Lim-3 Durumundaki 4. Mertebe Operatörlerin Dissipatif Genişlemeleri

Hüseyin TUNA ${ }^{1, *}$
${ }^{1}$ Mehmet Akif Ersoy Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Burdur

Özet

Bu çalışmada, Lim-3 durumundaki skaler 4. mertebeden difereasiyel operatörlerinin maksimal dissipatif, kendine eş ve diğer genişlemeleri verilmiştir.

Anahtar Kelimeler: Dissipatif genişlemeler, kendine eş genişlemeler, sınır değer uzayı, sınır koşulu

Dissipative Extensions of Fourth Order Differential Operators in the Lim -3 Case ${ }^{2}$

Abstract

In this article, we give a description of all maximal dissipative, self adjoint and other extensions of scalar fourth order differential operators in the lim 3 case.

Keywords: Dissipative extensions, self adjoint extensions, a boundary value space, boundary condition

[^0]
1. Introduction

The theory of extensions of symmetric operators developed orginally by J. Von Neumann [1]. The problem on the description of all self adjoint extensions of a symmetric operator in terms of abstract boundary conditions was put forward for the first time in Calkin [2]. Later, Rofe- Beketov [3] described self adjoint extensions of a symmetric operator in terms of abstract boundary conditions with aid of linear relations. Bruk [4] and Kochubei [5] are introduced the notion of a space of boundary values. They described all maximal dissipative, acretive, self adjoint extensions of symmetric operators. For a more comprehensive discussion of extension theory of symmetric operators, the reader is referred to [6].

A description of self adjoint extensions of a second order operator on an infinite interval was obtained by Fulton [7] and Krein [8]. For a scalar fourth order equation and two term differential expressions of arbitrary even order, the same question was investigated by Khol'kin [9], Mirzoev [10]. Gorbachuk [11] obtained a description of self adjoint extensions of Sturm Liouville operators with an operator potential in the absolutely indeterminate case. In the case when the deficiency indices take indeterminate values, a description of self adjoint extensions of differential operators was given in the works of Allahverdiev [12], Guseinov and Pashaev [13], Maksudov and Allahverdiev [14], Malamud and Mogilevsky [15], Mogilevsky [16].

In this paper, a space of boundary value is constructed for scalar fourth order differential operators in the Lim-3 case. We describe all maximal dissipative, acretive, self adjoint and other extensions in terms of boundary conditions.

2. Extensions of Fourth Order Differential Operators in the Lim-3 Case

Let us consider the differential expression

$$
\mathrm{l}(\mathrm{y})=\mathrm{y}^{(4)}+\mathrm{q}(\mathrm{x}) \mathrm{y}, 0 \leq \mathrm{x}<+\infty,(2.1)
$$

where $\mathrm{q}(\mathrm{x})$ is a real continuous function in $[0, \infty)$.
We denote by L_{0} the closure of the minimal operator (see [17]) generated by (2.1) and by D_{0} its domain. Further, we denote by the set of all functions $y(x)$ from $L_{2}(0, \infty)$ whose first three derivatives are locally absolutely continuous in $[0, \infty)$ and $\mathrm{l}(\mathrm{y}) \in \mathrm{L}_{2}(0, \infty)$; D is the domain of the maximal operator L , and $\mathrm{L}=\boldsymbol{L}_{\boldsymbol{o}}^{*}$ (see [17]).

Assume that $\mathrm{q}(\mathrm{x})$ be such that the operator L_{0} has defect index $(3,3)$. Let $\mathrm{v}_{1}(\mathrm{x}), \mathrm{v}_{2}(\mathrm{x}), \mathrm{v}_{3}(\mathrm{x})$ denote the solutions of $1(y)=0$ satisfying the initial conditions

$$
\begin{aligned}
& \mathrm{v}_{1}(0)=1, \mathrm{v}_{1}{ }^{\prime}(0)=0, \mathrm{v}_{1}{ }^{\prime \prime}(0)=0, \mathrm{v}_{1}{ }^{\prime \prime}(0)=0, \\
& \mathrm{v}_{2}(0)=0, \mathrm{v}_{2}{ }^{\prime}(0)=1, \mathrm{v}_{2}{ }^{\prime \prime}(0)=0, \mathrm{v}_{2}{ }^{\prime \prime \prime}(0)=0, \\
& \mathrm{v}_{3}(0)=0, \mathrm{v}_{3}{ }^{\prime}(0)=0, \mathrm{v}_{3}{ }^{\prime \prime}(0)=1, \mathrm{v}_{3}{ }^{\prime \prime}(0)=0,
\end{aligned}
$$

$\mathrm{v}_{1}(\mathrm{x}), \mathrm{v}_{2}(\mathrm{x}), \mathrm{v}_{3}(\mathrm{x})$ are linearly independent and their Wronskian equals one. Since L_{0} has defect index $(3,3), v_{1}(x), v_{2}(x), v_{3}(x) \in L_{2}(0, \infty)$.

We denote by Γ_{1}, Γ_{2} the linear maps from D to C^{3} defined by the formula

$$
\boldsymbol{\Gamma}_{\mathbf{1}} \boldsymbol{f}=\left(\begin{array}{c}
\boldsymbol{f}(\mathbf{0}) \\
\boldsymbol{f}^{\prime}(\mathbf{0}) \\
{\left[\boldsymbol{f}, \boldsymbol{v}_{3}\right]_{\infty}}
\end{array}\right), \boldsymbol{\Gamma}_{\mathbf{2}} \boldsymbol{f}=\left(\begin{array}{c}
\boldsymbol{f}^{\prime \prime \prime}(\mathbf{0}) \\
\boldsymbol{f}^{\prime \prime}(\mathbf{0}) \\
{\left[\boldsymbol{f}, \boldsymbol{v}_{2}\right]_{\infty}}
\end{array}\right),(2.2)
$$

where
$[\mathbf{y}, \mathbf{z}]_{x}=\left[y^{\prime \prime \prime}(x) z(x)-y(x) z^{\prime \prime \prime}(x)\right]-\left[y^{\prime \prime}(x) z^{\prime}(x)-y^{\prime}(x) z^{\prime \prime}(x)\right](0 \leq x<\infty)$.
Lemma 1. For arbitrary $y, z \in D$

$$
(\boldsymbol{L} \boldsymbol{y}, \boldsymbol{z})_{\mathbf{L}^{2}}-(\boldsymbol{y}, \boldsymbol{L z})_{\mathbf{L}^{2}}=\left(\boldsymbol{\Gamma}_{1} \boldsymbol{y}, \boldsymbol{\Gamma}_{2} \boldsymbol{z}\right)_{\mathbf{C}^{3}}-\left(\boldsymbol{\Gamma}_{2} \boldsymbol{y}, \boldsymbol{\Gamma}_{1} \mathbf{z}\right)_{\mathbf{C}^{3}} .
$$

Proof. For every $y, z \in D$ we have Green's formula

$$
(L y, z)_{\mathbf{L}^{2}}-(y, L z)_{L^{2}}=[y, \bar{z}]_{\infty}-[y, \bar{z}]_{0}
$$

Then

$$
\left(\boldsymbol{\Gamma}_{1} \boldsymbol{y}, \boldsymbol{\Gamma}_{2} \boldsymbol{z}\right)_{\mathbf{C}^{3}}-\left(\boldsymbol{\Gamma}_{2} \boldsymbol{y}, \boldsymbol{\Gamma}_{1} \mathbf{z}\right)_{\mathbf{C}^{3}}=\mathrm{y}(0) \mathrm{z}^{\prime \prime \prime}(0)-\mathrm{z}(0) \mathrm{y}^{\prime \prime \prime}(0) \quad+\mathrm{y}^{\prime \prime}(0) \mathrm{z}^{\prime}(0)-\mathrm{z}^{\prime \prime}(0) \mathrm{y}^{\prime}(0) \quad+\left[\boldsymbol{y}, \boldsymbol{v}_{2}\right]_{\infty}\left[\overline{\mathbf{z}}, \boldsymbol{v}_{3}\right]_{\infty} \quad-\left[\overline{\boldsymbol{z}}, \boldsymbol{v}_{2}\right]_{\infty}
$$ $\left[\boldsymbol{y}, \boldsymbol{v}_{3}\right]_{\infty}$.

We know that every $y, z \in D$

$$
\left[\boldsymbol{y}, \boldsymbol{v}_{2}\right]_{\infty}\left[\overline{\mathbf{z}}, \boldsymbol{v}_{3}\right]_{\infty}-\left[\overline{\mathbf{z}}, \boldsymbol{v}_{2}\right]_{\infty}\left[\mathbf{y}, \mathbf{v}_{3}\right]_{\infty}=[\boldsymbol{y}, \overline{\mathbf{z}}]_{\infty}(\text { see }[9]) .
$$

Hence

$$
\left(\boldsymbol{\Gamma}_{1} \boldsymbol{y}, \Gamma_{2} \mathbf{z}\right)_{\mathbf{C}^{3}}-\left(\boldsymbol{\Gamma}_{2} \boldsymbol{y}, \boldsymbol{\Gamma}_{1} \mathbf{z}\right)_{\mathbf{C}^{3}}=[\boldsymbol{y}, \overline{\mathbf{z}}]_{\infty}-[\boldsymbol{y}, \overline{\mathbf{z}}]_{\mathbf{0}} .
$$

Then we have

$$
(\boldsymbol{L} \boldsymbol{y}, \boldsymbol{z})_{\mathbf{L}^{2}}-(\boldsymbol{y}, \boldsymbol{L z})_{\mathbf{L}^{2}}=\left(\boldsymbol{\Gamma}_{1} \boldsymbol{y}, \boldsymbol{\Gamma}_{2} \boldsymbol{z}\right)_{\mathbf{C}^{3}}-\left(\Gamma_{2} \boldsymbol{y}, \boldsymbol{\Gamma}_{1} \boldsymbol{z}\right)_{\mathbf{C}^{3}} .
$$

Lemma 2. For any complex numbers $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{0}, \beta_{1}$, there is a function $y \in D$ satisfying

$$
\begin{gathered}
y(0)=\alpha_{0}, y^{\prime}(0)=\alpha_{1}, y^{\prime \prime}(0)=\alpha_{2}, y^{\prime \prime \prime}(0)=\alpha_{3},(2.3) \\
{\left[\boldsymbol{y}, \boldsymbol{v}_{2}\right]_{\infty}=\beta_{0},\left[\boldsymbol{y}, \boldsymbol{v}_{3}\right]_{\infty}=\beta_{1} .}
\end{gathered}
$$

Proof. Let f be an arbitrary element of $\mathrm{L}_{2}(0, \infty)$ satisfying

$$
\left(\boldsymbol{f}, \boldsymbol{v}_{2}\right)_{\mathbf{L}^{2}}=\beta_{0}+\alpha_{2},\left(\boldsymbol{f}, \boldsymbol{v}_{3}\right)_{\mathrm{L}^{2}}=\beta_{1}-\alpha_{1} . \text { (2.4) }
$$

There is such an f, even among the linear combinations of v_{1}, v_{2}, and v_{3}. If we set $f=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$ then conditions (2.4) are a system of equations in the constants $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$ whose determinant is the Gram determinant of the linearly independent functions $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}$ and is therefore nonzero. Let $\mathrm{y}(\mathrm{x})$ denote the soulution of $\mathrm{l}(\mathrm{y})=\mathrm{f}$ satisfying the initial conditions $\mathrm{y}(0)=\alpha_{0}, \mathrm{y}^{\prime}(0)=\alpha_{1}, \mathrm{y}^{\prime \prime}(0)=\alpha_{2}, y^{\prime \prime \prime}(0)=\alpha_{3}$. We claim that $\mathrm{y}(\mathrm{x})$ is the desired element. Applying Green' formula to $\mathrm{y}(\mathrm{x})$ and $\boldsymbol{v}_{\boldsymbol{j}}$ we obtain

$$
\left(f, v_{j}\right)_{\mathrm{L}^{2}}=\left(l(y), v_{j}\right)_{\mathrm{L}^{2}}=\left[y, v_{j}\right]_{\infty}-\left[y, v_{j}\right]_{0}, j=2,3 .
$$

But $1\left(\boldsymbol{v}_{\boldsymbol{j}}\right)=0(\mathrm{j}=2,3)$. Since $\mathrm{y}(0)=\alpha_{0}, \mathrm{y}^{\prime}(0)=\alpha_{1}, \mathrm{y}^{\prime \prime}(0)=\alpha_{2}, \mathrm{y}^{\prime \prime \prime}(0)=\alpha_{3}$, we have

$$
\left[\boldsymbol{y}, \boldsymbol{v}_{j}\right]_{0}=\left\{\begin{array}{c}
-\alpha_{2}, \boldsymbol{j}=2 \text { ise } \\
\alpha_{1}, \boldsymbol{j}=3 \text { ise }
\end{array}\right.
$$

Therefore,

$$
\begin{aligned}
& \left(\boldsymbol{f}, \boldsymbol{v}_{2}\right)_{\mathbf{L}^{2}}=\left[\boldsymbol{y}, \boldsymbol{v}_{2}\right]_{\infty}+\alpha_{2}, \\
& \left(\boldsymbol{f}, \boldsymbol{v}_{3}\right)_{\mathbf{L}^{2}}=\left[\mathbf{y}, \mathbf{v}_{3}\right]_{\infty}-\alpha_{1} .
\end{aligned}
$$

Hence and from the conditions (2.4), we have

$$
\left[\boldsymbol{y}, \boldsymbol{v}_{2}\right]_{\infty}=\beta_{0},\left[\boldsymbol{y}, \boldsymbol{v}_{3}\right]_{\infty}=\beta_{1} .
$$

We recall that a triple $\left(H, \Gamma_{1}, \Gamma_{2}\right)$ is called a space of boundary values of a closed symmetric operator A on a Hilbert space H if Γ_{1} and Γ_{2} are linear maps from $\mathrm{D}\left(\boldsymbol{A}^{*}\right)$ to H with equal deficiency numbers and such that:
i) for every f, $\mathrm{g} \in \mathrm{D}\left(\boldsymbol{A}^{*}\right)$,

$$
\left(\boldsymbol{A}^{*} \mathbf{f}, \mathbf{g}\right)_{H^{-}}\left(\mathbf{f}, A^{*} \mathbf{g}\right)_{H^{\prime}}=\left(\Gamma_{1} f, \Gamma_{2} g\right)_{H^{-}}\left(\Gamma_{2} f, \Gamma_{1} g\right)_{H} ;
$$

ii) any $\mathrm{F}_{1}, \mathrm{~F}_{2} \in \mathrm{H}$ there is a vector $\mathrm{f} \in \mathrm{D}\left(\boldsymbol{A}^{*}\right)$ such that $\Gamma_{1} \mathrm{f}=\mathrm{F}_{1}, \Gamma_{2} \mathrm{f}=\mathrm{F}_{2}([5],[18])$.

Theorem 1. The triple $\left(\mathrm{C}^{3}, \Gamma_{1}, \Gamma_{2}\right)$ defined by (2.2) is a boundary spaces of the operator L_{0}.
Proof. First condition of the definition of a space of boundary value follows from Lemma 1 and second condition follows from Lemma 2.

Corollary 1. For any contraction K in C^{3} the restriction of the operator L to the set of functions $y \in D$ satisfying either

$$
(\mathrm{K}-\mathrm{I}) \Gamma_{1} \mathrm{y}+\mathrm{i}(\mathrm{~K}+\mathrm{I}) \Gamma_{2} \mathrm{y}=0(2.5)
$$

or

$$
(\mathrm{K}-\mathrm{I}) \Gamma_{1} \mathrm{y}-\mathrm{i}(\mathrm{~K}+\mathrm{I}) \Gamma_{2} \mathrm{y}=0(2.6)
$$

is respectively the maximal dissipative and accretive extension of the operator L_{0}. Conversely, every maximal dissipative (accretive) extension of the operator L_{0} is the restriction of L to the set of functions $y \in D$ satisfying (2.5) ((2.6)), and the contraction K is uniquely determined by the extension. The maximal symmetric extensions of L_{0} in $L_{2}(0, \infty)$ are described by conditions (2.5) ((2.6)), in which K is an isometry. These conditions define selfadjoint extensions if K is unitary.

3. References

[1] Von Neumann J., "Allgemeine Eigenwertheorie Hermitischer Functionaloperatoren", Math. Ann. 102,49-131, 1929.
[2] Calkin J. W., "Abstract boundary conditions", Trans. Amer. Math. Soc.,45, 3, 369-442, 1939.
[3] Rofe-Beketov F.S., "Self-adjoint extensions of differential operators in a space of vector valued functions'", Dokl. Akad. Nauk SSSR 184,1034-1037, 1969 ; English transl. in Soviet Math. Dokl. 10,188-192, 1969.
[4] Bruk V. M. "On a class of boundary --value problemswith a spectral parameter in the boundary conditions", Mat. Sb., 100, 210-216. , 1976.
[5] Kochubei A. N., "Extensions of symmetric operators and symmetric binary relations", Mat. Zametki 17, 41-48, 1975; English transl. in Math. Notes 17, 25-28, 1975.
[6] Gorbachuk M.L., "Gorbachuk V.I. and Kochubei A.N., The theory of extensions of symmetric operators and boundary-value problems for differential equations", Ukrain. Mat. Zh. 4112991312, 1989; English transl. in Ukrainian Math. J. 41, 1117-1129, 1989.
[7] Fulton C.T., "Parametrization of Titchmarsh"s m (λ)- functions in the limit circle case", Trans. Amer. Math. Soc. 229, 51-63, 1977.
[8] Krein M. G., "On the indeterminate case of the Sturm-Liouville boundaryvalue problem in the interval ($0, \infty$)", Akad. Nauk SSSR Ser. Mat. 16, 292-324, 1952.
[9] Khol'kin A. M., "Self-adjoint boundary conditions at-infinity for a quasi regular system of evenorder differential equations", 174-183 in: Theory of operators in function spaces and its applications, Naukova Dumka, Kiev, 1981.
[10] Mirzoev G. A., "Fourth order quasi regular differential operator" Dokl. Akad. Nauk SSSR 251, no.3, 550-553, 1980; English transl. Soviet Math. Dpkl. 21, 480-483, 1980.
[11] Gorbachuk M. L., "On spectral functions of a second order differential operator with operator coefficients", Ukrain. Mat. Zh. 18, no.2, 3-21, 1966; English transl. Amer. Math. Soc. Transl. Ser. II 72, 177-202, 1968.
[12] Allahverdiev B. P., "On extensions of symmetric Schrödinger operators with a matrix potential", Izvest. Ross. Akad. Nauk. Ser . Math. 59, 19-54, 1995; English transl. Izv. Math. 59, 45-62, 1995.
[13] Guseĭnov I. M. and Pashaev R. T., "Description of self adjoint extensions of a class of differential operators of order 2 n with defect indices $(\mathrm{n}+\mathrm{k}, \mathrm{n}+\mathrm{k}), 0<\mathrm{k}<\mathrm{n}$ ", Izv.Akad.Nauk Azerb. Ser. Fiz. Tekh. Mat. Nauk, No.2, 15-19 (in Russian), 1983.
[14] Maksudov F.G. and Allahverdiev B.P., "On the extensions of Schrödinger operators with a matrix potentials", Dokl. Akad. Nauk 332, no.118-20, 1993,;English transl. Russian Acad. Sci. Dokl. Math. 48 no.2, 240-243, 1994.
[15] Malamud M. M. and Mogilevskiy V. I., "On extensions of dual pairs of operators, Dopov". Nats Akad. Nauk. Ukr. no. 1, 30-37, 1997.
[16] Mogilevskiy V. I., "On proper extensions of a singular differential operator in a space of vector functions", Dopov. Akad. Nauk. Ukraini, no.9, 29-33 (in Russian), 1994.
[17] Naimark M. A., "Linear Differential Operators", 2nd edn.,1968, Nauka, Moscow, English transl. of 1st. edn., 1,2, New York, 1969.
[18] Gorbachuk M. L. and Gorbachuk V. I., "Boundary Value Problems for Operator Differential Equations", Naukova Dumka, Kiev, 1984; English transl., Birkhauser Verlag 1991.

[^0]: *e-mail: hustuna@gmail.com
 ${ }^{2}$ This work was presented in "International Conference on Analysis and Applied Mathematics", Gümüşhane/TURKEY, on 18-21 October 2012 and only the abstract of this work was published in the "Abstract Book" of the "International Conference on Analysis and Applied Mathematics"

