
1. INTRODUCTION
Many engineers and researchers have done a lot of work to 
increase the response problem in the fins and heat dissipa-
tion from a hot surface using fins in industrial applications. 
One of the methods used to raise the amount of heat trans-
fer with the developing technology is the fins used to expand 
the heat transfer surfaces. Spiral fins are widely used in in-
dustrial applications and are used to ensure optimum tem-
perature distribution in turbines, generators, power plants, 
and electronic devices [1].

Chu et al. [1–3] analyzed the impermanent responses of 
both external flat and annular fins as well as unidimen-
sional circular fin and compound flat fins using the Fou-
rier sequences and overturn method. Using the natural 
convection correlations available for plates, the efficien-
cy of circular fins of distinct profiles exposed to local heat 
transmission constant as a function of local temperature 
was investigated by Mokheimer et al. [4]. The impact of 
conduction heat transmission in different shapes of annu-
lar fins [5], current conduction effect in multidimensional 
sizes [6], fins exposed to temperature-addicted heat flux [7], 
and dispersed transportation effect along the curly plaque 
consisting of circular slices [8] have been studied by the re-
searchers. Also, problems related to the optimization of fins 
and spines have been investigated [9,10]. Yu and Chen [11] 
recommended the Taylor transform and limited difference 
approach to examine the non-linear temporary heat trans-

mission problematic of the rectangular profile circular fin, 
taking into account the step temperature change occurring 
in the radiation wing tip and infinite base by convection. By 
choosing the heat transmission constant temperature as the 
power function type and using the power values represent-
ing changed heat transmission machines for example inde-
pendent convection, completely industrialized boiling and 
radiation, the longitudinal and annular fins and spines have 
been presented by Laor and Kalman [12]. Zubair et al. [13] 
analyzed a one-dimensional fin with a variant shape that can 
be abridged to a rectangular shape. Bouaziz et al. [14] exam-
ined the temperature-dependent efficacy of longitudinal fins 
by thermo-physical features. The symbolic mathematical 
equation for the tip temperature and fin efficacy of circular 
blades, depending on the thermo-geometric blade param-
eters and radius ratio, was obtained by Campo and Stuffle 
[15]. Wang et al. [16] analytically presented the temporary 
reply of a spiral fin whose bottom was subjected to variant 
heat flow.

Suppose the solution of mathematical, physics, chemistry 
and engineering problems defined by differential equations 
is resolved in the Laplace space. In that case, it may be hard 
or even unbearable to gain an analytical translation into the 
time domain. Numerical methods for numerical overturn 
of the inverse Laplace transform to generate resolutions in 
the time area have been used in science and engineering 
since the 1930s. The Gaver-Stehfest method is one of these 
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numerical methods that is used efficiently and successful-
ly. Since the introduction of the method, the Gaver-Stehfest 
procedure has been successfully implemented in many fields 
such as geophysics [17], probability [18,19], actuarial math-
ematics [20], and scientific finance [21], chemical [22], and 
economy [23]. 

In this study, the solutions of the temporary reply of the end 
insulated spiral fin are analyzed for unit step temperature 
change subject to change by the base in fluid temperature 
with easy-to-calculate Laplace transformations for short 
time intervals. After the general equations that make up the 
problem are obtained in the Laplace space, the results of the 
temperature change obtained by transporting them to the 
time space by the Gaver-Stehfest method are presented in 
graphs. It can be said that the results given in Ref.[16] and 
the results obtained here match exactly. 

2. TRANSIENT RESPONSE MATHEMATICAL MODEL 
OF A SPIRAL FIN  
Fig. 1 demonstrated a spiral fin's schematic diagram with 
livery thickness z=2δ, internal radius ri, outside radius ro, 
field P, and thermal conductivity k. The end of the fin, r= ro is 
supposed well isolated. Besides, a one-dimensional analysis 
assumption is made. At first, the fin and the surrounding 
fluid temperature (T∞) are in thermal equilibrium. The bot-
tom temperature is instantly increased to Tf and related to 
heat flux *

0q , since then, the spiral fin dissolute heat to the 
perimeter via convection mechanism. The properties h, hf, 
and c, ρ, k of the fin materials are all accepted as constant. In 
additional boundary condition, r=ri, by ignoring the thermal 
resistor and capacity of the physical in internal wall pipe, the 
convective boundary condition is assumed.

Figure 1. Schematic view of the spiral fin [16]

Using the conservation of energy equation, the differential 
equation of the spiral fin temperature can be written as[16]:
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where, /k cα ρ=  is the thermal diffusivity and /i f i fB h r k=  
is the Biot number.

After the explanation of non-dimensional parameters,
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The non-dimensional governing equation becomes as fol-
lows:
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The environmental temperature is assumed that at a fixed 
temperature, and it was also assumed that there was no 
heat source or heat sinks. The non-dimensional initial and 
boundaries can be explained as follows:
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Eq.2 is subjected to Laplace transform, and by applying the 
initial condition given in Eq.3, the final state of the equation 
is as follows:
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In this equation, s symbolized the transformed variant. Inte-
grals in the exponential constant can be neglected, and then 
the Keller and Keller’s solution of Eq.6 becomes as follows: 
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In this equation, 2D  is a fixed to be identified by the bound-
ary condition (4). The boundary condition (4) can be ex-
pressed as follows by using Laplace transformation:
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The constant 2D  can be expressed as follows by substituting 
Eq.7 into Eq.8,:
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Thus, Eq.7 becomes
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(10)

Defining the dimensionless heat flux at the fin base as:

[ ]*
0 1 1 / 4  b fq q r k r T Tδπ ∞= − 	  (11) 

After using the dimensionless constraints, the heat flux can 
be written as:

( )* 2
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3. THE GAVER-STEHFEST INVERSE LAPLACE 
METHOD 
Researchers have successfully applied the Gaver-Stehfest 
method(GSM) to many different fields and different prob-
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lems and based on a simple algorism for numerical overturn 
of the Laplace transform [24–26].

With this method, the Laplace space is transformed into the 
time domain as follows [27];
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where Vk is expressed as follows;
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Here the parameter M is expressed as the number of Ste-
hfest. The precision of the calculation depends on the M 
value, so this value must be an even integer because the 
inversion is based upon the sum of M weighted values. In 
theory, choosing a large value for M would suggest a more 
correct resolution, but if M is too big, results may deterio-
rate because of rounding mistakes. Therefore, it is important 
to choose an appropriate M value to reach the best solution 
[28]. Most researchers suggest a changed worth of the M 
constraint to get the best solution. Cheng and Sidauruk [29] 
suggested that the M value should be between 6 and 20. In 
this study, the M value was chosen as 16.

4. RESULTS 
Dimensionless distribution of temperature of the spiral fin 
found from Eq. 7 is given in      Fig. 2-5 for distinct worthies 
of Bi, τ, R and Pi. It can be seen from these figures, in all cas-
es, the temperature distribution,  φ , rises with the increasing 
time. Additionally, while the effect of the increase in time is 
more effective at the beginning, it gradually decreases after-
ward. This means the throughput heat flux in base of spiral 
fin will be reduced and the internal temperature of spiral fin 
will be increased with the time elapsed. Also, the increase in 
pitch values Pi increased the temperature distribution at the 
similar values of τ, R, Bi, and N excepting for the high values 
of N and low values of τ.

When we examine the Fig. 2 and Fig. 3, at the larger value of 
Bi, the maximum temperature distribution obtained at the 
similar values of N, Pi, τ and R. Increasing the Bi number 
means that the heat transmission from the fin base will in-
crease, and in this case, it is one of the important parameters 
affecting the temperature distribution. In order to compare 
the effect of the N value, it will be useful to analyze Fig. 3 and 
Fig. 4. These figures demonstrated that the higher values of 
N, means the lesser temperature distribution at the similar 
values of τ, Pi, R and Bi. The effect of the R values is shown 
from Fig. 3 and Fig. 5. It can be said that similar trends were 
obtained as N value, while the R rises, the temperature dis-
tribution declines at the similar value of τ, Bi, Pi and N.

As shown in Fig. 2-5, in all cases, it has been determined 
that the numerical calculation results were in well arrange-
ment with the analytical consequences obtained from the 

literature [16].
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Figure 2. Distributions of temperature for varying τ with R=2, N=1 and 
Bi=1

Figure 3. Distributions of temperature for varying τ with R=2, N=1 and 
Bi=10

Figure 4. Distributions of temperature for varying τ with R=2, N=5 and 
Bi=10

The heat flux at the fin base, *
0q , with distinct constraints of 

τ, Bi, Pi and N are given in Fig. 6 and Fig.7. As shown from 
these figures, increasing the N number increased the heat 
flux values in all cases. Also, increasing the Bi number in-
creased the heat flux values in all cases. After a certain time 
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(τ≈1), the effect of time becomes almost negligible. Addi-
tionally, increasing the Pi, increased the heat flux values for 
all Bi and N numbers.

Figure 5. Distributions of temperature for varying τ with R=3, N=1 and 
Bi=10

The variation of temperature distribution with time is given 
in Fig. 8 and Fig. 9 for different Bi, and N numbers. As can 
be seen, there are very similar trends in both graphs and the 
effect of Pi to the temperature distribution is very small in 

these conditions. Increasing the Bi number increased the 
heat transfer and for this reason, it is seen that the tempera-
ture progresses faster with at higher Bi numbers. Also, the 
higher N number means the higher heat transfer rate and 
temperature distribution. However, with the increase in 
the number of Bi, the effect of the N number gradually de-
creased, and the curves got closer to each other.

5. CONCLUSIONS 
Numerical model of the transient response of the end insu-
lated spiral fin for temperature and heat flux distributions 
are obtained and solved by GSM. When the efficiency and 
adequacy of the current method are compared with the an-
alytical results, it is seen that they overlap [16] one to one. 
The solution technique and procedure are simple, efficient, 
and well structured and provide low-cost accuracy. When 
the numerical results in this study are evaluated, the results 
are briefly summarized below:

•	The technique applied is more effective than the 
conservative techniques.

•	The results show that the temperature change is af-
fected depending on the N, Pi, R variables.

•	The larger the N value, the greater the heat conver-
sion creates the spiral blade and the greater the tem-

Figure 6. Distributions of heat flux for varying N with R=2, and Pi =0 
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Figure 7. Distributions of heat flux for varying N with R=2, and Pi =0.5 

Figure 8. Distributions of temperature for varying N with R=2, and Pi =0
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perature distribution.

•	For the heat flux distribution *
0q  in the spiral fin 

base, the variable N and Pi are the important vari-
ables, and the variable Pi affects *

0q  much more as 
the N variable increases.

•	The results obtained in this study can be used as a 
basis in the application of spiral fins to the industry.
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