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ABSTRACT: Fabric quality, which may be defined as the satisfaction obtainable from required performance
properties manifesting themselves in fabric usage, is a consequence of its physical structure. It is imperative
that this structure shoud be stable during a resonable life of the fabric. Principles of design to define fabric
structure satisfying these needs are quite well known and computer aided fabric design applications are
widespread. In the case of design of fabrics of complex structure, however, there arise many problems and the
current computer aided design software may not be adequate to cope with them. In this paper some important
problems encountered in the design of simple and complex fabric structures are discussed in general, based on
relevant literature. Three examples are given how they may be solved mathematically in a suitable way for
computer applications to obtain computer simulations of complex fabric structures such as double woven
fabrics, woven carpets and rib knit fabrics.

Keywords: Fabric geometry, yarn cross sectional shape, yarn path curve, loop shape, dimensional stability

KARMASIK YAPILI KUMASLARIN BILGIiSAYAR SIMULASYONU
YONTEMLERIYLE TASARLANMASI

OZET: Kumasin, kumastan beklenen ve kullanimu siirecinde kendini ortaya koyan performans dzelliklerince
saglanan tatmin duygusu olarak tanimlanabilen kalitesi fiziksel yapisinin bir sonucudur. Bu yapiin kumasin
kabul edilebilir bir kullanim siiresi i¢inde degismez kalmasi temeldir. Bu istekleri karsilayan kumas yapisinin
tanimlanmas1 anlamindaki tasarim ilkeleri iyi bilinmekte olup, bilgisayar destekli kumas tasarim uygulamalari
olduke¢a yaygindir. Karmasik yapili kumaslarin tasarimi durumunda ise, bir ¢ok problem ortaya ¢ikmaktadir ve
var olan bilgisayar destekli tasarim yazilimlar1 bunlarin ¢6ziimiinde yetersiz kalabilirler. Bu makalede basit ve
karmagik yapili kumas tasariminda karsilagilan bazi 6nemli problemler ilgili literatiir 151¢1nda incelenmektedir.
Bunlarin, ¢ift katl dokuma kumaslar, dokuma halilar ve ribana 6rme kumaslar gibi karmasik kumas yapilarinin
bilgisayar simiilasyonlarini elde etmek amaciyla, matematiksel olarak ve bilgisayar uyarlamalarina uygun bi-
cimde, nasil ¢oziilebilecegini gdsteren ii¢ 6rnek verilmektedir.

Anahtar sozciikler: Kumas geometrisi, iplik kesit bicimi, iplik yol egrisi, ilmek bi¢imi, boyut dayanikliligi
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1. INTRODUCTION

Fabric quality is identified by those properties such as
strength, firmness and flexibility, a uniform surface
with good cover, appropriate weight and thickness,
and stability of structure termed as ‘“dimensional
stability”. These properties depend as well on
fabricstructure as on yarn properties.

Yarn properties which affect fabric performance are
fibre type, yarn structure, yarn count and twist,
together with mechanical properties characterised by
yarn extensibility, rigidity, compressibility and
strength. The fabric structure, on the other hand, is
mainly defined by yarn diameter, fabric sett and
weave type. These are structural parameters which

Figure 1. Geometric representation of plain woven fabric (a:
plane view, b; cross sectional view)
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Figure 3. Gauze woven structure
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define what is called “fabric geometry”. Structural
parameters are the principle design parameters which,
in consequence, define also the fabric quality and
performance.

Fabric structure is formed by the arrangement of yarns
on the fabric plane as a set, being interlaced at the
same time with other sets of yarns either in parallel or
perpendicular direction to the previous set, depending
on the fabric type as shown in Figure 1 and 2. In
woven fabrics the interlacing (or intersecting) yarns
are at right angles to each other, in knitted fabrics they
are in the form of loops interlsecting in both
directions. There are exceptions to this rule in some
complex woven structures as given in Figure 3 and 4.

(b)

LLo20E2

Figure 2. Geometric representation of plain knitted fabric (a.
plane view, b,c cross sectional views

Figure 4. Warp knitted structure
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Figure 5. Representation of double woven fabric structures with 2/2

twill weave on face and back [1]

There are also multi layered structures in which
certain yarns of one layer interlace with some yarns
on the other layer as in shown in Figure 5 or fabric
layers are joined together by special binding yarns as
shown in Figure 6.

The movement of the binding (or stitching) yarns
between layers as in double woven fabrics
necessitates adequate space between neighbouring
yarns for easy movement during fabric formation, in
consequence causing lower setts (or greater yarn
spacings) to be employed. On the other hand, yarns
are not rigid structures. They are structures formed by
fibres lying along the yarn with some space between
them, being twisted together to give yarn strength and
stability. As a consequence there is not a fixed yarn
cross sectional shape nor a definite diameter. Yarns
are also compressible and the yarn cross sectional
shape can easily be changed by radial forces in fabric
formation and after. Thus, yarn diameter is an
important parameter in fabric structure and it is
imperative that the cross sectional shape of the yarns
have to be defined also in developing the geometrical
model of the fabric structure. It influences fabric
properties to a great extent such as, greater is the yarn
diameter, greater is the fabric thickness and lower the
fabric sett.

The stability of fabrics depend to some extent to
correct thread setting (or thread density) in fabric.
Fabric sett is important, also, in that it determines the
stiffness, flexibility, the heat, water and air
permeability, the draping and wrinkling properties of
the fabric. It is generally accepted that to obtain a

Giingér BASER

Figure 6. Centre stitched double woven fabric structure
(F: Face yarn, S: Binding yarn, B: Back yarn) [1]

stable fabric with good performance properties fabric
structure should be compact with minimum spaces
between component yarns without unduly distorting
or compressing the structure. This may be taken as a
rule in developing a structural model of an ideal
fabric.

In practice, however, a general model of fabric
structure is built up and the conditions are searched to
obtain a more compact structure. Although problems
of defining a designed fabric structure mathematically
are solved somehow, transforming this general
geometry to a more compact structure which is
compatible with yarn properties and 1is also
mechanically feasible is not an easy task.

2. PREVIOUS WORK ON FABRIC
GEOMETRY

The first plain woven fabric geometry by Peirce as
shown in Figure 7 was based on the assumptions that
the yarns were circular in cross section and are
infinitely flexible, in consequence they took the shape
of the yarn surface they were in contact with and
otherwise remained straight [2].

Figure 7. Peirce’s circular thread plain woven fabric geometry
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Peirce defined the main fabric parameters in the
following equations:

D=d,+d,=h+h,=H (D
t,=h+d ort,=h,+d, ()

4 4
hligpz\/a ’ hzggpl\/g (3)

where d, and d, are the yarn diameters, h,and h, are
crimp amplitudes, t,and t, are fabric thicknesses in

two directions and c is the crimp defined separately
for warp and weft as

C1:|1;p2’C2:|2;p1 (4)
2 1

Taking into account the flattening of yarns in fabric
structure Kemp proposed a racetrack section of yarns
and worked out a plain woven fabric geometry as
shown in Figure 8 [3]. Here the unit length of the yarn
and crimp amplitude are defined in two ways related
by the equations

I-'1 = I-1 _(az _bz) (5)
L,=L,—(a-b) (6)
) = 2 ™

[pz _(az _bz)]

Figure 8. Kemp’s plain woven fabric geometry based on race-
track section [3]

In Kemp’s sectional geometry yarn cross sections are
defined as race-track sections formed by two semicircles
with a rectangular part in between. Peirce’s formulas
are still applicable and the major (a,,a,) and minor
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diameters (b,,b,), calculated from an equivalent

circular section, may be used. The calculation of major
and minor diameters may be based on the assumption
that either the yarn cross sectional area or the yarn
perimeter remains constant during compression.

One of the major difficulties in working out a fabric
geometry is the definition of yarn diameter and cross
sectional shape in fabric structure. As the
measurement of yarn diameter is difficult and not so
reliable, Ashenhurst gave a formula to calculate it
from yarn count as

1
d—Km or d=K+C (8)
where d is yarn diameter, N is yarn count in indirect
count systems, C is yarn count in direct count systems
and K is a convenient constant. Since yarn density
will depend on fibre density and the degree of packing
of fibres, the constant K will have to be defined for
different fibres and different yarn production systems.

This problem was considered, in later years, by
Grosberg [4] and assuming that yarn has a circular
cross-section as did Ashenhurst, introduced a
parameter called porosity in his theory of yarn
diameter and gave the formula and suggested a
porosity value of 0.65 for yarns in fabrics of normal
construction [5].

d=357/10° |— tex —m (9
FibreDensity x Porosity

Peirce developed also a plain knitted fabric geometry
based on a structure which contained maximum
amount of yarn. In his model the central axis of the
yarn was wrapped around the surfaces of three
cylinders being tangent in passing from one to the
other and which allowed the interlacing yarns to be
able to pass through inside the loops formed by the
yarn. To satisfy the condition of maximum yarn in
unit structure the loop tops and loop legs will be in
contact in horizontal and vertical direction as shown
in Figure 9 [6].
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Figure 9. Peirce’s plain knitted fabric geometry [6]

The radii of the cylinders on which the central line of
yarns is 3/2 times the yarn diameter d and the spacing
between loop rows (or courses) p’, can be calculated

from the right angled triangle O0,0,0; as

p'=+/(4d)* — (2d)? =2+/3d =3.464d (10)

The spacing between loop chains (or wales) will be
determined from O,03 as four times the yarn
diameter. The loop length will be obtained by the
addition of straight and curved parts by the formula

(=4[3/2d(z - )+ 2dsin(0 - )] (11)
Here the angle  is given as
w =sin"'(1/2) =30’ (12)

and from the triangle O,HG the angle (0 -y) is
given by

-y =cos '(1.5/2)=41° (13)

When these values of the angles are substituted in
equation (11) a formula for the loop length in terms of
yarn diameter are obtained as

1 =16.6628d (14)

Thus, in a an ideal structure in which maximum
amount of yarn is contained the yarn diameter alone
will define the structure.

Gungor BASER

Following these early model development approaches
of fabric geometry, there have been many works
based on a model of yarn which is a flexible rod with
some rigidity. This is a valid assumption since yarn
segments in fabric structure are of small lengths with
respect to yarn diameter and fabric structures are
elastic materials formed by deformation of straight
yarns into curved shaped during fabric formation
processes. Peirce himself developed a woven fabric
geometry [2]. To mention a few, other important
works on woven fabric geometry on these lines are
due to Olofsson, Grosberg and Kedia and Baser [7, 8,
9]. For knitted fabrics works of Leaf, Munden,
Grosberg, Hepworth and Leaf, de Jong and Postle and
Kurbak are worth mentioning [10, 11, 12, 13, 14, 15].
The mathematical treatments in these works are
highly complicated and do not always give satisfactory
results to be employed in practical use.

In the early works on structural models of woven
fabrics general geometrical models have been
developed and for a tighter or more closely set fabrics
special conditions have been imposed on these
general models. Kemp’s model shown in Figure 8 is
an extension on Pierce’s model allowing for yarn
flattening. In Love’s work geometries of highly set
fabrics called as jammed structures are developed and
in Hamilton’s work both the effect of high set (or high
yarn density) and of cross sectional change due to
weave structure are taken into account [16, 17]. In
knitted fabric geometry researches, hovewer, although
the eearly model of Peirce aimed at a fabric of
maximum tightness, later research, especially those
based on flexible yarn assumption as Munden’s,
aimed to develop a geometry of fabric in relaxed
condition and, also, in some exraneous conditions
imposed on this [6, 11].

3. WORKS ON COMPLEX FABRIC
GEOMETRIES

For design purposes the weight and thickness of the
fabric depend on fabric geometry and the main
structural parameters are yarn counts and yarn
densities (settings) to give a woven fabric with a

Cilt (Vol): 22 No: 98
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certain weave structure and of a given unit weight.
Likewise, for simple knitted constructions yarn count
and loop densities are the main structural parameters.
There are practical rules and standard tables to design
such fabrics and the required yarn consumption can be
calculated. For complex structures, however, practical
and reliable rules do not exist and accepted fabric
geometries have not, in general, been worked out. It
is, therefore, an extensive research field to develop
complex fabric geometries for design purposes.

An early research to define structural parameters of
double fabrics is the treatment by Berkowitsch [18].
The settings to be applied to double fabrics relative to
single fabric were discussed in this work rather than
develping a double fabric structural model. Development
of fabric geometries for various types of carpet
structures to calculate unit yarn consumptions was
undertaken by Baser, Kirtay and Onder and revised
later by Baser [19, 20].

For complex knitted fabrics the early works are due to
Smirfitt (1965) and to de Jung and Postle for 1x1 rib
fabric structure [21, 14]. There are, however, more
and numerous complex knitted structures. Kurbak and
his collegues have developed complex fabric
geometries for some of the more complex weft knitted
structures. They heve, all, been based on Kurbak’s
plain knitted fabric model which he adopted first to
1x1 rib structure [15, 22].

In woven fabric geometries it is generally sufficient to
define the cross sectional geometry of yarns in planes
paralel to warp and weft yarns. In knitted structures,
however, plane view together with the cross sectional
views in the direction of courses and wales and
sometimes in the thickness direction will have to be
defined. The geometrical requirement is that the
intersecting yarn surfaces will not intersect each other,
being apart or tangent, and in tight structures they will
be in contact as tangent surfaces. Furthermore, yarn
flattening will have to be considered and defined in
terms of major and minor yarn diameters under
varying conditions. In the present paper three
examples are described in which these conditions are

Journal of Textiles and Engineer
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simulated in computer medium by algebraic and
graphical methods.

3.1 Geometry of a Double Weft Wire
Wilton Carpet Structure

Carpet structures are formed by inserting yarn pieces
perpendicular to fabric surface creating what is called
a pile surface. This pile surface is obtained by cutting
the pile yarn inserted into the structure in the form of
loops by some method. It is generally accepted that
the quality of carpet correlates with a high pile
density, apart from the quality attributes imparted by
raw material used, mainly of the pile yarn.

The pile surface of double weft wire Wilton carpet
structure as shown in Figure 10 at maximum set is
formed by pile yarns making loops over metal wires
inserted into the fabric structure like a pick (weft
yarn) between every two weft yarns. These loops are
later cut over at the withdrawal of these tools carrying
a razor at their ends. The unit structure is composed of
two warp yarns, two weft yarns, a straight filling yarn
and one pile loop. The cross sectional shape of warp,
weft and filling yarns are assumed to be circular, the
pile yarn is assumed to be subjected to flatenning and
to follow a semi-circular arc over the wire top. The
wires rest at a level allowed by the warp yarns and
determine the pile length.

Figure 10. Double weft wire Wilton carpet structure at
maximum pile density [19]
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The unit lengths of yarns can be calculated from this
theoretical model as follows:
If the thickness of the wire is denoted by d., its

height by h, and the length of the straight portion of
the pile yarn by 7, then the unit length of the pile
yarn may be expressed by

T

‘. =3(da+kdi)+%(kdi +d)+20, (15)

Here d,, d, are diameters of the weft and pile yarns
respectively and K is a flattenning coefficient for the
pile yarn. Then, the unit length of the weave repeat,
P, , of the carpet of maximum set will be

p, =d, +2kd, +d, (16)

If this length in the real carpet structure as shown in
Figure 11 is denoted by p, , the unit length of the pile

yarn, /., , will be given by

ig °

ly =5 P25 + (= P’ /4 (17

Figure 11. Double weft wire Wilton carpet structure in a
certain pile density [19]

If the height of the carpet in weaving (measured from
the carpet back to pile top) is H, then the straight
length of the pile yarn will be

Giingér BASER

fo=H-(kd + -G, +kd, +dp +d)  (19)

where d, is the diameter of warp yarn.

From Figures 11 and 12, the height H will be found as
H=h +h, +d_ cosec2asina+d,/2+d_ +h,+kd (19)

If, from Figure 12,

h +h, :étana +d—25tan0{

is substituted in equation (19) we obtain the height of
the carpet during weaving as

H =%(X +d,) tana+d, (1+cosec2asing) +d, /2+h, +kd, (20)

The unit lengths of the warp yarns, A, for both the

real carpet or the theoretical model which provides
maximum pile density, will be expressed by the
equation

ﬂczg(da+dc)+\/X2+Y2 1)

Here the lengths X and Y will be given from Figure 10
by the equations

X =p-(d, +d,)coseca (22)

Y =d,+d, +kd, (23)

The slope angle of the warp yarns will be calculated
by solving the equation

Y d,+d, +kd,
tang = — =

X p-(d,+d,)coseca

24)

The parameter p in equations (22) and (24) will be
substituted by p,or p;depending on the geometrical

model considered. In the real carpet, however, the
straight length of the pile yarn, 7, will be obtained

from Figure 11 by the equation

EDg:\/EDZ—FZZ :\/£D2+(pi_pt)2 (25)

Cilt (Vol): 22 No: 98
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Figure 12. Determination of the level of the wire [19]

If an index of pile density | =P,/ p, is defined, then
substituting p; = Ip, in equations (17), (21), (22), (23)
and (24) the unit pile length 4, (as in a real carpet),
the angle o and the unit warp length A, for any yarn

structure can be calculated. If this index is considered
as a quality parameter, then for a prescribed quality
level the carpet may be designed by the application of
the given formulae with given yarn parameters.

3.2 Geometry of A Self Stitched Double Woven
Fabric with 2/2 Twill Weave on Face and Back

The cross sectional geometry of a double woven
fabric with 2/2 twill weave on face and back with
maximum warp and weft stitches, is diagramatically
shown in Figure 13 for one unit structure. Here the
weft yarn of the top (face) fabric makes an
intersection with the third warp yarn of the bottom
(back) fabric (B3) and returns back again to its normal
level on the top fabric.

A computer program was prepared to achieve
automatic drawing of the cross sectional diagram of
this fabric on the computer screen to obtain a compact
structure. In the development of the geometrical
model the cross sectional shape of the yarns were
arranged to be circular, elliptic or race-track and the
shape of the yarn contours lying in the cross sectional
plane were assumed to be like a sine wave. The
compactness would be achieved by arranging
maximum yarn density (set) and minimum fabric
thicknes by changing certain parameters like t, h, f, c,
e and z shown in Figure 13, denoting fabric thickness,
distance between fabric layers, length of flat part,
space between yarn sections, sine curve amplitude and
lateral displacement of layers respectively.

Figure 13. A cross sectional diagram of a self stitched double woven fabric with 2/2 twill weave on face and back with a weft stitch

Journal of Textiles and Engineer
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The program was also modified to move the third
warp yarn of the bottom fabric (B3) up and down and
the fourth warp yarn (B4) sideways by pressing
certain letters on key board as inspired by visual
inspection to obtain tangency with the nighbouring
yarns.

3.2.1. Description of the Yarn Path in the Fabric
Cross-sectional Plane

The yarn lying in the cross sectional plane is ssumed
to be a sinus curve because of its resemblance to the
elastica curve, which is the actual yarn shape in
wowen structures, and because it is easy to express
and manipulate mathematically. A sinus curve is
drawn, first, as the central yarn axis, and then two
other curves are drawn over and under this curve at a
fixed distance away from it, to represent the surface
outlines of the bent yarn, as shown in Figure 14. This
fixed distance is the yarn radius .

The yarn axis as the central sinus curve is expressed by

y =sin X (26)

L

Figure 14. Description of yarn central axis and surface contour
in the cross sectional plane

In real fabrics the distance between two weft yarns,
p,, which is half the period, can be expressed as

p, =cx (27)

where C is a constant. The amplitude of the yarn
curve, on the other hand, will be h, /2, instead of 1 and

Glingér BASER

assuming a square fabric construction where warp and
weft yarns are of same type and count, this will be
equal to yarn radius r. Thus the yarn path may be
defined in terms of new coordinates X,, Y, as

X, =cx:&x (28)

hl

ylzgy:rsinx (29)

where X 1s in radians.

If a perpendicular is drawn to this curves at any point,
the paralel curves will have tangents at the points of
intersection with the perpendicular line, having the
same slope expressed by

dy, rx
Mm=——=—-=cosX=tana

(30)
dx, p,

The coordinates of the points on the outer curves
corresponding to A can be given as

A(x, —a,y, +b) (31)

A'(x, +a,y, —h) (32)

Consequently, from Figure 14, the coordinates of

points A and A" on the upper and lower curves can be
written respectively by the equations

h
X, =X —azﬂx—a, Vi :y1+b=?1sinx+b (33)
T

P

X, =X —a x—a,y12:y1+b=%sinx+b (34)
T

and furthermore,

a= arctan(r—7r cos Xj (35)
P,

a=rsina (36)

b = rcosa (37)

Thus the yarn outlines are completely defined by
equations (33) to (37) in terms of X which can be
varied between 0 and 27 .

Cilt (Vol): 22 No: 98
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3.2.2. Description of Yarn Cross-sectional
Shape Outlines

Yarn cross-sectional shaps around z- axis are either
circular, elliptic or race-track, according to the theory
used. Parametric equation of an ellipse given as

X = asin 6 (38)

y =bcosd (39)

are used, where the major and minor diameters, a and
b respectively, are to be calculated from a flattenning
coefficient ¢ =a/b. When &=1 a circle is obtained
and a race-track section is described as a rectangle
closed at two ends by two semi-circles.

3.2.3. Computer Simulation

The algorithm of the computer simulation programme,
written in Q-basic language, was designed as based on
the above described mathematical treatment. First the
sinus curves are drawn, then, the yarn sections and
straight portions are placed on appropriate places with
respect to the sinus curve sections between the angles
0°, 90°, 270° and 450°. The calculated parameters are
written on the output page of the drawing together

with the input parameters to numerically describe the
designed fabric as shown in Figure 15, which is a
theoretical example. The central line of the yarn
binding with the cross yarn of the bottom fabric is
also a sine curve with a greater amplitude to allow for
binding without interaction of yarn surfaces by
adjusting the parameter €.

3.2.4. Experimental Work

A more extensive research work was carried out later
in the context of Soyheptemiz’s M.Sc. thesis to
investigate the validity of various assumptions in
building up a double fabric geometry [23]. Two
different wool/polyester blend worsted yarns were
used to weave double cloth samples, one being a fine
yarn of 52/2 Nm and the other being a much thicker
yarn of 20/2 Nm count. 11 different double fabrics
were woven on a 24 shaft dobby handloom. Small
unit square weaves were used, namely 2/2 twill, 3/1
twill and 2/2 matt weaves. The two fabric layers were
stitched together at appropriate stitching points, which
would give perfect stitches. Twill and sateen stitching
were applied as both warp and weft stitches and or as
only warp or weft stitches.

pl= 0.050, cap= 0.010, al= 0.012, bil= 0.010, all= 0.010
h=0.054, ara=0.0, z= 0.012,
e= 1.85, f1=-0.040,

mag=

2000
f2=0.020, f3=4-1.850, f4=-.160

Figure 15. Computer simulation of the cross sectional diagram of a self stitched double fabric with 2/2 twill weave on both face and
back as a theoretical example (original)
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The main specifications of the experimental fabrics
woven are given in Table 1 together with the codings
used. The sets of the fabrics were determined using
Ashenhurst’s 1st setting theory, with appropriate
reductions to allow for stitching. Reed counts were
calculated assuming % 8 weaving and % 6 finishing
contractions, and the available reeds of the nearest
counts were selected for use. 8 heald shafts were used
depending on weave types [24]. To simulate finishing
process, grey fabrics were washed in 30° water with a
soap concentration of 5 gr/lt for 15 minutes. After
washing they were relaxed to dry on a table for 24
hours and ironed. Then the fabrics were boiled in
water and the same drying and ironing processes were
repeated after.

The parameters determined on finished fabric samples
are fabric thickness, yarn diameter measured both on
yarns drawn from fabric and on that from the yarn
bobbins, sample dimensions, fabric set, crimp factors
and fabric weight. A projection microscope Projectina
Heerbrugg was used to measure yarn diameter with
100 magnification. R&B Cloth Thicknes tester of
James H. Heal was used to measure fabric thickness
under 20, 30 and 40 g/cm?’ pressures and a presicion
balance to measure sample weights [23]. The results
are shown in Table 2.

Table 1. Loom specifications

Gungor BASER

A computer drawing program was prepeared using
Visual Basic Studio package in which some parts of
the fabric section were arranged to be moveable. The
moving parts are used to obtain the best structure by
searching the condition of the contacting yarn
surfaces being tangent to each other, having smallest
distance between intersecting yarn parts etc., thus
giving a feasable fabric with normal sett and balanced
binding at stitching points. In running the program the
parameters like yarn flattenning coefficient and yarn
porosity are given constant values. The first layer
obtained is moved up and down to adjust the distance
between top and bottom fabrics, the stitcing points are
moved on both layers independently from each other,
the bottom layer can be slid a distance with respect to
the top one, the sinus curve sections at the stitching
point expand vertically to gain greater amplitude.
These movements are achieved by percentage changes
on starting values of the related parameters given as
imput successively.

A computational algorithm was added to the program
to calculate yarn lengths to calculate crimp factors and
fabric unit weigths of the simulated fabrics to provide
for comparison with the measured values obtained on
actual woven fabrics. Thus, if equation (28) and (29)
are differentiated, we obtain

Reduced
Yarn Loom . Loom Reed Reed
Redurtio Wi .
Count Setting F::::Etor n Setting Count Count T;:‘: Stitch Type Code
Mm endsfcn endsfema | Caleulated Used
Twill warp
00,76 37 o074 o074 22 bwill o HETT 211
Sateen warp
22 wmatt o waft 243
22 il Twill warp 212
3T twill Twill wamp 222
22 ikl Sateen warp
0,22 300 100J4 100J4 +22 mak & weft 253
5212 486 0,28 42,8 11504 11504 22 wmalt Sakeen wamp 244
Twill warmp
0,22 24.7 A0/4 11572 22 il & weft 111
Sateen warp
22 matt & weft 143
22 il Twill warp 112
3T il Twill warp 122
22 twill Sateen warp
2042 38,1 0,58 26,5 £i504 6074 +22 matt & weft 153
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Table 2. Fabric parameters determined on experimental fabrics [23]

Code 111 112 | 153 | 143 | 122 | 311 | 243 | 213 | 353 | 244 | 222
Measured Weft Setting (1/em) 186 | 186 | 176 | 227 | 206 | 294 | 28 256 | 334 | 288 | %6
Measured Warp Setting (1/cm) 244 | 273 | 286 | 83 | 283 | 384 | 42 | 418 | 354 | 484 | 408
Weave Repeat Size (weft)(cm) 0408 | 0408 | 0455 | 0,352 | 0,390 | 0278 | 0286 | 0,313 | 0,240 | 0,278 | 0,308
Weave Repeat Size (warp){cm) 0,328 | 0293 | 0301 | 0,301 | 0,304 | 0208 | 0481 | 0,191 | 0,226 | 0,166 | 0,196
Weft Crimp Factor 1071 | 1083 | 1086 | 1126 | 1089 | 1,016 | 1,051 | 1.031 | 1,064 | 1,031 | 1,040
Warp Crimp Factor 1204 | 1174 | 1182 | 1135 | 1185 | 1.067 | 1,203 | 1133 | 1136 | 1.11a3 | 1.131
Fabric thickness (40 giem2) 1454 | 1676 | 1076 | 1776 | 1734 | 1464 | 1,08 1 106 | 1,164 | 1.114
Fabric thickness (30 glem2) 153 | 174 | 1836 | 1626 | 1851 | 153 | 1.145 1 1 1214 | 1184
Fabric thickness (20 g/cm2) 1598 | 1846 | 1876 | 1896 | 1066 | 1,588 | 1.218 1 1,15 | 1,244 | 1,244
Free Yarn Diameter (cm) 0,042 | 0042 | 0042 | 0042 | 0042 | 0025 | 0025 | 0025 | 0025 | 0025 | 0025
Weft Yarn Diameter in Fabric (cm) 0041 | 0042 | 0038 | 0041 | 0040 | 0021 | 0023 | 0023 | 0233 | 0023 | 0022
Warp Yarn Diameter in Fabric (em) | 0,041 | 0041 | 0038 | 0040 | 0040 | 0021 | 0021 | 0021 | 0021 | 0022 | 0021
Fabric Unit Weight (glem2) £14 | 543 | 514 | 5446 | 538 | 282 | 296 | 2843 | 3064 | 320 | 281
_b
dx, =—dx (40)
V4
dy, = r cos xdx (41)
; s (02 e r
s, =4(dX)" +(dy) =| ————| (l-k"sin"x) dx, K=—F—7—— (42)
| e \/2722
p, +7°r
If equation (42) is integrated in the interval of 0 < x < 7z /2, the arc length of one quarter of the sine wave will
given by
p +7°r? 72
e D 2
S I V1—k?sin® x.dx (43)

r2

which can be expressed in terms of the comlete elliptic integral of the second kind E(k,7z/2).

3.2.5. Results

Statistical analyses for the correlation between the
actual and theoretical values of crimp factor and fabric
thickness show that at % 95 confidence limits, the
correlation coefficients are important for crimp factors
calculated by employing Ashenhurst’s yarn diameter
formula with circular and race track section, and also
by applying Grosberg’s yarn diameter formula with
race track and elliptic sections, excepting 3/1 twill
fabric. At % 95 confidence limits, the correlation
coeffecients are important for thickness in respect to
both all yarn cross sectional shapes and diameter
formulae. The results of the statistical analyses are
shown in Table 3 for various yarn cross sectional
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shape assumptions and yarn diameter calculation
methods.

By a comparison of the parameters measured on
sample fabrics and those given by the computer as
fabric crimp and fabric thickness values, it can be
concluded that the general approach to develop a
double fabric geometry and modelling of different
weaves are quite satisfactory. The experiments show
that fabric thickness are greater in actual fabrics than
calculated values. The most realistic simulation results
have been obtained with the eliptic and race-track
sections. As for the correlation between the measured
and calculated unit fabric weight values correlation
coefficients between 0.98 and 0.99 were obtained.

Tekstil ve Miihendis

SAYFA 12



Modeling of Complex Fabric Structures

by Methods of Computer Simulation Glngor BASER
Table 3. Correlation coefficients between theoretical and experimental fabric parameters [23]

Structural parameter ) ) Fabric thickness (cm)

; Weft crimp Warp crimp B 2

Yam Cross Diameter factor factor 10 g/cm 20 g/cm

Section formula pressure pressure
Ellips Ashenhurst 0.58 0.13 0.84 0.73
Grosberg 0.81 0.41 0.73 0.66
Race-track Ashenhurst 0.67 0.24 0.87 0.77
Grosberg 0.63 -0.03 0.71 0.64

Note: Critical correlation coefficient for % 95 confidence interval: r = 0.602

As a general evaluation of the results it can be stated
that an adequate agreement could not be obtained
between measured and calculated values for the warp
crimp factor, but, however, better results were
obtained with the elliptic yarn cross section
assumption and applying Grosberg (Hearle, Grosberg,
Backer)’s yarn diameter formula [5].

From the work carried out by Soyheptemiz, it can be
concluded that any weave type of woven double
fabric with any method of stitching can be modelled
by the proposed computer simulation method
provided that yarn counts are known [23].

3.3. Development of The Geometry of Complex
Knitted Rib Structures from The 1x1 Rib
Fabric Model

Examining curling tendency of plain knitted fabrics
on the sides, Kurbak and Ekmen argued that the yarn
bending to form a loop had a tendency to become
straight which was prevented by the neighbouring
loop while this caused fabric to bend at right angles to
fabric plane at the sides since there was no attached
loop. To model this state of fabric they adopted
Kurbak (1998)’s plain knit loop model but cut the
projection curve of the loop on a plane perpendicular
to fabric plane in an appropriate way as shown in
Figure 16 to obtain a new geometrical model [15, 25].

= —0 O

Figure 16. Geometric modelling of side curling of plain knitted
fabrics [24]

Kurbak and Soydan adopted this model to develop
geometric models of mxm rib fabrics, by considering
a mxm rib structure as m plain loops followed by a
Ix1 rib structure curled forwards and m plain loops
followed by the same structure curled backwards with
respect to fabric plane, following these steps [26]:

1. Fist a normal firmness degree such as 1/d =20.19 is
taken, where | il the loop length, d is the yarn diameter.

2. An « angle for each mxm rib structure as shown in
Figure 17 is calculated from fabric photographs.

3. Those ¢ values satisfying « values given in Table
4 are calculated using a computer program written by
Kurbak and Ekmen [25]. The angle ¢ is used to de-

fine the parametric ellips defining the shape of loop
head as shown in Figure 18. The 2x2, 3x3, 4x4 ve 5x5
versions of rib structures are shown in Figure 19.

Figure 17. Determination of angle & [26]

4. The differences between left and right sections in
mxm structures observed in Figure 18 are taken into
account to estimate the parameters t and v. Here t is
the fabric thickness, w is the wale spacing and Vv is a
parameter related to wale spacing and yarn diameter
(v=—(w/2-2d).
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5. This additional assumption will be made to define
the jamming state between face and back loops: On
the right side of the structure shown in Figure 19, the
face part of the last plain loop at the back should be
parallel to the face of the first loop in front. Likewise,
on the left side of the structure, the face of the last
plain loop in front should be parallel to the face part
of the first plain loop at the back. This condition is
shown in Figure 19 by parallel lines.

n\r

Figure 18. Modeling of the loop head [25]

Figure 19. Definition of the angle for various mxm structures [26]

6. Parts of the first and last plain loops of the curled
fabric sections are cut off and replaced by 1x1 rib
units. In this fashion the shape of the loop heads of the
first and last plain loops is changed and the 1x1 rib
unit is placed as the curve B’ABCDE.

Cilt (Vol): 22 No: 98
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7. For the curve B’AB parametric ellipse model is
applied and this section of the loop is defined as
making the same angle as that loop removed.

Kurbak ve Soydan obtained the computer simulations
of arious mxm rib structures by using computer
programs they developed based on mathematical
analyses on the abovementioned principles. Computer
simulations of 2x2, 3x3, 4x4 rib weave structures are
given in Figure 22 [26].

Table 4. Parameters estimated from fabric photographs [26]

Structure Loop t v q)* o
arm

2x2 Left [1.29d |0 86.04° |90°
Right [1.29d |+w/2=5.8/2d

3x3 Left |2d -w/2=-5.8/2d |87.41° |60°
Right |2d 0

4x4 Left |2.2d |-w/2=-5.8/2d |87.75° |52.5°
Right [2.2d |-w/4=-5.8/4d

5x5 Left |2.8d |-w/2=-5.8/2d |88.10° [45°
Right [2.8d |-w/2=-5.8/2d

Figure 20. State of jamming of plain section with1x1 rib unit [26]

Figure 21. Formation of mxm rib structural [26]
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Figure 22. Computer simulations of mxm rib structures [26]

4. CONCLUSIONS

Product design practice involves defining the raw
materials to be used and the structural parameters to
be applied in the manufacture of the product.
Computer provides a suitable medium to both carry
out the necessary mathemetical calculations at great
speed and also to simulate the appearance of the
product to be viewed on screen. The three examples
of complex fabric design described above display how
computer can be used iteratively and flexibly to obtain
the best design solutions to be monitored both by
means of printed numerical results and graphical
simulations.
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