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Abstract 

Underwater acoustics is one of the important and complex research areas for advanced signal 
processing. Underwater acoustics is used in many fields, including defense technologies in the 
literature. In this study, a deep learning and machine learning-based method has been 
developed and underwater direction determination has been made. A new dataset was 
collected to determine direction underwater. First, a microphone is placed underwater. 
Propeller sounds of Remote Controlled Underwater Vehicle (ROV) moving in x, y, and z 
directions underwater were collected. Four classes were obtained with the sounds taken from 
the x, y, z directions, and the quiet environment. The resulting sounds were converted into 
images. Features were extracted from these images with deep learning methods. In this study, 
NASNetLarge and NASNetMobile deep learning models were preferred. The features extracted 
from these two models are combined. The chi2 algorithm was used to select the most weighted 
features among these features. Support Vector Machine (SVM) algorithm is used to classify 
selected features. With the proposed method, an accuracy of 77% and above was calculated. 

Keywords: Underwater Sound Classification, Underwater Direction Detection, SVM, 
NASNetLarge, NASNetMobile. 
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1 Introduction 

Today, most countries make high-budget 
investments in defense technology. Many 
applications based on artificial intelligence have 
been developed for land, air, and naval defense 
technologies. Underwater communication, 
underwater imaging, and underwater acoustic 
studies are carried out in the naval defense system. 
Vehicles are moving underwater or on the water, 
the surface can be detected by underwater acoustic 
methods [1]. Underwater acoustic studies are 
especially important for border security. In sound-
based methods, underwater microphones are used 
to listen underwater. By analyzing the obtained 
sound data, underwater vehicles, or ships on the 
water surface can be easily detected. There are 
many object detection studies using underwater 
acoustic data in the literature [2,3]. Acoustic based 
object detection methods have also been developed 
in many areas, mostly underwater mine searching 
[4]. Underwater, the image is often blurry, making it 
difficult to view images. For this reason, acoustic-
based methods are more preferred. Also, the 
direction can be determined by using underwater 
acoustic data [5,6]. 
Jiang et al. [7] developed a CNN model for acoustic 
target recognition. He achieved an accuracy of 
64.17%, 99.17%, and 59.17% in the CNN model he 
developed using three different data sets. Neves et 
al. [8] proposed a deep learning-based method for 
detecting underwater structures and detecting 
shipwrecks. It used RBoxNet, and YOLOv2 + 
RBoxNet models. They used the RBoxNet and 
YOLOv2 + RBoxNet models and calculated 90.3% 
and 77.5% accuracy with this method, respectively. 
Reis et al. [9] perform acoustic signature and boat 
detection using underwater acoustic data. It uses 
frequency amplitude variation. Choi et al. [10] 
proposed a multi-target localization method for 
underwater acoustics. It used signal processing 
methods. Sierra et al. [11] proposed a fuzzy logic-
based method for classifying small ships moving on 
the water surface. Many studies in the literature 
detect objects using underwater acoustics [12–14]. 
Our motivation in this study is to collect an 
underwater acoustic dataset and suggest a deep 
learning-based hybrid method. The acoustic dataset 
obtained from underwater consists of four classes. 
This sound data was normalized and transformed 
into an image. Feature extraction was made with 
deep learning from images. NASNetLarge and 
NASNetMobile models are used for deep learning. 

Features derived from these two models are 
combined. Then, the most significant features were 
selected by the Chi2 method. SVM algorithm was 
used for classification after the feature selection 
process. A hybrid model has been developed in the 
proposed method by combining both deep learning 
and machine learning methods. The innovations of 
the proposed method are collecting underwater 
acoustic data and contributing to the literature. 
Also, a hybrid model has been proposed by 
combining NASNetLarge and NASNetMobile 
methods with SVM. 

2 Materials 

In this study, GLADIUS MINI [15] model underwater 
robot was used to create Underwater Direction 
Dataset (UDD). This robot has 100 meters of cable. 
It can transfer images in real-time. It can also be 
controlled by phone, tablet, or computer. EKEN 
brand sound and video recording device was used 
to capture underwater acoustic data. The 
underwater robot and voice recorder used for UDD 
are given in Figure 1. 
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Sample rate 44.100 kHz are used for sound 
recording. While collecting the UDD dataset, an 
experimental setup was created, as shown in Figure 
2. 

As shown in Figure 2, the voice recorder is fixed 
underwater at a depth of five meters. Sound data 
were collected underwater for five minutes from 
the quiet environment without the use of an ROV. 
Later, the GLADIUS MINI [15] robot moved on the x-
axis for 5 minutes and recorded it. This process was 
repeated for the y and z axes for five minutes. At the 
end of these steps, a total of twenty minutes UDD 
was created for four different situations. The 
features of the underwater direction sound dataset 
collected are shown in Table 1. 
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Fig. 2. Experimental setup for direction 

underwater sounds acquisition 

 

Table 1. Class Information of the Collected 
Underwater Direction Dataset 

Class 
number 

Class 
definition 

Time 
(min) 

Number of 
Samples 

Class 1 
No 
movement 

5 300 

Class 2 
x-axis 
movement 

5 300 

Class 3 
y-axis 
movement 

5 300 

Class 4 
z-axis 
movement 

5 300 

In the direction dataset, we obtained 300x44100 
data by taking 300 seconds of sound for each class. 
This case total of 1200x44100 data for four classes 
in the direction dataset. In this study, sample sound 
signals taken from microphones for the direction 
dataset have shown in Figure 3. 
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Class 3 

 
Class 3 

Fig. 3. Sound samples collected for direction 
determination 



 
 
 

Veri Bilim Derg, 4(2), 33-39, 2021 
 

36 
 

3 Proposed Method 

The block diagram of the method suggested in this 
study is shown in Figure 4. 

Underwater Direction Dataset

Segmentation of sound signals

Creating images from sound 
signals

NasNetLarge NasNeMobile

Chi2

Classification with SVM

Feature Merging

Deep 
Feature 
Extraction

Feature 
Selection

 

Fig. 4. Block diagram of the proposed method 

In this study, a four-class UDD was created using an 
underwater robot and a sound recorder. A total of 
300 seconds of voice recording was taken for each 
class. The recorder records 44100 samples every 1 
second. There are 1200 sound data for four classes 
in total. These data consist of a 1200x44100 matrix. 
The sound data obtained are divided into one-
second segments. The sound signal received in one 
second is 1x44100. This sound signal has been 
normalized between 0-255 and converted into 
200x220 sized images. These images have been 
used with NASNetLarge and NASNetMobile models 
and feature extracted. For this reason, 200x220 
sized images are arranged in 331x331 size. Thus, 
the size of the images is suitable for NASNetLarge 
and NASNetMobile models. Sample images obtained 
for four classes in this study are shown in Figure 5.  

As can be seen in Figure 5, a total of 1200 images 
were created, 300 for each class. Feature extraction 
was performed on these images using NASNetLarge 
and NASNetMobile models. NASNet was developed 
by the Google Brain team for the CIFAR-10 dataset 
[16,17]. The NASNet model is advantageous due to 
its small size and low complexity. NASNet model 
uses the reinforcement learning method. In this 
study, feature extraction has been made using both 
NASNetLarge and NASNetMobile models. 

1200x1000 feature extraction has been made with 
each model. 1200x2000 features were obtained by 
combining the features obtained from these models. 
Chi2 method was used to select the most significant 
features from these features. The Chi2 method is a 
widely used feature selection method [18]. The 
mathematical equivalent of the Chi2 algorithm is 
given in Equation 1.  
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Fig. 5. Images created from the underwater 
direction dataset 
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In the Chi2 method, the observed 
iO   and expected 

iE   values are handled, and the degrees of freedom 

c  of the values are determined. After the deep 
feature extraction, the Chi2 method was applied to 
the 1200x2000 feature matrix, and the 1200x944 
feature was selected. The most weighted features 
obtained were classified using the SVM algorithm. 
SVM algorithm is a machine learning method widely 
used in the literature [18–23]. In this study, results 
are obtained by using Linear, Cubic, and Quadratic 
models of the SVM algorithm. The parameters of 
SVM algorithms used in the proposed method are 
given in Table 2. 
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Table 2. Parameters of SVM Algorithms Used in the 
Proposed Method 

 
Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

Kernel 
function 

Linear Quadratic Cubic 

Box constraint 
level 

5 1 1 

Kernel scale 
mode 

Auto Auto Auto 

Kernel scale 1 1 1 

Multiclass 
method 

One-
vs-one 

One-vs-one 
One-vs-
one 

 

4 Experimental Results 

To apply the method suggested in this study, a 
computer with an i7-9700 CPU 3.00 GHz, 32GB 
RAM, and 64 operating systems were used. The 
proposed method was developed in the MATLAB 
2020a program. MATLAB Classification Learner 
Toolbox was used for the classification process. 
Confusion matrices were calculated using 10-fold 
cross-validation. In the proposed method, 100 
iterations were run to get results with SVM 
classification methods. Confusion Matrixes 
obtained for Linear SVM, Cubic SVM, and Quadratic 
SVM are given in Figure 6.  

The results given in Figure 6 were examined, and it 
was shown that the best result among the three 
classifiers was calculated in Class 1. Accuracy, 
Precision, Recall, Geometric mean, and F1-Score 
results calculated for Linear SVM, Cubic SVM, and 
Quadratic SVM are given in Table 3. 
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Cubic SVM 
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Quadratic SVM 

Fig. 6. Confusion Matrix obtained for Linear SVM, 
Cubic SVM and Quadratic SVM 

Table 3. Accuracy, Precision, Recall, Geometric Mean and F1-Score (%) Results of the Used Direction 
Underwater Acoustic Classifiers 

Classification Statistics Accuracy Precision Recall 
Geometric 
mean 

F1-Score 

Linear 

Max 77.66 77.85 77.66 76.71 77.76 
Min 74.41 75.90 75.75 74.58 75.82 
Mean 75.95 77.46 77.27 76.27 77.36 
Std 0.56 0.33 0.33 0.36 0.33 

Cubic 

Max 77.41 77.57 77.41 76.41 77.49 
Min 73.66 75.37 75.16 73.98 75.27 
Mean 75.19 77.32 77.15 76.12 77.23 
Std 0.63 0.47 0.50 0.54 0.49 

Quadratic 

Max 77.58 77.92 77.58 76.64 77.75 
Min 74.33 74.57 74.33 73.02 74.45 
Mean 76.10 76.33 76.10 74.98 76.22 
Std 0.55 0.54 0.55 0.61 0.54 
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When Table 3 is examined, the best results were 
obtained with Linear SVM. The accuracy was 
77.66% with Linear SVM, 77.41% with Cubic SVM, 
and 77.58% with Quadratic SVM. 

5 Conclusion and Discussions 

Underwater acoustic systems, methods such as 
depth detection, object detection, and object 
tracking have been developed. Underwater acoustic 
methods are significant for defense technology. In 
this study, a deep learning and machine learning-
based hybrid method are proposed for underwater 
direction detection. First, UDD was collected by 
using an underwater robot. Feature extraction is 
made by doing deep feature extraction on this 
dataset. The most weighted features were selected 

from the obtained features and classified with SVM. 
In the proposed method, the best accuracy was 
calculated as 77.66%. In this study, 10-fold cross-
validation was used while classifying. In the 
proposed method, Fold by Fold results for Linear 
SVM, Cubic SVM, and Quadratic SVM are calculated 
and presented in Figure 7. 

As seen in Figure 7, the results of Fold-1, Fold-2, 
Fold-3, …, Fold-10 have been calculated for 
classification algorithms. The highest result was 
seen in Fold-1, and the lowest result was seen in 
Fold-5. Since 10-fold cross-validation is used in the 
proposed method, the best result was calculated as 
77.66%. Also, the recommended method Class by 
Class results are shown in Figure 8. 

 

Fig. 7. Plot of best accuracy (%) obtained for different folds using UDD 

 

Fig. 8. Classification accuracies (%) obtained for various classes using our proposed method with UDD 

As seen in Figure 8, the best results were obtained 
in Class 1, while the lowest results were seen in 
Class 3. Class by Class results support the accuracy 
of the confusion matrix obtained in the study. 
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