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Position Estimation of In-Pipe Robot Using Artificial Neural Network and Sensor 

Fusion 
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Abstract 

Automatic position detection of water leakage in water distribution pipelines is critical to 

minimize the loss of labour, time, money spent on exploration and excavation in pipe inspection 

procedures.  Nevertheless, the main goal of detection is to prevent water loss. In this paper, 

accurate position detection, crack frequency band detection, and external sphere studies of an 

in-pipe robot prototype were presented. During the precise position estimation, classical 

Extended Kalman Filter (EKF), stationary region detection, and location estimation using 

Enhanced Heuristic Drift Elimination (EHDE) were performed with two different artificial 

neural networks (ANNs). In this way, online precise position estimation can be done on 

hardware with no sufficient computational power for indoor robotic studies. In addition, the 

sound characteristics resulting from the crack at different hole size and water pressure intensity 

levels were investigated. Finally, a new sealing sphere design was devised. Three different 

hydrophone sensor data were recorded on the SD card simultaneously. The results show that 

the proposed ANN method can work online and make a similar position estimation with the 

classical IMU position estimation method by 99%. 
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1. INTRODUCTION 

Water has great importance for the survival of 

living beings on earth and especially for the 

human species. Increasing the place of 

settlements in proportion to the human population 

also increases the water demand. Today’s people 

should consume water cost-effectively for future 

generations to benefit from potable water 

resources. In many countries, serious policies 

have been developed, including water distribution 

systems for the conscious use of water [1]. 

According to World Bank, approximately 14.6 

billion dollars of water is lost annually due to the 

cracks in the water pipes during transportation [2]. 

In another report prepared by the World Bank, 

two-thirds of the world’s population will be going 

without water in 2025 unless the current water 

policies are taken under control [3]. In the U.S., 

approximately 240,000 water pipe cracks occur 

annually. These cracks are responsible for the loss 

of 2 trillion gallons of water that account for 15-

25% of purified water [4]. 

One way of protecting water is by reducing water 

losses due to pipe cracks and faults in the 

pipelines in the distribution network. These faults 

should be identified and repaired to prevent loss 

of water and income. General pipe repairs have 

high costs in distribution networks. Finding the 

exact position of the fault and working in that area 

reduces the repair costs. Although surface pipe 

listening devices appear to be a solution to this 

need, they are not preferred because of influenced 

by external noise [5]. Moreover, the small scale of 

underground water leaks makes it very difficult to 

detect these leaks. Physical infrastructure failures, 

such as ageing, corrosion and mechanical stress, 

cause the water pipe to lose its thickness what 

causes cracking and water leakage due to pipe 

leaks/breaks [6]. Pipe maintenance must be 

carried out regularly to prevent damage. 

Traditional maintenance procedures have high 

costs as they require removal and excavation. 

Comprehensive pipe maintenance procedures 

include; (a) the detection of the amount of water 

lost in the pipes; (b) finding the location of the 

cracks in the pipeline that causing water loss; (c) 

the repair of the cracked areas in the detected 

position [7]. The amount of lost water is 

determined by calculating the difference between 

the amount of water supplied to the grid and the 

amount used [8].  

In the literature, there are many studies on 

distribution water leak detection and 

management. In monitoring and managing 

physical losses, various methods have been 

applied, such as the implementation of standard 

water balance and performance monitoring [9]–

[12], monitoring of minimum night flow, 

determination of potentially preventable leaks 

daily [13], [14], implementation of pressure 

management [15], [16], pipe material 

management [17]–[19], in-pipe location detection 

robots that can find leak position [20]–[23]. In this 

preliminary study, a leak detection robot 

prototype, which can find the position of the pipe 

crack with high accuracy, was developed. 

2. PRECISE POSITION ESTIMATION 

EXPERIMENTS 

The operations were performed in the precise 

position estimation step are summarized as 

follows: (1) saving IMU data in navigation 

scenarios, (2) position estimation method, (3) 

Kuka experiments, (4) proposed artificial position 

estimation method. 

2.1. Saving IMU Data in Navigation Scenarios 

Navigation scenarios were carried out in a 20m2 

indoor space. There are eight different navigation 

scenarios, as shown in Figure 1. For the real-time 

recording of IMU data during navigation, Odroid 

XU3 and IMU sensor were connected. This 

navigation device was placed in a sphere-shaped 

housing produced by a 3D printer. IMU data was 

recorded between the nodes in the scenarios with 

the help of the navigation device. Figure 2 shows 

the navigation device and indoor space. An IMU 

that has nine degrees of freedom was used to 

collect the data. These nine degrees consists of a 

3DOF accelerometer, 3DOF magnetometer and 

3DOF gyroscope. The sensor data was read at 

100Hz from the IMU sensor using virtual port 

listening software written in C++. The read data 

was transferred to the Odroid XU3 computer via 
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a USB port. Figure 3 shows the recorded IMU 

data for the navigation scenario. 

 

Figure 1 Navigation scenarios 

 

Figure 2 Obtaining train and test data via IMU sensor 

that placed in 3D printed spherical ball 

 

Figure 3 IMU data for a square navigation scenario 

2.2. Position Estimation Method 

Combining the data obtained from different 

sensors such as magnetometers, accelerometers, 

and gyroscopes, obtaining the measurement 

information with the smallest error is called 

sensor fusion [24]. The direct processing of raw 

IMU data results in an increase in cumulative 

error in the acceleration sensor data required for 

calculating the position, thereby decreasing 

position estimation accuracy. Therefore, data 

need to be filtered. Kalman filter has been used 

effectively in sensor fusion applications [25]–

[28]. Rudolf Kalman, an American citizen of 

Hungarian origin, discovered The Kalman filter in 

1960 [29]. First developed for linear systems, 

Kalman Filter is a recursive, least-squares 

algorithm in which weights are dynamically 

updated at each step. The Extended Kalman Filter 

(EKF) aims to apply the Kalman filter to a non-

linear system [30]. 

In general, the Kalman filter is a filter that can 

predict the state of the system at the time t–1 using 

the input and output information of a dynamic 

system. Kalman Filter is defined in Equation (1) 

and (2) [31]. At Equation (1), x represents the 

state vector, u control vector, w process noise, A 

state transition matrix, B control input matrix. The 

z value in Equation (2) represents the 

measurement vector, H the transformation matrix 

that maps the state vector parameters to the 

measurement region, and v represents the 

measurement noise. 

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡                             (1) 

𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝑣𝑡                                       (2) 

The state dynamics are not linear in many 

systems. In this case, the Kalman filter cannot be 

applied because the Kalman gain cannot be 

calculated. The standard Kalman filter has been 

used by calculating the Jacobian values of the 

functions to linearize the system’s state dynamics 

and measurement function. Initially, the system 

state dynamics are linearized, followed by the 

measurement (system dynamics) update in the 

following step. In the third step, measurements 

are linearized, and the last step is updated. As a 
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result of this process, the Kalman filter transforms 

to the Extended Kalman Filter [30]. In the first 

step, the linearized state and measurement vectors 

are given in Equations (3) - (4). 

𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢𝑡,𝑤𝑡)                                     (3) 

𝑧𝑡 = ℎ(𝑥𝑡 , 𝑢𝑡,𝑣𝑡)                                      (4) 

The basic steps of the Extended Kalman Filter are 

listed below. 

Step 1: Linearize measurements 

𝐻𝑡 =
𝜕ℎ(𝑥,𝑢)

𝜕𝑥
|
𝑥=𝑥𝑡|𝑡−1

                              (5) 

Step 2: Update measurements (correction): 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)
−1

      (6) 

�̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 − 𝐻𝑡�̂�𝑡|𝑡−1)                 (7) 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−1                   (8) 

Step 3: Update measurements (correction): 

𝐹𝑡 =
𝜕𝑓(𝑥,𝑢)

𝜕𝑥
|
𝑥=�̂�𝑡|𝑡

    (9) 

Step 4: Time update (prediction) and return step1: 

�̂�𝑡+1|𝑡 = 𝑓(�̂�𝑡|𝑡, �̂�𝑡)                     (10) 

𝑃𝑡+1|𝑡 = 𝐹𝑡𝑃𝑡|𝑡𝐹𝑡
𝑇 + 𝑄𝑡 (11) 

In this study, 3DOF magnetic field sensor and 

3DOF accelerometer sensors were used as 

complementary sensors [32]. A sensor fusion 

process was performed to correct the angular 

variation measured by a 3DOF gyroscope in the 

method used in leak detection. The integration 

step is the time update step which predicts the 

quaternion vector using the Ft transition matrix 

and the estimated error covariance matrix. The 

vector observation step optimizes the system state 

dynamics of the magnetic field sensor and the 

accelerometer data.  The Kalman filter was 

applied at the final stage to minimize the error 

covariance, and the correction step is done. The 

noise characteristics of the sensors (acceleration, 

rotation and magnetic field) were calculated by 

taking the mean and standard deviations of the 

data collected while the IMU was inactive [20]. 

The state vector of the generated filter system is 

defined in Equation (12). q0 is the real component, 

q1, q2, and q3 are the virtual components of the 

quaternion vector. 

𝑥 = [𝑞0 𝑞1 𝑞2 𝑞3]                               (12) 

Euler angles have been calculated by passing the 

IMU data through the Extended Kalman Filter in 

classical studies. Since the rotation vector 

calculated by the Euler angle has the singularity 

problem, Quaternion vector q was calculated 

instead of the Euler angles. The following steps 

show the implementation of the Kalman Filter. 

2.2.1. Integration Step 

The gyroscope sensor measures the angular 

change in the X, Y and Z axes of the coordinate 

system in rad/s, the change in each axis is 

represented by 𝝎𝒙, 𝝎𝒚, 𝝎𝒛, respectively. 𝝎𝑺  

represents the gyroscope vector measured in all 

axes of the sensor coordinate system, eq. (13).  

Equation (14) was used to calculate the 

quaternion derivative ( �̇�𝑮
𝑺 ) which gives the 

amount of change from the global coordinate 

system to the sensor coordinate system [33]. 

𝜔𝑆 = [0 𝜔𝑥 𝜔𝑦 𝜔𝑧]                          (13) 

�̇�𝐺
𝑆 =

1

2
�̂� ⊗ 𝜔𝑆  𝐺

𝑆                                (14) 

The quaternion derivative was calculated by 

multiplying the values read from the gyroscope 

sensor sequentially given in Equation (15). 𝝎𝒕
𝑺  

represents the data read from the gyroscope at 

time t, �̂�𝑮
𝑺

𝒆𝒔𝒕,𝒕−𝟏 represents the previous 

quaternion vector. After these derivatives have 

added to the previous quaternion by multiplying 

by the sensor period ∆𝒕 the quaternion, the 

orientation information has been obtained in 

Equation (16) [32].  
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�̇�𝜔,𝑡𝐺
𝑆 =

1

2
�̂�𝐺

𝑆
𝑒𝑠𝑡,𝑡−1 ⊗ 𝜔𝑡

𝑆     (15) 

𝑞𝜔,𝑡 =𝐺
𝑆 �̇�𝜔,𝑡𝐺

𝑆 ∆𝑡 + �̂�𝐺
𝑆

𝑒𝑠𝑡,𝑡−1                       (16) 

Assume that the sensor operates at a frequency of 

50Hz. In this case, ∆𝒕 period value will be 0.02. 

In every 0.02 seconds, the current quaternion 

vector was multiplied by the  gyroscope value 

𝝎𝒕
𝑺  from the sensor to obtain the instant 

quaternion value. The effect of the calculated 

quaternion value on a total period of 1 second is 
0,02. The quaternion was multiplied by this value 

and collected with the vector calculated in the 

previous step. As shown in Figure 4, the initial 

quaternion [𝟏 𝟎 𝟎 𝟎] was rotated 90 degrees 

on the X-axis. 

When the gyroscope process noise has added to 

the state equation, the general state equation of the 

system given in (17). The 𝒘𝒕 value is the process 

noise defined by the covariance matrix 𝑸 of the 

gyroscope sensor [32]. 

 

𝑥𝑡 = 𝑓(𝑥𝑡−1) + 𝑤𝑡                                      (17) 

In principle, the 𝑸 covariance matrix and 𝒘𝒕 are 

the same. The formulation is represented by the 

𝒘𝒕 in the optimization formulas and 𝑸 by the 

Kalman filter. 𝑸 covariance matrix is different 

even for the same brand sensor. When a sensor is 

stationary, it produces values unequal to zero due 

to external noise. After reading all these values for 

a certain period, the sensor’s offset value was 

calculated by taking the arithmetic mean of the 

sensor data, Equation (18). In this paper, the offset 

value of the gyroscope sensor was added to the 

variance estimation algorithm. The variance 

vector of the sensor was calculated in (19). The 

variance vector Q is used in the construction of 

the covariance matrix. 

𝑜𝑓𝑓𝑠𝑒𝑡 = [[−0.1342 −0.0553 0.1455] (18) 

𝑣𝑎𝑟 = [0.0705 0.0732 0.0663]  (19) 

When �̇�𝝎,𝒕𝑮
𝑺  is replaced by Equation (15) in 

Equation(16), main quaternion equation is 

obtained [16], Equation (20). 

𝑞𝜔,𝑡 =𝐺
𝑆 1

2
( �̂�𝐺

𝑆
𝑒𝑠𝑡,𝑡−1 ⊗ 𝜔𝑡

𝑆 )∆𝑡 + �̂�𝐺
𝑆

𝑒𝑠𝑡,𝑡−1    (20)       

This equation which is estimated, is defined as the 

state equation in the Kalman filter. The xt was 

calculated at the time t is also the predicted 

�̂�𝑮
𝑺

𝒆𝒔𝒕,𝒕−𝟏 value in the previous step. When all 

these equations are combined, a Kalman filter 

state equation based on quaternion is defined in 

Equation (21). The state equation at time t is given 

in Equation (22). 

𝑓(𝑥𝑡−1) =
1

2
(𝑥𝑡−1 ⊗ 𝜔𝑡

𝑆 )∆𝑡 + 𝑥𝑡−1           (21) 

𝑥𝑡|𝑡−1 = 𝑓(𝑥𝑡−1|𝑡−1)                                (22) 

It is clear that the function 𝒇(𝒙𝒕) is not linear. In 

this case, since the Kalman Filter cannot calculate 

the Kalman gain, 𝑭𝒕 transition matrix should be 

computed using the Extended Kalman Filter. 

After 𝒙𝒕−𝟏 ⊗ 𝝎𝒕
𝑺  quaternion production, 

Equation (23) is obtained [32]. 

𝑥𝑡−1 ⊗ 𝜔𝑡
𝑆 =

[
 
 
 
 
𝑥0. 0 − 𝑥1𝜔𝑥 − 𝑥2𝜔𝑦 − 𝑥3𝜔𝑧

𝑥0𝜔𝑥 + 𝑥1. 0 + 𝑥2𝜔𝑧 − 𝑥3𝜔𝑦

𝑥0𝜔𝑦 − 𝑥1𝜔𝑧 + 𝑥2. 0 + 𝑥3𝜔𝑥

𝑥0𝜔𝑧 + 𝑥1𝜔𝑦 − 𝑥2𝜔𝑥 + 𝑥3. 0]
 
 
 
 

  (23)     

In Equation (24), The Jacobian 𝑭𝒕 transition 

matrix of the 𝒇(𝒙𝒕−𝟏) function obtained when 

Equation (23) is replaced in Equation (21). 

𝐹𝑡 =
𝜕𝑓(𝑥𝑡)

𝜕𝑥
|
𝑥=�̂�𝑡−1|𝑡−1

= 

 

[
 
 
 
 
 𝟏 −∆𝐭

𝟐⁄ .𝛚𝐱
−∆𝐭

𝟐⁄ . 𝛚𝐲
−∆𝐭

𝟐⁄ .𝛚𝐳

∆𝐭
𝟐⁄ .𝛚𝐱 𝟏 ∆𝐭

𝟐⁄ . 𝛚𝐳
−∆𝐭

𝟐⁄ . 𝛚𝐲

∆𝐭
𝟐⁄ . 𝛚𝐲

−∆𝐭
𝟐⁄ .𝛚𝐳 𝟏 ∆𝐭

𝟐⁄ .𝛚𝐱

∆𝐭
𝟐⁄ .𝛚𝐳

∆𝐭
𝟐⁄ .𝛚𝐲

−∆𝐭
𝟐⁄ . 𝛚𝐱 𝟏 ]

 
 
 
 
 

   

(24) 

The estimated quaternion vector is obtained by 

multiplying the initial quaternion value by 𝑭𝒕, in 

Equation (25). 

AKKAYA et al.

Position Estimation of In-Pipe Robot using Artificial Neural Network and Sensor Fusion

Sakarya University Journal of Science 25(5), 1102-1120, 2021 1106



𝑥𝑡|𝑡−1 = 𝐹𝑡 𝑥𝑡−1|𝑡−1                                (25) 

The final step of the integration step is the 

calculation of the estimated covariance matrix 

(𝑷𝒕|𝒕−𝟏) according to Equation (11) in the fourth 

step of the EKF. 

2.2.2. Vector observation step 

The observation step is the step in which the 

quaternion vector is optimized using auxiliary 

sensors. As a result of the optimization, the 

minimized quaternion, 𝒛𝒕 observation vector was 

obtained. �̂�𝑮
𝑺 , �̂�𝑮  and �̂�𝑺  represents the sensor 

orientation, the predefined reference direction on 

the earth, the data read from the sensor, 

respectively. The objective function to be 

minimized is defined by (26) [32]. 

 

𝐦𝐢𝐧
�̂�𝑮

𝑺
𝒇( �̂�𝑮

𝑺 , �̂�𝑮 , �̂�𝑺 ) → 𝒇( �̂�𝑮
𝑺 , �̂�𝑮 , �̂�𝑺 )  

= �̂�∗
𝑮
𝑺 ⨂ �̂�𝑮 ⨂ �̂�𝑮

𝑺 − �̂�𝑺                       (26) 

Using the Gradient Descent method, the 

quaternion equation to be solved with 𝝁 step size 

and the Jacobian matrix of the function indicating 

the direction of the error are given in the (27) and 

(28), respectively. The 𝛁 symbol indicates that the 

objective function is solved by the Gradient 

Descent method [32].  

Figure 2 Rotating the IMU sensor around X-axis. 

𝑞𝑘+1𝐺
𝑆 = �̂�𝑘𝐺

𝑆 − 𝜇
𝛻𝑓( �̂�𝑘𝐺

𝑆 , �̂�𝐺 , �̂�𝑆 )

‖𝛻𝑓( �̂�𝑘𝐺
𝑆 , �̂�𝐺 , �̂�𝑆 )‖

               (27) 

𝛻𝑓( �̂�𝑘𝐺
𝑆 , �̂�𝐺 , �̂�𝑆 ) = 𝐽𝑇( �̂�𝑘𝐺

𝑆 , �̂�𝐺 )𝑓( �̂�𝑘𝐺
𝑆 , �̂�𝐺 , �̂�𝑆 ) 

 (28) 

 

The quaternion vector provides the coordinate 

transformation to be used in the calculations given 

in Equation (29). Given that the gravitational 

vector in the global coordinate system defines the 

Z-axis of the invariant gravity vector, the model 

refers to the angular change between the 

information coming from the accelerometer and 
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the gravity vector. In this case, the reference 

system defined as �̂�𝑮  in the objective function 

will be updated as �̂�𝑮 . The upper symbol defines 

the global coordinate system and �̂� defines the 

gravity in Equation (30). If the accelerometer is to 

be used only in the quaternion update, �̂�𝑺  in 

Equation (28), the objective function of the 

optimization system to be installed according to 

Equation (26) and the Jacobian matrix are given 

in Equations (32) and (33). The orientation 

quaternion was calculated only by the 

accelerometer and gyroscope data [32]. This set 

of equations defines the Z-axis of the reference 

global coordinate system. 

�̂�𝐺
𝑆 = [𝑞0 𝑞1 𝑞2 𝑞3]                        (29) 

�̂�𝐺  = [0 0 0 1]                              (30) 

�̂�𝑆 = [0 𝑎𝑥 𝑎𝑦 𝑎𝑧]                       
 (31)

𝑓𝑔( �̂�𝐺
𝑆 , �̂�𝑆 ) = [

2(𝑞1𝑞3 − 𝑞0𝑞2) − 𝑎𝑥

2(𝑞0𝑞1 + 𝑞2𝑞3) − 𝑎𝑦

2 (
1

2
− 𝑞1

2 − 𝑞2
2) − 𝑎𝑧

]      (32) 

𝐽𝑔( �̂�)𝐺
𝑆 = [

−2𝑞2 2𝑞3 −2𝑞0 2𝑞1

2𝑞1 2𝑞0 2𝑞3 2𝑞2

0 −4𝑞1 −4𝑞2 0
]      (33) 

The quaternion vector calculated by the 

accelerometer only corrects the angle between the 

gravity vector, thus preventing angular 

orientation information from being updated in all 

three axes. In addition to gravity, when the 

magnetic axes present in the horizontal and 

vertical directions that define the X and Y axes of 

the global coordinate system are used, three 

orthogonal axes will be formed. Thus, three-

dimensional angular orientation information was 

computed effectively. Equation (34) and (35) 

show that referenced magnetic field coordinate 

axes, �̂�𝑮  and magnetic field sensor data, �̂�𝑺 , 

respectively. 

�̂�𝐺  = [0 𝑏𝑥 0 𝑏𝑧]                                 (34) 

�̂�𝑆 = [0 𝑚𝑥 𝑚𝑦 𝑚𝑧]                        (35) 

Magnetic field sensors can produce erroneous 

results influenced by all the magnetic field 

disturbers in the external environment, such as 

magnets and electrical appliances [34].  These 

waves, which have a disturbing effect around the 

sensor, have been described as hard iron bias 

[35]. The sensor must be calibrated to minimize 

ambient noise and increase the effectiveness of 

the magnetic field sensor output. In this 

calibration process, the quaternion multiplication 

between the predicted quaternion value and the 

data read from the sensor was performed, and the 

magnetic field direction �̂�𝑮  was measured (36). 

In the next step, the calibration of the reference 

magnetic field �̂�𝑮  of the algorithm was 

performed, (37). Thus, it was ensured that the 

error is limited only by the predicted quaternion 

orientation and does not spread to the whole 

system [36].  

ℎ̂𝑡
𝐺 = [0 ℎ𝑥 ℎ𝑦 ℎ𝑧] = 

�̂�𝐺
𝑆

𝑒𝑠𝑡,𝑡−1  ⊗ 𝑚𝑆 𝑡  ⊗ �̂�𝑒𝑠𝑡,𝑡−1
∗

𝐺
𝑆                  (36) 

�̂�𝑡
𝐺 = [0 √ℎ𝑥

2 + ℎ𝑦
2 0 ℎ𝑧]               (37) 

The second cost function defines the X-Y axes of 

the global coordinate system, and the Jacobian 

matrix of this function is shown in Equations (38) 

and (39). 

 

𝑓𝑏( �̂�𝐺
𝑆 , �̂�𝐺 , �̂�𝑆 ) =                                       (38) 

 

[

2𝑏𝑥(0.5 − 𝑞2
2 − 𝑞3

2) + 2𝑏𝑧(𝑞1𝑞3 − 𝑞0𝑞2) − 𝑚𝑥

2𝑏𝑥(𝑞1𝑞2 − 𝑞0𝑞3) + 2𝑏𝑧(𝑞0𝑞1 + 𝑞2𝑞3)    − 𝑚𝑦

2𝑏𝑥(𝑞0𝑞2 + 𝑞1𝑞3) + 2𝑏𝑧(0.5 − 𝑞1
2 − 𝑞2

2) − 𝑚𝑧

]      

 

 

 

𝐽𝑏( �̂�, �̂�𝐺 ) =𝐺
𝑆  

[
−2𝑏𝑧𝑞2 2𝑏𝑧𝑞3

−2𝑏𝑥𝑞3 + 2𝑏𝑧𝑞1 2𝑏𝑥𝑞2 + 2𝑏𝑧𝑞0

2𝑏𝑥𝑞2 2𝑏𝑥𝑞3 − 4𝑏𝑧𝑞1

 

 
−4𝑏𝑥𝑞2 − 2𝑏𝑧𝑞0 −4𝑏𝑥𝑞3 + 2𝑏𝑧𝑞1

2𝑏𝑥𝑞1 + 2𝑏𝑧𝑞3 −2𝑏𝑥𝑞0 + 2𝑏𝑧𝑞2

2𝑏𝑥𝑞0 − 4𝑏𝑧𝑞2 2𝑏𝑥𝑞1

]           (39) 
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The angular change values are calculated 

according to gravity, or magnetic axes alone do 

not give the orientation information of the sensor. 

A single solution surface must be formed by 

combining the objective functions defined by 

equations (32) and (38). Equations (40) and (41) 

combines objective functions and Jacobian 

matrices. 

𝑓𝑔,𝑏( �̂�𝐺
𝑆 , �̂�𝑆 , �̂�𝐺 , �̂�𝑆 ) = [

𝑓𝑔( �̂�𝐺
𝑆 , �̂�𝑆 )

𝑓𝑏( �̂�𝐺
𝑆 , �̂�𝐺 , �̂�𝑆 )

]     (40) 

𝐽𝑔,𝑏( �̂�, �̂�𝐺 )𝐺
𝑆 = [

𝐽𝑔
𝑇( �̂�𝐺

𝑆 )

𝐽𝑏
𝑇( �̂�, �̂�𝐺

𝐺
𝑆 )

]                           (41) 

Once the equation systems to be optimized was 

defined, the sensor function to be used was 

selected in Equation (42). The quaternion value 

was optimized for all three axes in the next step, 

and the vector observation step is completed in 

Equation (43). The 𝝁 value is the step size, in 

Equation (44). The 𝒛𝒕 measurement to be used in 

the next step was calculated by the observation 

vector in Equation (45). 

𝐻 represents the observability matrix, and 𝑣𝑡 

represents observation noise. The 𝐻 matrix is the 

unit matrix, 𝐼4×4, because of containing the 𝑧𝑡 

quaternion information. 

𝛻𝑓 = {
𝐽𝑔
𝑇( �̂�𝑒𝑠𝑡,𝑡−1𝐺

𝑆 ). 𝑓𝑔( �̂�𝑒𝑠𝑡,𝑡−1𝐺
𝑆 , �̂�𝑡

𝑆 )

   𝐽𝑔,𝑏
𝑇 ( �̂�𝑒𝑠𝑡,𝑡−1, �̂�𝐺

𝐺
𝑆 ). 𝑓𝑔,𝑏( �̂�𝑒𝑠𝑡,𝑡−1𝐺

𝑆 , �̂�𝑡
𝑆 , �̂�𝐺 , �̂�𝑡

𝑆 )
 

          (42) 

  𝑞𝛻,𝑡 = �̂�𝑒𝑠𝑡,𝑡−1 − 𝜇𝑡
𝛻𝑓

‖𝛻𝑓‖𝐺
𝑆     𝐺

𝑆                        (43) 

 

Figure 3 Determining the stationary region of the accelerometer using the Butterworth filter IMU data for a square 

navigation scenario 

𝜇𝑡 = 𝛼‖ �̇�𝜔,𝑡𝐸
𝑆 ‖ ∆𝑡,   𝛼 > 1                          (44) 

𝑧𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡 =
𝑞𝛻,𝑡𝐺

𝑆

‖ 𝑞𝛻,𝑡𝐺
𝑆 ‖

                            (45) 

2.2.3. Kalman Filtering Step 

Once the integration and vector observation steps 

are completed, the Kalman Filtering step starts. In 

this step, the Kalman gain was calculated using 

the estimated covariance matrix calculated in the 

integration step, the H observability matrix, and 

the R covariance matrix, Equation (46). The state 

correction and covariance matrix correction were 

performed with the calculated Kalman gain in 

Equations (47) and (48).  

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)
−1

                 (46) 

�̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝐾𝑡(𝑧𝑡 − 𝐻𝑡�̂�𝑡|𝑡−1),   

�̂�𝐺
𝑆

𝑒𝑠𝑡,𝑡 = �̂�𝑡|𝑡          (47) 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−14𝑎𝑐                           (48) 

The next step is the integration step. Estimated 

covariance matrix and estimated status update 

were performed. In the second stage, the 𝒛𝒕 

measurement vector was calculated using the 

Gradient Descent algorithm, and the Kalman filter 

was applied. The sensor fusion process ends after 

the vector observation step. Quaternion data were 

computed using an accelerometer, gyroscope and 

magnetic field sensors. The quaternion obtained 
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in the next step was used to compute the position. 

In order to be able to calculate the position 

correctly, it is necessary to eliminate the error in 

the accelerometer after calculating the quaternion 

vector by the sensor fusion process. First, using 

the quaternion values, the accelerometer values in 

the sensor coordinate system must be converted to 

the earth coordinate system [32], Equation (49). 

�̂�𝐺 = ( �̂�𝐺
𝑆  ⨂ [ 0 𝑎𝑥 𝑎𝑦 𝑎𝑧]) ⨂ �̂�∗          (49) 

After this process, the Butterworth filter was 

applied to the accelerometer data to determine the 

sensor’s fixed points and minimize the position 

offset. The Butterworth filter was preferred 

because it has a more linear frequency response 

than Chebyshev and the elliptical filters. Figure 5 

shows the accelerometer data applied to the 

Butterworth filter. In the filter indicated by black, 

the regions with 0 value show the moving parts, 

and the regions with value 1 display the stationary 

areas. After determining the stationary regions, 

the velocity was calculated by integrating the 

accelerometer value in non-stationary regions.  

 

Figure 4 Sensor velocity graph resulting from the integration of accelerometer after a minute. 

 

The calculated speed value was integrated into 

non-stationary regions, and the position 

information was calculated. The computed 

velocity is given in Figure 6. 

2.2.4. Enhanced Heuristic Drift Elimination 

(EHDE) 

In the fourth and last stage, the first integral of the 

acceleration gives the sensor speed vector, and the 

second integral provides the position with 

information. For the square navigation data, the 

position graph obtained at the end of the four 

stages is shown in Figure 7a. Although the start 

and endpoint of the navigation are the same, the 

prediction error is high. Appear of this high error 

is due to the cumulative growth of the error at 

each step. EHDE [37] method was used to reduce 

the cumulative error. This method filters the 

deviations in the sensor orientation. For this, a 

curve model is inserted into the last five 

measurement data and calculates the dominant 

sensor orientation. It then minimizes the error by 

subtracting the orientation difference between the 

model and the measurement from the current 

Quaternion vector. When we use EHDE in square 

navigation data, it is seen that the prediction error 

between the start and end points has dropped to 

0.3m (see Figure 7b). This result is sufficient to 

continue the design.  
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Figure 5 Position estimation results for square navigation data (a) IMU+EKF, (b) IMU + EKF + EHD 

 

Figure 6 Experimental setup for simultaneous recording of Kuka and IMU data. 

2.3. Kuka Experiments 

In order to obtain the training set using Kuka 

Robot and IMU data, the simultaneous recording 

apparatus shown in Figure 8 was established. An 

artificial intelligence system was built to map the 

IMU sensor data using the precise position 

information obtained from the Kuka robot.  

The components used in the recording device and 

numbered with yellow labels are listed below. 

1. Software that records the XYZ position 

information of the robot end (JAVA) 

2. Software that records the first IMU sensor 

data (C++) 

3. Software that records the second IMU 

sensor data (C++) 

4. Two IMU sensors placed at the end of the 

robot 

5. Kuka robot controller 

6. A computer that records the IMU and 

Kuka data synchronously. 

Before the experiment, the Kuka robot 

movements were programmed by the operator 

using the control software interface and placed in 

the Kuka robot memory. In addition, both IMU 

sensors are fixed to the end of the Kuka. 

Necessary connections have been made for the 

flow of information from Kuka and IMUs to the 

computer. After the essential C++ and Java 

compilers were installed on the Ubuntu operating 

system, simultaneous data was recorded from the 

IMU sensors and the Kuka robot. The movements 

placed in the memory of the Kuka were performed 

at three different speeds, and during the arm 
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movements, Kuka/IMU data were recorded 

simultaneously (Figure 9a). Input and output data 

were trained using ANN, and the matching 

accuracy reached R = 0.902 (see Figure 9b). 

Although this value seems acceptable, the 

accumulation of the error value of 0.098 in each 

measurement step results in unacceptable position 

estimation. For this reason, different methods 

were researched to make position estimation more 

accurate, and thus artificial location estimation 

method was applied. 

 

 

Figure 7 (a)Training data (X: input, Y: output); 

(b)Training results of Kuka data. 

2.4. Proposed Artificial Position Estimation 

Method 

In the proposed artificial position estimation 

method, two different artificial neural networks 

were created which mimic the classical position 

estimation. The first artificial neural network 

input and output consists of IMU sensor data and 

quaternion vectors, respectively.  

The input of the second ANN is the quaternion 

vector, and the output is position information 

corrected by the EHDE algorithm. Thus, it is 

unnecessary to know the noise characteristics of 

the gyroscope, accelerometer and magnetometer 

sensors, the mathematical background required 

for EKF and EHDE, and Quaternion 

transformations for position estimation. The ANN 

directly converts the IMU sensor information to 

position information. 

The first ANN is in the NARX architecture and 

has 4 cells in the input layer, 18 cells in the 

intermediate layer, and 4 cells in the output layer. 

System inputs and outputs are 9DOF IMU and 4D 

Quaternion data, respectively. The training, 

validation and test accuracy obtained from the 

training process is approximately 99.99% (see 

Figure 10). 

Figure 11 shows classical and artificial methods 

that were used to estimate quaternion from the 

square navigation data. The 4D-Quaternion data 

are shown separately.  

 

 

Figure 8 Training results of first ANN 

It is seen that the artificial learning method 

produces almost the same results as the classical 

system has high accuracy. 

Using the second ANN, the stationary zone 

detection and the noise elimination process 

performed by the EHDE method were imitated. 

Thus, IMU data was mapped to direct position 

information with two different ANNs. The fact 

that the location prediction process can be 

performed by an ANN method means that the 

network values can be transferred to an embedded 

system, and the position estimation can be run 

online. In this way, the online precision position 

estimation can be done in robotic studies 
(especially in the building) without sufficient 

speed and calculation power. Figure 12 shows the 

classical and recommended method results of 

eight different navigation positions. Since the 

results of two consecutive ANNs are the same as 

99% of the classical method, the results are almost 

overlapping, as shown. 

3. DETECTION OF LEAKAGE SOUND 

FREQUENCY BAND 

The material type of the water pipe, the size of the 

crack and the severity of the water pressure causes 
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the sound from the pipe crack to be in different 

frequency bands. This experiment aims to 

examine the effect of crack hole diameter and 

pressure intensity on the frequency band and 

amplitude. 

3.1. Preparing the Experiment Mechanism 

Below are the different types of materials were 

used for the water pipe, the different sizes that the 

crack may be and the different water pressure 

intensity values formed in the pipe.  

Material Types: PCCP, RCCP, AC, PVC, 

HDPE, GRP, Steel, Cast Iron 

Hole sizes: 2mm, 4mm, 6mm, 8mm 

Water pressure intensity: 1bar, 2bar, 3bar, 4bar, 

5bar

 

Figure 9 Training results of first ANN for x = [q0; q1; q2; q3] quaternion vector 

As shown in Figure 13, a particular acoustic 

sound calibration device was prepared to record 

sound from crack for different hole sizes and 

pressure intensity. This apparatus comprises a 

20cm diameter and 3m long tube with both ends 

closed. Water was pumped from one end of the 

pipe, and the water pressure level can be adjusted 

between 1 and 5 bar. The water pressure intensity 

can be seen with the pressure gauge at the pipe 

inlet. In order to measure the acoustic sound 

signal, a wired hydrophone was placed inwardly 

from the other end and positioned on the opening 

holes to record the voices. Measured acoustic data 

was amplified by the preamplifier, transferred to 

an oscilloscope for display and recording. 

Two different types of pipes (PVC and Iron 

Casting) were used to apply the system. Images of 

both applications are shown in Figure 14. In the 

experiment where the PVC material was used, the 

end cap cover could not withstand the pressure 

and jumped 15 meters away from the pipe. 

Experiments to prevent this situation did not give 

any results, and the experiments with PVC pipe 

were terminated. The experiment was carried out 

successfully by using the iron casting material 

type (Figure 14b). The sound data in the pipe were 

recorded for different hole sizes and pressure 

intensities using the RESON hydrophone. 

Tektronix MSO-3014 digital oscilloscope was 

used to record the hydrophone data. In order to 

measure the water pressure in the metal pipe, a 
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manometer, which can measure up to 10 bar, was 

installed. Figure 15 shows the working 

environment in which the prepared sound system 

was tested. On the left, there is a sound recording 

device with an oscilloscope and preamplifiers. 

The centre image shows the pool and the Iron 

Casting sound system used for water extraction 

and evacuation. When the metal pipe’s water 

pressure increased to 4.8 bar, the water was 

discharged from the pipe via the outlet valve. 

 
Figure 10 Estimation of navigation scenario locations by classical (red) and artificial learning method (blue). 
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Figure 11 Sound calibration hardware. 

 

Figure 12 Sound mechanisms (a) PVC pipe assembly (b) Iron Cast pipe assembly (c) Manometer. 

 

Figure 13 Experimental working environment (a) Sound recording device (b) Pool and perforated pipe (c) water 

jetting at 4.8bar pressure. 
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3.2. Measurements with Sound System 

In experimental studies, the preamplifier’s gain was 

set at 26dB, the value of the high-pass filter was set 

to 0.1Hz, and then measurements were performed. 

Each measurement was recorded numerically via the 

oscilloscope. The spectra in the frequency range of 

0.1Hz-100kHz were visualized to see the frequency 

range of the sound characteristic from the crack. In 

order to understand the noise characteristic of the 

system, after the holes were closed, a pressure of 0-

5bar was created in the pipe and measurements were 

completed (see Figure 16). Figure 17 illustrates how 

hole sizes and pressure intensity affect frequency 

and amplitude.  

 

Figure 14 The noise characteristics of the system. 

The following results were found after the graphs 

were evaluated: 

• The cracked audio signal frequency was 

found in the 0.1Hz-40kHz band range. 

• The cracked sound signal amplitude was 

found to be a maximum of 0.15V. 

• The noise level of the system was found to 

be 0.0002V. 

• It was seen that the oscillations were not 

reduced regularly as a result of the increase 

in pressure from 1Bar to 5Bar. This finding 

clearly shows that the system does not have 

a linear characteristic. 

• It was seen that while the hole diameter 

increases, the acoustic signals are directed 

towards the low frequencies. 

• It is foreseen that the same parameters can be 

used in the system to be designed because of 

the acceptable results obtained from the 

26dB gain preamplifier and 0.1Hz high pass 

filter used during the measurements. 

 

Figure 15 Effect of pressure magnitude on different hole sizes:(a)2mm; (b)4mm; (c)6mm; (d)8mm. 
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Figure 16 External sphere prototypes;(a) IMU only recording (b) IMU+single hydrophone recording, not circular;(c) 

IMU+three hydrophone recording, circular 

 

4. EXTERNAL SPHERE HOUSING 

STUDIES 

In this study, the external sphere prototyping to 

maintain the electronic recording device 

(minicomputer, IMU, hydrophone, battery) was 

used and enabled independent data recording. 

Three different external sphere prototypes were 

produced. The first prototype was used to register 

IMU sensor data in walking scenarios (see Figure 

18a). This prototype was only used on the ground 

because of having a water-permeable structure. A 

second external sphere design was needed to 

make the work on a basis similar to the water-

filled pipes. Figure 18b shows the outer sphere 

prototype using metal material. However, the 

prototype’s weight and the lack of a round 

geometry prevented the sphere from moving at 

the desired speed in the pipeline. In addition, the 

use of a single hydrophone for voice recording 

prevents the recording of sound equally in all 

directions. A third external sphere design was 

needed to overcome these problems (see Figure 

18c). Because the last outer sphere is not metal, it 

is lighter and circular. There are three different 

hydrophone sensor locations on the sphere, 

allowing equal recording of the sound frequencies 

in all directions. In addition, this sphere has a 

waterproof structure. 

5. CONCLUSION 

In conclusion, a leak detection robot ball was 

designed to prevent water loss in distribution 

networks. Precise location estimation, sound 

frequency range discovery and external sphere 

studies of the ball was performed. In addition to 

classical studies, the artificial learning 

architecture was presented in the precise position 

estimation studies. The methods were compared 

using data from eight different motion scenarios. 

According to this, the proposed method performs 

online and have a 99% similar position estimation 

with the classical approach. Apart from classical 

pattern recognition and curve-fitting 

architectures, time-based NN architecture was 

applied. In the sound wave calibration step, two 

experimental setups, plastic and metal, were 

prepared. It was examined how different hole 

sizes (2mm-8mm) and different pressure intensity 

(0bar-5bar) change the sound of the crack using 

plastic and metal setups. Finally, a waterproof, 

external sphere design that uses three different 

hydrophones was produced. 
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