or y ∈ T . Therefore xy ∈ R − T . This
implies that R−T is a co-ideal of R. Also, It is clear that R−T is a prime co-ideal.
Therefore, if R− P is a prime ideal of R, then P is a prime co-ideal of R.

(4) It is straightforward. □

Throughout the paper, by min(H) and max(H), we show the set of minimal
prime co-ideals of R containing H and the set of ideals of R which are maximal
with disjoint from H, respectively.
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Proposition 4. If GH(R) is complete r-partite, then r = |H|+ 1.

Proof. Assume that GH(R) is complete r-partite with parts Vi (1 ≤ i ≤ r). Since
H is a clique in GH(R), every element of H is in a part Vi, where |Vi| = 1. Let
V1 and V2 be two parts of GH(R) and a, b ∈ R \H such that a ∈ V1 and b ∈ V2.
As 0 is not adjacent to a, 0 ∈ V1. Therefore 0 and b are adjacent, which is a
contradiction. Therefore every element of R \ H is in one part and R \ H is an
ideal. Thus r = |H|+ 1. □

Theorem 4. The following statements are equivalent:
(1) gr(GH(R)) = ∞.
(2) GH(R) is a star graph.
(3) H = {1} and max(H) = {R− {1}}.
(4) GH(R) is a complete bipartite.

Proof. (1) ⇒ (3) Assume that |H| ≥ 2 and a, b ∈ H. Then a − b − 0 − a is
a cycle in GH(R), a contradiction. Hence H = {1}. Let |max(H)| ≥ 2 and
M1,M2 ∈ max(H). As H = {1}, every ideal which is maximal with respect to
disjoint from H, is a maximal ideal of R. Therefore M1 +M2 = R and a + b = 1
for some a ∈ M1, b ∈ M2. Therefore a − b − 1 − a is a cycle in GH(R), which is a
contradiction. Therefore H = {1} and max(H) = {R− {1}}.

The implications (3) ⇒ (2) and (2) ⇒ (4) are clear.
(4) ⇒ (1) By Proposition 4, r = 2. It is clear that H = {1} and R − {1} is a

maximal ideal of R. Therefore gr(GH(R)) = ∞. □

In the rest of this section, we will assume that R \H =
⋃

i∈Λ Mi for some prime

ideals Mi of R and I :=
⋂

i∈Λ Mi. Let I be a Q-ideal and H̃ := {q + I : h ∈
q + I for some h ∈ H}.

Lemma 3. Let I be a Q-ideal of R. Then H̃ is a saturated multiplicatively closed
subset of R/I.

Proof. Let q1+I and q2+I be two elements of H̃, where h1 ∈ q1+I and h2 ∈ q2+I,
for some h1, h2 ∈ H. If (q1 + I) ⊙ (q2 + I) = q3 + I, where q1q2 + I ⊆ q3 + I and

q3 ∈ Q, then we have h1h2 ∈ q1q2 + I ⊆ q3 + I. Thus q3 + I ∈ H̃. We show H̃

is saturated. Let (q1 + I) ⊙ (q2 + I) = q3 + I ∈ H̃, where q1q2 + I ⊆ q3 + I and

q3 ∈ Q. Since q3 + I ∈ H̃, there exists h ∈ H such that h ∈ q3 + I. Thus h = q3 + i
for some i ∈ I. As h ∈ H and i ∈ I, q3 ∈ H. Let q1q2 = q3 + j for some j ∈ I.
Then q1q2 ∈ H, because H is a co-ideal, by Lemma 2. Therefore q1, q2 ∈ H and so

q1 + I, q2 + I ∈ H̃. □

Lemma 4. Let I be a Q-ideal of R. Then the following statements hold:
(1) Let p1 and p2 be two elements of R with p1 ∈ q1 + I and p2 ∈ q2 + I, where

q1 + I ̸= q2 + I. Then the following statements are equivalent:
(i) p1 is adjacent to p2 in GH(R).
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(ii) q1 + I is adjacent to q2 + I in GH̃(R/I).
(iii) each element of q1 + I is adjacent to q2 + I.
(iv) there exists an element of q1 + I which is adjacent to an element of q2 + I.

(2) If q + I ∈ H̃, then q ∈ Q ∩H and q + I is a clique in GH(R).

(3) If q + I /∈ H̃, then q + I is an independent set in GH(R).

Proof. (1) (i) ⇒ (ii) By (i), p1 + p2 ∈ H. Let (q1 + I) ⊕ (q2 + I) = q3 + I
where q3 ∈ Q is the unique element such that q1 + q2 + I ⊆ q3 + I. Therefore

p1 + p2 ∈ q1 + q2 + I ⊆ q3 + I gives q3 + I ∈ H̃.
(ii) ⇒ (iii) Let q1 + i1 ∈ q1 + I and q2 + i2 ∈ q2 + I, where i1, i2 ∈ I. Assume

that (q1 + I) ⊕ (q2 + I) = q3 + I where q3 ∈ Q is the unique element such that

q1 + q2 + I ⊆ q3 + I. By (ii), q3 + I ∈ H̃. Thus there exists h ∈ H such that
h ∈ q3+ I. Hence h = q3+ j for some j ∈ I. Therefore q3 ∈ H. Let q1+ q2 = q3+ i
for some i ∈ I. Then q1 + i1 + q2 + i2 ∈ H, because H is a co-ideal.

(iii) ⇒ (iv) This implication is clear.
(iv) ⇒ (i) Assume that q1 + i ∈ q1 + I and q2 + i′ ∈ q2 + I are adjacent in

GH(R), where i, i′ ∈ I. Let q1 + i1 ∈ q1 + I and q2 + i2 ∈ q2 + I, where i1, i2 ∈ I.
As q1 + i+ q2 + i′ ∈ H and i, i′ ∈ I, we have q1 + q2 ∈ H. Therefore p+ q ∈ H.

(2) Let q + I ∈ H̃. Then h = q + i for some h ∈ H and i ∈ I. Therefore q ∈ H.
Also, it is clear that q + I is a clique in GH(R).

(3) If q+ I /∈ H̃, then q /∈ H. Let q+ i and q+ i′ be arbitrary elements of q+ I.
Then q + i + q + i′ /∈ H, because q, i, i′ ∈ M for some M ∈ max(H). Therefore
q + I is an independent set in GH(R). □

In the following, we investigate the relationship between the diameter and the
girth of the graphs GH(R) and GH̃(R/I).

Theorem 5. The following statements hold:
(1) gr(GH(R)) ≤ gr(GH̃̃(R/I)).
(2) diam(GH̃(R/I)) ≤ diam(GH(R)).

Proof. (1) If GH̃̃(R/I) has no cycle, then there is nothing to prove. Hence assume
that q1 + I − q2 + I − ... − qn + I − q1 + I is a cycle in GH̃̃(R/I). Then we
have the cycle q1 − q2 − ... − qn − q1 in GH(R), by Lemma 4, which implies that
gr(GH(R)) ≤ gr(GH̃̃(R/I)).

(2) If n := diam(GH̃(R/I)), then there are two vertices q1 + I and q2 + I of
GH̃(R/I) with d(q1+I, q2+I) = n. Assume that q1+I−p1− ...−pn−2+I−q2+I
is a corresponding path of length n between q1+ I and q2+ I in GH̃̃(R/I). In view
of Lemma 4, q1 − p1 − ... − pn−2 − q2 is a path of length n in GH(R). Therefore
diam(GH̃(R/I)) ≤ diam(GH(R)). □

The following example shows that we may have strict inequality in parts (1), (2)
of Theorem 5.

Example 1. Let X = {a, b, c} and R = (P (X),∪,∩) a semiring, where P (X) is
the set of all subsets of X. If H = {{a}, {a, b}, {a, c}, X}, then H is a saturated
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multiplicatively closed subset of R and a minimal prime co-ideal of R. Therefore
I = R \ H is a maximal ideal of R. It can be verified that I is a Q-ideal of
R and Q = {∅, {a}}. By drawing GH(R) and GH̃(R/I), one can see that 1 =
diam(GH̃(R/I)) < diam(GH(R)) = 2 and 3 = gr(GH(R)) < gr(GH̃̃(R/I)) = ∞.

In the following theorem, we provide a characterization of GH(R) in terms of
GH̃(R/I).

Theorem 6. Let I be a Q-ideal of R. Then

GH(R) = (⊕|I|2GH̃(R/I))⊕ (⊕|I|K|Q∩H|).

Proof. If there exist p, q ∈ Q such that p + I and q + I are adjacent in GH̃(R/I),
then in view of Lemma 4, each element of p + I is adjacent to each element of
q + I in GH(R). Thus, each edge of GH̃(R/I) corresponds to exactly |I|2 edges in
GH(R). Also, for each p ∈ Q ∩H, the coset p+ I forms a clique in GH(R). Hence
GH(R) = (⊕|I|2GH̃(R/I))⊕ (⊕|I|K|Q∩H|). □

3. Planarity, clique number, chromatic number and independence
number of GH(R)

In this section, we use the notations already established, so R is an idempotent
I-semiring and H is a saturated proper subset of R. We will investigate clique
number, independence number and planar property of the graph GH(R). A graph
G is called planar, if it can be drawn in the plane (i.e. its edges intersect only at
their ends). A subdivision of a graph is a graph obtained from it by replacing edges
with pairwise internally-disjoint paths. An interesting characterization of planar
graphs was given by Kuratowski in 1930, that says that a graph is planar if and
only if it contains no subdivision of K5 or K3,3 [6].

Proposition 5. The following hold:
(i) If 0 ∈ H, then GH(R) is planar if and only if |R| ≤ 4.
(ii) If |max(H)| ≥ 4 or |H| ≥ 4, then GH(R) is not planar.
(iii) If |H| = 3, then GH(R) is planar if and only if |R| ≤ 5.
(iv) Let H = {1}. Then GH(R) is planar if and only if GH(R)\Jac(R) is planar.

Proof. (i) Since 0 ∈ H, H = R. It follows that GH(R) is complete. Now the
assertion follows from Kuratowski’s theorem.

(ii) If |max(H)| ≥ 4, then |min(H)| ≥ 4. Hence ΓH(R) is not planar, by [12,
Theorem 4.10]. Therefore GH(R) is not planar. The other implication is clear.

(iii) Assume that GH(R) is planar and let V1 = H = {x1, x2, x3}. Suppose to
the contrary that |R| ≥ 6. Set V2 = {y1, y2, y3} ⊆ R \H. It can be easily seen that
one can find a copy of K3,3 in GH(R), which is a contradiction. Conversely, assume
that |R| ≤ 5. If |R| ≤ 4, we are done. If |R| = 5, then by Proposition 1, GH(R) is
not K5; hence GH(R) is planar.

(iv) Since by Theorem 3 (i), deg(a) = 1 for all a ∈ Jac(R), the result is clear. □
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If max(H) = {M1,M2, ...,Mn}, then we denote Mi \ (∪n
j=1,j ̸=iMj) by M ′

i and

(Mi ∩Mj) \ (∪n
s=1,s ̸=i,jMs) by Mi,j for each 1 ≤ i ̸= j ≤ n.

Theorem 7. Let H = {1}. Then the graph GH(R) is planar if and only if one of
the following statements holds:

(1) max(R) = {M1,M2,M3}, |M ′
i | = 1 for each 1 ≤ i ≤ 3 and V (GH(R)) =

V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5, where V ,
i s are satisfying the following:

(i) V1 = M ′
1 ∪M ′

2 ∪M ′
3 ∪ {1} is a clique in GH(R).

(ii) V2 = M1,2 and every element of V2 is adjacent to 1 and a ∈ M ′
3.

(iii) V3 = M1,3 and every element of V3 is adjacent to 1 and b ∈ M ′
2.

(iv) V4 = M2,3 and every element of V4 is adjacent to 1 and c ∈ M ′
1.

(v) V5 = M1 ∩M2 ∩M3 and every element of V5 is adjacent to 1.
(2) max(R) = {M1,M2} , V (GH(R)) = V1∪V2∪V3∪V4 where V ,

i s are satisfying
the following:

(i) V1 = {1}, and 1 is adjacent to every vertex of GH(R).
(ii) V2 = M ′

1, V3 = M ′
2 and either |Vi| ≥ 3 and |Vj | = 1 (i ̸= j) or |Vi| ≤ 2 for

each i = 1, 2. Moreover, the subgraph generated by V2, V3 is complete 2-partite with
parts V2 and V3 and every element of V2 ∪ V3 is adjacent to 1.

(iii) V4 = M1 ∩M2 and every element of V4 is adjacent to 1.
(3) R− {1} is a maximal ideal of R and GH(R) is a star graph.

Proof. Assume that the graph GH(R) is planar. Then |max(R)| ≤ 3, by Proposi-
tion 5. Let max(R) = {M1,M2,M3}. If |M ′

i | ≥ 2, for some i ∈ {1, 2, 3}, then there
exist x, y ∈ M ′

i . Let z ∈ M ′
j and t ∈ M ′

k, where 1 ≤ k, j ≤ 3 and k ̸= j are distinct
from i. Set S1 := {x, y, 1} and S2 := {z, t, zt}. As x + z = x + t = 1, we have
x+tz = 1 (note that zt ̸= z and zt ̸= t). Similarly, y+z = y+t = y+tz = 1. Hence,
one can find a copy of K3,3 in GH(R), which is impossible. Hence |M ′

i | = 1 for each
i ∈ {1, 2, 3}. It can be easily verified that (1) holds. If max(R) = {M1,M2}, then
we will prove that (2) holds. If |M ′

1| ≥ 3, then there exist x, y, z ∈ M ′
1. If t, s ∈ M ′

2,
then by setting S1 := {x, y, z} and S2 := {t, s, 1}, the graph GH(R) has a subgraph
isomorphic to K3,3, a contradiction. Hence |M ′

2| = 1. Similarly, if |M ′
2| ≥ 3, then

|M ′
1| = 2. Hence |M ′

i | ≥ 3 and |M ′
j | = 1 (i ̸= j) or |M ′

i | ≤ 2 for each i = 1, 2. It is
easy to see that (2) holds. If |max(R)| = 1, then by Theorem 4 , GH(R) is a star
graph.

Conversely, if one of the conditions (1) or (2) or (3) holds, then it is easy to show
GH(R) is a planar graph. □

Theorem 8. Let H = {1, a}. Then the graph GH(R) is planar if and only if one
of the following statements holds:

(1) max(R) = {M1,M2} , V (GH(R)) = V1∪V2∪V3∪V4 where V ,
i s are satisfying

the following:
(i) V1 = {1, a}, and every element of V1 is adjacent to every vertex of GH(R).
(ii) V2 = M ′

1, V3 = M ′
2 and either |Vi| = 1 for each i = 1, 2 or |Vi| = 2 and

|Vj | = 1 for each i ̸= j ∈ {1, 2}. Moreover, the subgraph generated by V2, V3 is
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complete 2-partite with parts V2 and V3 and every element of V2 ∪V3 is adjacent to
1 and a.

(iii) V4 = M1 ∩M2 and every element of V4 is adjacent to 1 and {a}.
(2) max(H) = {R− {1, a}} and GH(R) ∼= K1,1,|R−{1}|.

Proof. If GH(R) is planar, then |max(R)| ≤ 3, by Proposition 5. If max(H) =
{M1,M2,M3}, then there exist d ∈ M ′

1, b ∈ M ′
2, c ∈ M ′

3 such that {1, a, b, c, d} is
a clique in GH(R), which is impossible. Hence |max(H)| ≤ 2. If |M ′

i | ≥ 2 for each
i = 1, 2, then there exist x, y ∈ M ′

1 and t, z ∈ M ′
2. By setting S1 := {x, y, a} and

S2 := {1, t, z}, GH(R) has a subgraph isomorphic to K3,3, which is a contradiction.
Hence either |M ′

i | = 1 for each i = 1, 2 or |M ′
i | = 2 and |M ′

j | = 1 for each
i ̸= j ∈ {1, 2}. Therefore (1) holds. If |max(H)| = 1, then it is easy to verified that
GH(R) is complete 3-partite and GH(R) ∼= K1,1,|R−{1}|. □

Theorem 9. In the graph GH(R) we have the following equality:

ω(GH(R)) = χ(GH(R)) = |H|+ |max(H)|.

Proof. It is clear that ω(G) ≤ χ(G), for each graph G. We consider two cases:
Case 1: ω(GH(R)) = ∞. Then χ(GH(R)) = ∞. Assume that H and max(H)

are finite and max(H) = {M1, ...,Mn}. Let C be a maximal clique in GH(R). Set
for each 1 ≤ i ≤ n, Ii = {a ∈ C \ H : a ∈ Mi}. If |Ii| ≥ 2, for some 1 ≤ i ≤ n,
then there exist a, b ∈ C \ H. Therefore a, b ∈ Mi and so a + b /∈ H contradicts
a, b ∈ C. Therefore |Ii| ≤ 1 for each 1 ≤ i ≤ n. As C \ H =

⋃n
i=1 Ii and Ii is

a finite set for each 1 ≤ i ≤ n, C \ H is a finite set. Therefore C is a finite set,
a contradiction. Therefore either H is infinite or max(H) is infinite. This gives
ω(GH(R)) = χ(GH(R)) = |H|+ |max(H)| = ∞.

Case 2: ω(GH(R)) < ∞. As ω(ΓH(R)) < ∞ and H is a clique in GH(R), H
is a finite set. Moreover, ω(ΓH(R)) < ∞, because ΓH(R) is a subgraph of GH(R).
Therefore min(H) is finite, and so max(H) is finite. Assume that max(H) =
{M1, ...,Mn}. Let ai ∈ Mi \ (

⋃n
i̸=j,j=1 Mj). If ai + aj ̸∈ H, for some 1 ≤ i, j ≤ n,

then ai+aj ∈ Mk, for someMk ∈ max(H), and so by Lemma 2 we have ai, aj ∈ Mk,
a contradiction. Therefore ai + aj ∈ H. Hence |H|+ |max(H)| ≤ ω(GH(R)). Let
|H| = m and H = {a1, ..., am. Define f : V (GH(R)) → {1, ..., n, n+ 1, ...,m} by

f(a) =


n+ i, if a = ai ∈ {a1, ..., am}
i, if a = ai ∈ Mi − (

⋃n
i ̸=j,j=1 Mj)

j, if a ∈ Mj ∩Mj+s1 ∩ ... ∩Mj+st ,where s1, ..., st ∈ N.

Let a, b ∈ R be adjacent in GH(R). Then it is clear that f(a) ̸= f(b) provided that
(a, b ∈ H) or (a /∈ H, b ∈ H) or (a ∈ H, b /∈ H). Let a /∈ H and b /∈ H. Then a ∈ Mi

and b ∈ Mj for some Mi,Mj ∈ max(H). If i = j, then a+ b ∈ Mi and a+ b /∈ H, a
contradiction. Let I = {i : a ∈ Mi, 1 ≤ i ≤ n} and J = {j : b ∈ Mj , 1 ≤ j ≤ n}.
As a + b ∈ H, we have I ∩ J = ∅. Therefore f(a) and f(b) are the least element
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of I and J , respectively. Thus f(a) ̸= f(b). This implies that χ(GS(R)) ≤ |H| +
|max(H)| and so we have ω(GH(R)) = χ(GH(R)) = |H|+ |max(H)|. □

Let T ⊆ P ({1, 2, ..., n}), where P ({1, 2, ..., n} denotes the power set of {1, 2, ..., n}.
We say that T satisfies the property (P ), provided that:

(1) For each I ∈ T , |I| ≥ 2.
(2) For each I, J ∈ T , I ∩ J ̸= ∅.
Set

∑
= {T ⊆ P ({1, 2, ..., n} : T satisfies the property (P )}.

Theorem 10. Let max(H) = {M1,M2, ...,Mn}. Then

α(GH(R)) = max{{|Mi|}ni=1 ∪ {| ∪I∈T (∩i∈IMi)|}T∈
∑}.

Proof. It can be easily seen that Mi and ∪I∈T (∩j∈IMj) are independent sets in
GH(R), for each 1 ≤ i ≤ n and T ∈

∑
. Therefore, α(GH(R)) ≥ max{{|Mi|}ni=1 ∪

{| ∪I∈T (∩i∈IMi)|}T∈
∑}. Assume that Y is a maximal independent set of GH(R).

For each a ∈ Y , set
Ia = {i : a ∈ Mi, 1 ≤ i ≤ n}.

Let a ∈ Y and Ia = {i}, for some 1 ≤ i ≤ n. If b ∈ Y , then b+a /∈ H. Hence b+a ∈
Mk for some 1 ≤ k ≤ n. Hence a, b ∈ Mk, by Lemma 2. This implies that b ∈ Mi.
Therefore, Y ⊆ Mi. As Y is a maximal independent set, we have Y = Mi (Mi is
independent set). Now, let |Ia| ≥ 2, for each a ∈ Y . If there exist a, b ∈ Y such that
Ia ∩ Ib = ∅, then a+ b ∈ H, a contradiction. Thus, Ia ∩ Ib ̸= ∅. Set T = {Ia}a∈Y .
Then T ∈

∑
and Y ⊆ ∪I∈T (∩i∈IMi). Since Y is maximal, Y = ∪I∈T (∩i∈IMi).

This proves that α(GH(R)) = max{{|Mi|}ni=1 ∪ {| ∪I∈T (∩i∈IMi)|}T∈
∑}. □
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