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Abstract

This study aimed to determine the most suitable local geoid model based on 641 GNSS/leveling points
within the borders of Kars Province in eastern Turkey using the generalized regression neural network (GRNN),
weighted average (WA), multiquadric (MQ), inverse multiquadric (IMQ) function, and local polynomial (LP)
method. Among these methods used in local geoid determination, the studies conducted with the GRNN method
are very limited in the literature. To test the performance of the model, 169 GNSS/leveling points were selected
as test data. When selecting reference points and test points, care was taken to distribute these points
homogeneously within the study area. The criteria of root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R?) were used to assess the accuracy and error rates of the results
achieved using the different methods. According the results of analysis, GRNN method yielded better results
than other interpolation methods. These results have showed that GRNN method can be taken into account in
modeling various geodesy problems.
Keywords: Generalized regression neural network (GRNN), geoid undulation, GNSS/leveling, interpolation
methods

Genellestirilmis regresyon sinir ag1 ve bazi enterpolasyon yontemlerini kullanarak yerel jeoid

belirleme: Kars, Tiirkiye'de bir vaka calismasi

Oz

Bu ¢aligmada Tiirkiye’nin dogusunda yer alan Kars il sinirlari igerisinde bulunan 641 tane GNSS/nivelman
noktasina dayali olarak, genellestirilmis regresyon yapay sinir agi (GRNN), agirlikli ortalama (WA),
multikuadrik (MQ) fonksiyonu, ters multikuadrik (IMQ) fonksiyonu ve yerel polinom (LP) yontemleri
kullanilarak en uygun yerel jeoid modelinin belirlenmesi amaglanmustir. Lokal jeoid belirlemede kullanilan bu
yontemler arasindan GRNN yontemi ile yapilan ¢aligmalarin sayisi literatiirde oldukg¢a sinirlidir. Modelin
performansint test etmek i¢in 169 tane GNSS/nivelman noktasi test verisi olarak secilmistir. Referans noktalari
ve test noktalart secilirken, bu noktalarin ¢alisma alanmi igerisinde homojen olarak dagilmasina  &zen
gosterilmistir. Farkli yontemlerden elde edilen sonuglarin dogrulugunu ve hata oranlarini 6grenmek i¢in, karesel
ortalama hata (RMSE), ortalama mutlak hata (MAE) ve belirlilik katsayis1 (R?) kriterleri kullanilmigtir. Analiz
sonuglarina gére GRNN metodu, diger interpolasyon yontemlerine gore daha iyi sonuglar vermistir. Bu
sonuglar, GRNN metodunun gesitli jeodezi problemlerinin modellenmesinde dikkate alinabilecegini
gostermistir..

Anahtar Kelimeler: Genellestirilmis regresyon sinir agi, jeoid ondiilasyonu, GNSS/nivelman, enterpolasyon
yontemleri
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1. Introduction

Despite scientific and technological advances,
geometric leveling is still used as a more
practical way of determining orthometric
height (H). Currently, ellipsoidal heights can
be determined with high accuracy using
global navigation satellite system (GNSS)
techniques. Ellipsoidal height is a geometric
height, and since it has no physical meaning,
orthometric heights are used in engineering
studies (Featherstone, 1998). If geoid
undulation values with a specific accuracy are
known, they can be easily converted from the
ellipsoidal heights obtained with GNSS to
orthometric heights. A geoid can be defined as
the equipotential surface of the gravitational
field that coincides with the mean sea level.
The geoid creates a reference surface for the
physical heights of topographical points. This
surface is formed under the gravitational force
of the earth masses. Based on development
methods and the data used, the different
methods for geoid determination are generally
divided into three types: gravimetric, astro-
geodetic, and geometric (Becker, 2012). The
geometric method relies on the relationship
between the GNSS and orthometric heights to
determine the geoid undulation and
interpolates this value for an unknown point.
In order to determine the local geoid, first, the
points with both height values known are
chosen as reference points. Creating and
selecting the most appropriate and realistic
model in geoid determination is extremely
important for the practitioners using such
models. In the literature to date, many
interpolation and least square collocation
methods have been used for the geometric
modeling of local geoids (Zhan-ji and Yong-
gi, 1999; Yanalak and Baykal, 2001;
Doganalp and Selvi, 2015; Doganalp, 2016;

*Corresponding Author: alperakar@erzincan.edu.tr

Karaaslan, et al., 2016; Sisman and Elevli,
2018; Yilmaz and Kuru, 2019; Yilmaz, 2019).

The artificial neural network (ANN) method
is used in solving engineering problems
because of its non-linear structure and error
tolerance. In geodetic studies, ANNs have
been successfully used in geoid undulation
modeling for different regions (Giillii et al.,
2016; Kaloop, 2018; Fidanci and Abbak,
2019; Albayrak et al., 2020; Erol and Erol,
2020). For example, Seager et al. (1999) used
a back propagation ANN to model the local
geoid for an area of 2°x2°. As a result of the
study, they found that this method could be
used as a tool in geoid undulation modeling.
Kavzoglu and Saka (2005) designed an ANN
to model geoid undulation for Istanbul using
190 GPS/leveling points. The results showed
that the developed ANN model exhibited a
lower error rate than the GPS/leveling data
surface. Cakir and Yilmaz (2014) compared
the geoid undulation estimates they carried
out using the multilayer perceptron neural
network (MLPNN) with polynomials and
radial basis functions. According to the results
of the study, they found that the MLPNN
model gave more accurate results than the
other methods tested.

The aim of this study was to design a suitable
geoid model for Kars Province (Turkey). Six
different methods were used in the study:
generalized regression neural network
(GRNN) from artificial neural network
(ANN) models, weighted average (WA),
multiquadric (MQ) and inverse multiquadric
(IMQ) radial basis functions, and local
polynomial (LP) function. During the
implementation of the methods, 641 geodetic
points with known ellipsoidal and orthometric
heights were divided into "reference" and

1425



Local geoid determination using a generalized regression neural network and interpolation methods: A case
study in Kars, Turkey

"test" data groups. The performances of the
models were evaluated using root mean
square error (RMSE), mean absolute error
(MAE), and coefficient of determination (R?).
The results showed that according to the
known geoid undulation values, the GRNN
method gave better results for estimated
values than the other interpolation methods.

2. Material and Methods
2.1. Study area

The province of Kars has the provinces of
Ardahan to the north, Igdir to the southeast,
Agr to the south and Erzurum to the west,

The orthometric and ellipsoidal height values
of 641 C3 order control points used within the
scope of the study were provided by the the
Erzincan XXIV Regional Directorate of Land
Registry and Cadastre.

With attention given to their homogeneous
distribution, 473 of the GNSS/leveling points
were chosen as reference points and the
remaining 169 as test points. The distributions
of the reference and test points are shown in
Figure 2. The ellipsoidal heights (h) of the
points were determined in the ITRF96 datum
at epoch 2005.0 using GNSS techniques and

according to Turkey National Fundamental
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Figure 1. Study area

with Armenia located to the East. Its total area
is 10,139 km? (Fig. 1).

The orthometric heights (H) of the
same points were calculated by referencing
the Turkish National Vertical Control
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Network (TNVCN). The undulation (N)
values of the geodetic points were obtained by
subtracting the orthometric heights from the

The GRNN consists of a total of four layers:
an input layer, a pattern layer, a summation
layer, and an output layer.

ellipsoidal heights of the points.
The general structure of the GRNN is given in

45N Figure 3. In the GRNN method, developed by
Donald Specht in 1991, the estimation
function is created by using the input and
. output data.
41.0 N
405 N
40.0°N
Input Layer Pattern Layer Summation Layer Output Layer
= Reference Points
® Test Points .
3 Figure 3. General GRNN structure
395 N
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The GRNN is a radial basis feed-forward
ANN model that does not require an iterative
training procedure (Specht, 1991). Equation
(1) shows the regression of the dependent
variable y with respect to the independent
variable x, if the joint probability density
function f (x, y) is known.

Figure 2. Distribution of reference and test
points in the study area

Statistical properties (mean, maximum,
minimum, and standard deviation) of the data
(divided into reference and test data for the

application) are shown in Table 1. The values 1 Xy
of all statistical properties were nearly the E[vIX]= m @
same for the reference and test datasets.
Table 1. Statistical properties of reference and
test data
Data set Coordinates Mean Maximum Minimum Star_lda}rd
Deviation
Latitude () 40.382 41.093 39.942 0.269
Reference Longitude (*) 42.943 43.497 42.167 0.338
Undulation (m) 25.761 35.614 23.372 1.027
Latitude () 40.385 41.025 39.990 0.258
Test Longitude (%) 42.974 43.468 42.218 0.318
Undulation (m) 25.681 27.352 23.584 0.860
.. LENeEranzea Regression Neural  \When the density function is unknown, it must

Network (GRNN) be usually be estimated a sample of

observations of x and y. The probability
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estimator f (x,y) is based on sapmle values
X'and Y' of random variables x and y.

1 1
f(X: )’) = (27.[)(p+1)/20—(p+1);

e [17]
202

n
l=1exp l 202

X

In this equation, p is the size of the vector x, n
is the number of data, and o shows the spread
parameter, with D? being a scalar function:

D? = (x - x%) (x - x9) 3)

Equation (4) is obtained when the integrals in
Equation (1) are solved:

2
Y viexp |
i=1 202

Y =———7
ool )

(4)

2.3. Local Polynomial (LP) Interpolation

In the LP method, calculation of interpolation
values is performed by the weighted least
squares (WLS) method. When calculating the
height values of the interpolation points, the
fulcrum points to be used are defined by a
predetermined search ellipse. Using only the
data within the scope of the search ellipse, all
of the fulcrum points are weighted to generate
the surface data and a local bivariate
polynomial is generated. The uncertain
coefficients in the polynomial produced are
resolved according to the least squares
method. The height values of the formed
surface are calculated by the LP method
(Solmaz, 2019). The degree of the most
suitable polynomial to be used in the method
is generally sought via experimental methods.
The higher the degree of the polynomial, the
closer the model and the data in the model to
each other (Ustiin, 2001). However, in

practice, sensitivity losses in the estimated
parameters as the degree of the model
increases may cause increases in model error.
Therefore, it would be appropriate to choose
the degree of the polynomial as one degree
lower in cases where the error in the model
starts to rise (Ceylan et al., 2011). In the
interpolation process using polynomials, it
does not mean that increasing the degree of
the polynomial will increase its sensitivity.
Sudden decreases and increases in the created
surface may cause altitude data changes that
are not correct for the real surface (Inal et al.,
2002). The local polynomials stated above are
represented as first, second, and third degree
polynomials.

If the function is expressed as first degree, it
can be formulated as:

F(X,Y) = a + bX +cY (5)

where a to ¢ are the three coefficients of
transformation. If the function is expressed as
second degree, it can be formulated as:

F(X,Y) = a+ bX + cY + dXY + ex? + fY?
(6)

where a to f are the six coefficients of
transformation. If the function is expressed as
third degree, it can be formulated as:

F(X,Y) = a + bX + ¢Y + dXY + eX? + fY?+
gX2Y + hXY2 +ix3 + jy3 (7)

where a to j are the ten coefficients of
transformation. The basis of the WLS method
used here is to give more weight to the
fulcrum points close to the point to be
interpolated and less weight to the points that
are far from the point to be interpolated. The
search ellipse in the weight function depends
on the weight parameter and the distribution
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of the data. For the calculation of actual
weights, first, the Txx, Txv, Tvx, and Tvyy
parameters are calculated using Equation (8).

cos sin( —sin(9)

__ cos(9) _ ?) _ _
Txx = R Txy = R Tyx = 5 Ty =
cos(9)
costd) ©

where @ is the counter-clockwise angle
between the principal axis and the minor axis
of the ellipse; Ry is the first axis of the search
ellipse and R refers to the second axis of the
search ellipse. The Txx, Txv, Tyx, and Tyy
parameters are used in the calculation of Axx,
Axy, and Avyy, which are functions of the
parameters in the search ellipse. These
parameters are calculated using Equations (9-
11).

Axx=Tgy + Tyx ©)
Axy =2(Txx Txy + Tyx Tvy) (10)
Avy=TZ + T2 (11)

These values (Axx, Axy and Avyy) are the same
for all fulcrum points. The differences
between the fulcrum (Xi, Yi) points and grid
(Xo, Yo) points are then calculated as dX and
dy.

dX = Xi— Xo (12)

dY =Yi— Yo (13)

By means of these values, Ri is used when
calculating the weight using Equation (14).

Ri = AxxdX? + AyydXdY + AyydY?
(14)

The i in this result is used to calculate the
weight of the fulcrum point w; using Equation
(15).

wi= (R, i=1;..;N (15)

The p value in the equation indicates the
weight force that takes values between 0 and
20. Local least squares parameters are
calculated with the minimized conflicting
residual sum of squares using Equation (16)
(Surfer 19, 2020).

Minimize ¥¥ , w;[F(xi, yi) — zi]? (16)

2.4. Weighted average (WA) Interpolation

The basis of the method is that the weights of
nearby points to be interpolated are greater
than for distant points (Kegeci, 2011). The use
of the WA interpolation method is highly
preferred due to the simplicity of its algorithm
and its easy programming. Although the
method is termed simple, it gives accurate
results in many applications. Surface values at
interpolation points are used by calculating
the weighted average of the surface values at
the reference points. The same weights are not
given for all dimensions because weighting is
expressed by a function that depends on the
distance between the interpolation point and
the reference point. Less weight is given to
points farther from the interpolation point, and
more to points closer to the interpolation point
(Kuru, 2018). In the WA method, the Nk geoid
height value corresponding to any k point is
found with the the Ni geoid height value of n
(i=1,2,...., n) for the fulcrum points by using
Equations (17-19).
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, =18
Ni=——¢ (17)

Zi=1h_ﬁ

ik
N(X,Y) = Nirend — Nk (18)
hik = Lnk2-+ 52 (19)

where B is the weight coefficient, & is the
smoothing parameter, hik is the weight value
based on distance, and dix is the distance
between the fulcrum and the cut-off point;
Nirend 1S expressed as the geoid height value
determined from the fulcrum points. In this
method, the weights of the fulcrums are
expressed in relation to the distance. As the
distance increases, the weight will decrease
and approach zero, and after a specific point,
it will become equal to zero. The fulcrum
points with zero weight will have no effect on
the estimation (Bolat, 2013). The difference
between the estimated geoid height (i) and
the known geoid height (N;) of the fulcrum
points is calculated using Equation (20).

dN = N; - Nj (20)

The optimal number of points and coefficient
for the area studied is the coefficient that
yields the lowest sum of squares for the
differences between the estimated geoid
height and the known geoid height of the
fulcrum points (Kuru, 2018).

2.5. Radial Basis Functions (RBFs)
Interpolation

The theory of the RBF method is based on the
interpolation of functions with multiple
variables. The purpose here is to interpolate

the expressions shown as (x5, y*)Y_,. In this
case, it must be xs€RY. Since f is a function in
linear space in this system of equations, in the
theory of RBF, the interpolation function f can
be seen as a linear combination of some major
functions  (Topaloglu, 2007) and is
represented as an interpolation function of the
RBF method, shown as:

F(x,y) = p(x, y) + Z1wid( |x, ) — 06, Yo |
(21)

where p (X, y) represents the polynomial, wi
the actual weights, ( [(x, y) — (Xi, Yi) |) the
Euclidean length between points, and Z(r) the
basic function.

The application of interpolation begins with
the  polynomial regression step by
incorporating the p (x, y) polynomial. After
that, the linear equation system shown in
Equation (22) is solved to determine the
uncertain weights.

Z - p(x,y) = 5 w0 Lk y) — O Y0 1) ]
=],....n (22)

When the calculation of the weights is
completed, the z values that enable the surface
to be defined are calculated for all points using
Equation (21) (Solmaz, 2019). The accuracy
of the MQ and IMQ methods depends on the
data structure and the smoothing parameter
(R?) specified by the user (Carlson and Foley,
1991)

2.5.1. Multiquadric (MQ) Method

This analytical method, first proposed by
Rolland L. Hardy in 1971, is also used in
solving many geodetic problems. The purpose
of this interpolation technique is to define the
surface via a single function created by using
all known fulcrum points in the study area.
The MQ method generally yields good results
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because it represents the dataset well and
creates soft surfaces (Dogruluk, 2013). In
order to apply the method, a trend surface is
first passed through using the fulcrum points.
A first- or second-degree polynomial is used
as the trend surface (Tetik, 2018). Next, the
residual geoid height values (4N;) at the
fulcrum points are calculated. For the MQ
method, these values are used as the { matrix;
ANi now represents the geoid height values
and is calculated using Equation (23).

ANi = Ni = N(Xi — ¥i) = Ni — Ntrena = 1,2,......,m
(23)

If ANe at the (Xe, Ye) interpolation point is the
residual geoid height value, it can be written
as:

ANe = Ne — N(Xe - ye) = Ne — Nirend
(24)

The values of 4Ne and Ne in this equation are
unknown expressions. Finding one of these
expressions allows the other to be calculated
as well. Here, the geoid height values are now
known as the multiquadric surface, and their
coefficients can be calculated as the sum of
defined second-degree equations. The
multiquadric surface in its most general form
is expressed by Equation (25) (Tetik, 2018).

AN = Z . CiQ[xi, yi; X,Y] (25)

where C; represents the unknown coefficients
calculated from the known residual height
values AN; of the fulcrum points, and Q(x, v,
xi, yi) is the kernel function.

2.5.2. Inverse
Function

Multiquadric (IMQ)

The generalized IMQ function was defined by
Franke in 1982. The function of this method is
as follows (Tetik, 2018):

(1) = = #0 (26)

3. Performance Metrics

In order to evaluate the prediction accuracy of
the methods, root mean square error (RMSE),
mean absolute error (MAE), and coefficient of
determination (R?) were used.

Y
RMSE = (L Siu(Xii — Xp)") © @7)
MAE—_ n1|XK1 XP,il (28)
R? =

DEECHES ATCAES SASHEN AR NCARE Ay

(29)

In Equations (27), (28), and (29), n indicates
the number of data, Xx; and Xp; are the
known and predicted values, respectively, and
X, and Xp, represent the mean values of the
known and predicted values, respectively. The
RMSE and MAE range from 0 to + oo, while
the range for R? is from 0 to 1. Low RMSE
and MAE values and high R? indicate that the
developed model is good.

4. Results and Discussion

The spread parameter that affects the accuracy
of the GRNN prediction results should be
suitably determined. The trial-and-error
procedure was used to determine the optimum
spread parameter. The power parameter (k) is
an important factor in the WA method. In the
study, k values between 1 and 5, respectively,
were tried, the amount of error was observed,
and five different results were obtained. For
RBF modeling, MQ and IMQ functions were
used. In order to prepare models using the LP
function, 1, 5, 10, 15, and 20 were used as the
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polynomial function degrees, respectively.
The statistical values used to evaluate the
performance of these methods are shown in
Table 2.

In order to determine the prediction accuracy
of the five methods as a performance criterion,
the minimum absolute difference, maximum

RMSE = 1.215 cm, MAE = 0.467 cm, and R?
= 0.99980 . The worst result was found with
the model created by choosing the power
parameter of 1 (p = 1) (RMSE = 14.160 cm,
MAE = 11.237 cm, R? = 0.97308). As shown
in Table 2, the maximum absolute difference
(57.375 cm) was obtained with the LP
function and the minimum absolute difference

Table 2. Performance statistics for GRNN, WA, MQ, IMQ, and LP methods

Minimum Mean

Maximum

RMSE MAE

2

Method ™ (cm) (cm) (cm) (cm) (cm) R
GRNN 0.000 0.445 6.992 1.215 0.467 0.99980
WA (k=1) 0.040 8.792 35.644 11.257 9.229 0.98339
WA (k=2) 0.003 5.284 19.467 6.888 5.547 0.99359
WA (k=3) 0.069 4461 24.274 6.034 4871 0.99532
WA (k=4) 0.043 4,780 21.286 6.166 5.018 0.99532
WA (k=5) 0.016 3.568 17.162 5.063 3.745 0.99508
MQ 0.007 4.081 64.594 7.175 4,284 0.99361
IMQ 0.007 3.624 19.001 5.175 3.807 0.99611
LP (p=1) 0.001 10.705  57.375 14160  11.237  0.97308
LP (p=5) 0.061 7.485 34554 9.833 7.857 0.98704
LP (p=10)  0.018 5,532 23.241 7.371 5807  0.99282
LP (p=15) 0.030 4.676 31.807 6.472 4,909 0.99454
LP (p=20)  0.148 22703 84.363 6.117 4448  0.99515

absolute difference, mean absolute difference,
RMSE, MAE, and R? were calculated. Table
2 shows that the best result was obtained with
the power parameter of 5 (k = 5) among the
WA methods. On the other hand, the worst
result was determined for the model in which
the power parameter was chosen as 1 (k = 1).
The LP functions model created with a power
parameter of 20 (p = 20) yielded the best result
within itself. The worst result was found to be
in the model developed by choosing the power
parameter of 1 (p = 1). The MQ and IMQ
methods gave results similar to the WA
method (k = 1, 2, 3, 4, 5). When the results
were evaluated overall, the statistical indices
for the GRNN showed the lowest RMSE and
MAE and the highest R?; values equal to:

(4.08E-09 cm) with the GRNN method. In
addition, the mean absolute difference (0.445
cm) was obtained using the GRNN method.
Moreover, the distribution diagrams of geoid
undulations estimated against known geoid
undulation values are given in Figure 4 for the
WA method, in Figure 5 for the LP function,
and in Figure 6 for the GRNN, IMQ, and MQ
methods.
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Figure 5. Scatter diagrams of known geoid undulation values estimated by local polynomial (p

=1, 5, 10, 20)
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Figure 6. Scatter diagrams of known geoid undulation values estimated by GRNN, IMQ, and

MQ methods

From these Figures, it can be observed that
prediction using GRNN show more scatter
around the line of perfect agreement in
comparison to other methods. Also, as seen
from the fit line equations the slope and bias
values of the GRNN are closer the 1 and 0
than the WA, LP, IMQ, and MQ methods.

5. Conclusions

The purpose of this study was to determine a
local geoid using the generalized regression
artificial neural network (GRNN), weighted
average (WA), multiquadric (MQ) and
inverse multiquadric (IMQ), radial basis
functions (RBF), and local polynomial (LP)
methods and to compare the results. For this
purpose, 473 GNSS/leveling points were

chosen as reference points and 169
GNSS/leveling points as test points. The same
datasets were used for all methods. According
to the results obtained, the GRNN, with the
highest R? (0.99980) and the lowest RMSE
(1.215 cm) and MAE (0.467 cm), showed
superiority over the other methods. The WA
methods gave similar results among
themselves, except for the model with a power
parameter of 1 (k = 1). The MQ and IMQ
methods also gave results similar to those of
the WA method. Performance results of the
LP functions were less accurate than those of
the other methods. The accuracy achieved in
this work is sufficient for many geodetic and
surveying applications. The GRNN offers
advantages over the back propagation neural
network such as a single-pass learning
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algorithm, fast generalization, and a flexible
and high-tolerance network architecture.
After evaluating the study results, the authors
believe the GRNN to be worth considering in
the modeling of a variety of geodesy
problems.
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