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ABSTRACT 

Fabric defect detection is generally performed based on human visual inspection. This method is not 

effective and it has various difficulties such as eye delusion and labor cost. To deal with these 

problems, machine learning and computer vision-based intelligent systems have been developed. In 

this paper, a novel real-time fabric defect detection system is proposed. The proposed industrial vision 

system has been operated in real-time on a loom. Firstly, two fabric databases are constructed using 

real fabric images and new defective patch capture (DPC) algorithm. One of the main objectives in 

this study is to develop a CNN architecture that focuses only on fabric defect detection. One of the 

most unique aspects of the study is to detect defective pixel regions of fabric images with Fourier 

analysis on a patch-based and integrate it with deep learning. Thanks to the novel developed fast 

Fourier transform-based DPC algorithm, defective texture areas become visible and defect-free areas 

are suppressed, even on complex denim fabric textures. Secondly, an appropriate convolution neural 

networks (CNN) model is developed. Thus the new dataset dataset is refined using negative mining 

method and CNN model. However, traditional feature extraction and classification approaches are 

also used to compare classification performances of deep models and traditional models. 

Experimental results show that our proposed CNN model integrated with negative mining can classify 

the defected images with high accuracy. Also, the proposed CNN model has been tested in real-time 

on a loom, and it achieves 96.5% detection accuracy. The proposed model obtains better accuracy and 

speed performance in terms of detection accuracy with a much smaller model size. 
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1. INTRODUCTION 
 

It is a very important issue in the fabric industry to detect 

and classify defects during production. Traditionally, 

human-oriented defect detection is an approach that takes a 

lot of time and causes labor costs. In this approach, serious 

losses can occur in fabric production in cases such as 

operator distraction, eye fatigue, and distraction. For this 

reason, image processing and artificial intelligence-based 

automatic fabric control approaches are inevitable. 

Automatic defect detection systems include two important 

stages: Obtaining clear images during fabric production and 

detecting whether there are errors in the images. Capturing 

non-blur and noise images clear fabric images is quite a 

challenge. This is because fabric looms produce high levels 

of noise, there is lint constantly floating around, the 

dimensions of looms exceeding 2m and they produce high 

vibrations. In addition, the small size of defect size of 1mm 

and the constant movement of the fabric are other factors 

that make the image acquisition process difficult. The 

aforementioned difficulties significantly prevent the spread 

of some error detection systems based on image processing 

and artificial intelligence, which have high error detection 

accuracy. From this point of view, the disadvantages of 
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existing systems can be eliminated by examining the 

powerful feature extraction and machine learning methods 

in the literature. 

Defect detection methods in the literature could classified 

[1] as structural [2], [3], statistical [4], spectral [5,6]-[7], 

model-based [8], learning-based [9] and hybrid methods 

[10]. In this study, a CNN-based defect detection architecture 

is proposed in contrast to the current approaches. However, 

the process of building a large fabric data-set containing 

different fabric defects is costly and challenging. 

Defects in fabric images disrupt regular fabric texture and 

pattern. Therefore, the problem addressed while analyzing 

images can be defined as texture-based image analysis and 

classification. Thus, the problem can be moved to the field of 

image processing and machine learning, and texture features 

can be extracted with well-known texture analysis methods. 

Defective fabric production can be prevented by detecting 

the location and type of defect with the meaningful features 

obtained. [11]. Starting from this point, using statistical 

measurements and histogram information, defects are defined 

in images containing regular texture patterns. [12]. By using 

the Gabor wavelet network and morphological filters, fabric 

background and fabric defect regions were distinguished and 

common fabric defects were detected. [4]. In another study, 

fabric defects were detected with adaptive wavelet transform. 

[13]. Histogram thresholding was performed by successfully 

separating the background and error regions with specially 

designed low and high pass filters. In a study that classifies 

fabric defects such as horizontal and vertical missing thread 

defect, colored thread, spot, and gap, statistical properties of 

the images were calculated. [13]. The features obtained using 

the Bayesian classifier were classified and a 99.85% 

classification success was achieved. In a recent study, defect 

detection was performed on 247different fabric images 

containing repetitive textures. [14]. Considering the regular 

layout rule in the fabric images, the existing template and the 

regions in the fabric image were compared. The metric 

results were obtained and the existing template was analyzed 

for similarity. 5 different fabric defects that are common in 

fabrics containing 3 different texture types have been 

successfully detected. In addition, a comprehensive 

comparison with different feature methods was made and the 

error detection capacity of the method was highlighted. By 

analyzing the isotropic lattice structures in the fabric images, 

it can be understood whether the regular texture pattern is 

disrupted due to the error. For this process, fabric images are 

divided into non-overlapping sub-images and analyzed in a 

micro-level pattern. Jia and Liang [15] in their study, the 

image was divided into hundreds of lattice structures and 

focused on the error region without dealing with unrelated 

pixel regions. 5 different fabric defects were detected by 

pixel-based area calculation and histogram analysis of 

defective pixels in lattice regions. In a study examining the 

pattern regularity in fabric images with the autocorrelation 

function in polar coordinates, the changes in the pattern were 

also examined angularly and errors were detected [15]. With 

this method, both linear and blob-like defects were detected. 

Hole, oil stains, warp-lacking, and weft-lacking errors in 

plain white fabric images of 512 512 size obtained from the 

field scanning camera were detected and classified. [16]. 

Filtering and thresholding pre-processes are applied to the 

obtained images and given as input to the artificial neural 

network. Over 90% classification success was achieved in all 

defect types. Rotation-independent analysis methods are used 

to detect defects in fabric images containing regular and 

rotational states. With the versatile and multi-scale feature of 

the Gabor transform, the features of the images are extracted 

and the defect regions are segmented. [17]. Segmentation 

results are improved by filtering the obtained segmented 

image with a Gaussian low-pass filter. Fractal geometry has 

been used frequently in recent years to describe the natural 

irregularity of self-similar natural objects. Due to its success 

in detecting regularity, it has been used to detect errors that 

disrupt regularity in fabric images. [18]. By characterizing 

the roughness and complexity of fabric textures with fractal 

calculations, images were classified with support vector 

machines. In a study that can detect knit fabric defects in 

real-time, shearlet transform and artificial neural networks 

are used. [19]. The shearlet coefficients of the images 

obtained from the line scan camera in different scales and 

directions were calculated. The weights of the trained 

artificial neural network were recorded and real-time error 

control was performed on the knitting machine. Multi-scale 

local texture analysis was performed by calculating the 

singular value decomposition information of the fabric 

images converted to the CIE color channel. [20]. In addition, 

defected regions were determined by measuring the cosine 

similarity between the defected fabric modeling and the 

images analyzed with different scales. Yildiz et al. [21]  

detected different fabric defect using thermal camera. To 

extract important textural features, they used gray level co-

occurrence matrix. To classify fleece fabric images, local 

binary patterns were used [22]. Firstly, local texture features 

were calculated. Then Naive Bayes and K-nearest neighbor 

classifier were used to classify fabric images. Yildiz et al. 

[23] developed thermal defect detection system to eliminate 

fabric defects. They benefit from thermal differences 

between defective and defect-free fabric regions. These 

differences are helpful in characterizing the defective region. 

In another hybrid method, wavelet transform and principal 

component analysis were used together to classify cashmere 

and denim lubric fabric images [24]. 95% success was 

achieved in the fabric images obtained with the thermal 

camera. 

Although traditional methods of fabric defect detection give 

the desired results in most cases, most of these methods use 

hand-designed features such as filters, texture, and color. 

Although traditional methods can perform multi-scale and 

versatile feature calculations, they can perform limited 

analysis and calculations on the data. With the development 

of deep learning methods in recent years, the mentioned 

limitations have been removed. High-level inferences and 

decision-making processes are produced with deep learning 

algorithms. The main advantage of deep learning is to 
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obtain high-level feature analysis of data with a well-

designed convolutional neural network (CNN). Such a 

designed network has been built and accepted as a powerful 

feature calculator and has become a decision-making 

system that gives better results than traditional methods. 

Jing et al. [25] used the improved AlexNet architecture for 

CNN fabric defect classification. Network layers and 

convolution filters are optimized to detect yarn dye defects. 

Wang and Jing [26] on the other hand, classified fabric 

defects with a deep learning architecture, which they 

proposed a pyramid-based pooling layer, without using 

labeled training data. In a study with the Faster R-CNN 

model, the region of fabric defect was determined by using 

Region Proposal Networks (RPN) and Fast R-CNN models 

together [27]. The success and speed of the method have 

been increased with the constructed multi-scale feature 

pyramid and defected region boxes. Zhou et al. On the 

other hand, they updated the architecture of the Faster R-

CNN model in the deep learning model they called 

FabricNet [28]. Especially by replacing the last part of the 

mesh with the Deformable Convolution (DC) block 

structure, the classification success for fabric defects has 

been increased. In another study, effective results were 

obtained on two different fabric datasets by using principal 

component analysis and deep feature extraction strategy 

together [29]. First of all, the features of the images were 

extracted with the VGG16 deep learning model. Then, by 

calculating the saliency maps of the images with principal 

component analysis, the final results in which the defects 

are segmented are obtained. In another CNN-based study 

with a visual long-short-term memory module integrated, a 

deep network modeling close to human visual perception 

was carried out [9]. Although this network model has more 

complex modules, it is designed as an architecture that can 

detect fabric defects between 95% and 97%. Mei et al. [30] 

proposed a multi-scale convolutional denoising autoencoder 

(MSCDAE) architecture to detect fabric defects of different 

sizes. In this model, which includes multiple convolutional 

denoising autoencoder layers, images are processed with 

the Gaussian pyramid method and image patches are 

produced. In the encoder and decoder layers of the network, 

these patches are extracted with convolution layers. During 

the test phase, residual maps were produced that clearly 

show the defected areas in the images. A variational 

automatic encoder was used in a study that detected 9 

different fabric defects by real-time fabric defect detection 

[31]. Using the Structural similarity index measurement 

(SSIM) parameter, the similarity between 3 different 

parameters between the constructed image at the input and 

output of the autoencoder was measured. With the built 

layer architecture, the desired SSIM residual map is built, 

making it easier to distinguish defected regions. The high 

success rate in fabric defect detection studies based on deep 

learning is remarkable. Especially their classification 

success against many different fabric defect types is 

remarkable. With these aspects, deep learning methods 

have an edge over traditional feature extraction and 

machine learning methods.   

Fabric defect detection studies have been carried out both 

with traditional methods and with deep learning methods, 

although a small number of them. The number of studies 

that can work in real-time, especially on knitting and 

weaving machines, is very limited. The methods cannot 

produce the desired results due to reasons such as noise, 

light change, and vibration from the knitting/weaving 

machine, especially in the industrial working environment. 

From this point of view, in this study, a new method that 

makes real-time fabric defect detection with deep learning 

methods on the weaving machine has been developed. 

The main contributions are summarized as follows: 

(1) To better classify the fabric textures, a novel CNN 

model with negative mining is proposed. This model 

improves the effectiveness and distinctiveness of the CNN 

model. 

(2) Thanks to the novel developed fast Fourier transform-

based DPC algorithm, defective texture areas become 

visible and defect-free areas are suppressed, even on 

complex denim fabric textures. 

(3) The proposed model can meet the real-time 

requirements of defect detection on a loom. 

The rest of this paper is arranged as follows. Section 2 

briefly introduces the conventional defect detection systems 

and related feature extraction methods. Section 2 introduces 

our novel CNN-based defect detection method and gives 

details about the training, experimental setup of our defect 

detection system and fabric database. In Section 3, the 

classification results of the conventional feature extraction 

methods and our CNN model are provided to validate our 

method on a real fabric database. Section 4 presents real-

time defect detection results on a loom. Finally, we 

conclude our study in Section 5. 

2. MATERIAL AND METHOD 

2.1 Material 

2.1.1 Current Defect Detection Systems 

Systems that can detect real-time defects in weaving looms 

can be divided into two according to the imaging approach: 

Still and systems using more than one camera, systems 

using mobile, and single camera. Figure 1.left shows an 

example defect detection system developed by Uster 

Technologies Vision [32] and includes 4 still cameras side 

by side. The most important advantage of using still 

cameras is the minimization of image degradation caused 

by vibration, resulting in a clear image. However, since a 

limited fabric area is seen with a single camera, it is 

necessary to use more than one camera side by side to view 

the entire fabric. More than one camera data is collected by 

the frame holder card. However, the increase in the number 

of cameras increases the cost of the system and makes 

defect detection management difficult. 

To eliminate the high cost of still camera systems, some 

systems use a single mobile camera. The product named 
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Cyclops [33] from BMSvision company (see Figure 1.right) 

is relatively easy to manage. This German-origin product 

uses a rail mechanism that provides linear movement on the 

loom. This mechanism enables the display of the fabric 

surface produced by moving the camera on the horizontal 

axis. Cyclops transfer images to the server over the network 

and detect defects with the software on the server. Using 

blue-colored and flash lighting components, Cyclops can 

detect ten predefined fabric defects. The disadvantages of 

Cyclops are the server requirement and the ability to detect 

defects only on sparse fabrics. The embedded defect 

detection system suggested in this article eliminates the 

need for a server. In addition, thanks to the developed 

defect detection software, shallow fabric defects can be 

detected. 

Both modern defect detection systems (Uster and Cyclops) 

mentioned having high costs. This negative situation 

significantly prevents the spread of these products with 

high defect detection accuracy in the market. 

2.1.2 Defect detection algorithms 

Existing defect detection algorithms transform fabric 

images into feature vectors and map these vectors to known 

classes with specific classification techniques (Nearest 

Neighbours (NN), Support Vector Machine (SVM), and K-

Nearest Neighbours (KNN)). The difference between 

algorithms is based on the difference in feature extraction 

approaches. In this study, a total of six different feature 

extraction approaches, three of which are in the spatial 

domain (Histogram of Oriented Gradient (HoG), Co-

occurrence HOG (CoHoG) and Statistical), and three in the 

frequency domain (Fast Fourier Transform (FFT), Wavelet, 

and Shearlet), which are frequently used in the fabric defect 

detection literature, will be expressed. 

2.1.2.1 HOG features 

In the HOG method, the horizontal and vertical gradients of 

the image are calculated first. Then the pixel orientation 

matrix is obtained. Finally, the histogram of the orientation 

matrix is taken and the information obtained is used as 

attribute values [34]. Gradients and orientation matrix are 

calculated as follows: 

2.1.2.2 CoHOG features 

Gray Level Co-occurrence Matrix (GLCM) is frequently 

used in texture extraction studies. GLCM refers to the 

number of repetitions of pixel pairs in a particular direction 

[35]. Accordingly, the GLCM matrix of a gray level I 

image is calculated as follows: 

Pixel values i and j; spatial coordinates x and y in the 

image; I (x, y) represent the brightness value in the image. 

The CoHOG method [36] calculates the density changes 

between pixels by scanning the image matrix according to 

different angle values. Unlike HoG, the image is analyzed 

by dividing the M N region. GLCM is obtained by using 

the angle values (offsets) determined from each image 

region. A single feature vector is produced by combining 

the GLCMs obtained for all regions in the image (see 

Figure 2). 
 

 

 
 

Figure 1. Current defect detection systems. (Left) Uster, (Right) Cyclops 
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Where 
xf  and yf , respectively are the horizontal and vertical gradients of the I  image.   express the orientation matrix. 
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Figure 2. CoHog feature extraction 
 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

2.1.2.3 Statistical features 

In the study [35], it is seen that four different statistical 

attributes (energy, contrast, correlation and homogeneity) 

of the gray co-formation matrix are obtained. These 

attributes are expressed as follows: 
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2.1.2.4 Fourier features 

It is known that frequency domain techniques are used to 

detect texture/pattern differences in the image [6], [37]. In 

the study conducted in the article with reference no [37], 

the Central Spatial Frequency Spectrum of the image is 

obtained by using FFT, and 7 different statistical attributes 

are extracted from the spectrum visual. 
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where 1P expressing the mean spectral response, 2P , 3P  and 

4P  represent the spectral changes in the horizontal axis. 

Spectral changes on the vertical axis are also represented 

with 5P , 6P , and 7P  variables. 

 

2.1.2.5 Wavelet features 

In this section, it is expressed how the feature vector is 

obtained from fabric images using the wavelet transform 

technique. Three-level wavelet transform is used in this 

study. Figure 3 shows the sub-band images obtained after 

the three-level transformation. Accordingly, a total of nine 

band images are obtained, including three sub-bands at each 

level. 
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In the study [38], it is shown that the luminance histograms 

in the lower band images show a symmetrical distribution, 

so they can be modeled with Normal Distribution. Thus, 

each sub-band image can be represented by the parameters 

of the Normal distribution (   and  ). Since a total of 10 

sub-band images are obtained after three-level 

transformation, the feature vector has 1 20 dimension. 
 
 

  

 

Figure 3. Wavelet feature extraction 
 

 

 
 

 
 

 

 
 

 
 

2.1.2.6 Shearlet features 

An important disadvantage of wavelet transform is that it 

can only obtain spectral responses of the image in 

horizontal and vertical directions. This limitation may cause 

pattern or texture features at different angles to be 

undetectable. The Shearlet transform has been developed to 

overcome this disadvantage of wavelet transform [39]. 

Accordingly, it enables multi-scale and multi-directional 

spectral analysis of the image. In this study, scale level 4 

was determined, spectral responses of 10 degrees were 

calculated and features were obtained. 

2.2 Method 

In this study, a new product has been developed to be 

included in the mobile camera systems group. This product 

is very similar to Cyclops with its camera and linear motion 

system components. Its difference from Cyclops is that it 

can detect defects in shallow or sparsely woven fabrics and 

has embedded image processing capability. With this 

capability, it can instantly process images without 

transferring them to an additional server and reduces the 

system cost. With these features, it is thought that the 

proposed system will have a wide range of uses. 

The prominent technical features of the proposed system 

when compared to its current counterparts are listed below: 

1) Low cost (camera and loom machine 

synchronization is done through software and has no 

depended on multiple cameras to covering the whole 

fabric for data acquisition part. 

2) An original and economical LED light apparatus 

was designed, produced and used. 

3) A frequency-based approach specific to fabric types 

produced on looms is presented. 

4) High accuracy values have been achieved because 

deep convolutional networks are used. 

5) The proposed approach can work in real time. 

2.2.1. Imaging hardware 

In classical systems, the synchronization between the 

camera and the weaving loom is provided by hardware. 

Accordingly, a camera with a trigger output and a weaving 

loom with encoder connection are used. High-cost trigger 

cameras and encoder hardware increase the overall system 

cost. In the proposed system, the synchronization between 

the camera and the machine is software. For this, the 

production speed of the machine is determined by using the 

images obtained from the production before the recording 

process is made, and the camera movement speed and 

shooting speed parameters are updated accordingly. In this 

way, hardware requirements have been eliminated and an 

economical defect detection system has been produced. 

The image recording module of the proposed system is 

shown in Figure 4. Accordingly, the image recording setup 

consists of the camera (FLIR Blackfly), lighting 

component, lens (Sony F-12mm), and linear system 

components. To obtain clear fabric images, attention has 

been paid to the fact that the camera has a "global shutter" 

feature and that the pixel size on the imaging sensor is high 

(5.86nm). The linear system has a length of 2m and allows 

the camera to move left and right on the loom. The camera 

table speed is fixed at approximately 18.8 cm/sec. Thus, a 

tour on the bench is completed at 11sec and the entire fabric 

surface produced can be viewed. Two different illumination 

apparatuses were designed and produced as samples to 

prevent the movement of the camera and fabric from 

blurring. In the first, 9 LEDs and lenses with a 50-degree 

angle were used. The lenses are used to prevent the light 

from spreading to the environment at a wide angle and 

provide focusing in a narrow area. In the other apparatus, 

30 LEDs that can emit 4000K and 70 lumens light are used. 

Considering the quantum efficiency value of the imaging 

sensor, it has been ensured that the LEDs are at 525nm 
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wavelength. Thus, the efficiency of the imaging sensor to 

convert light into electricity is maximized. The fabric 

images recorded with both illumination apparatuses were 

examined and high-quality fabric images were obtained 

with the second illumination apparatus. Thus, the second 

lighting apparatus was selected and the works started to 

create a fabric database. 
 
 

 

 

 

Figure 4. The proposed defect detection setup 

 
 
 

2.2.2 Produced fabric databases 

It should be emphasized that it is difficult to produce a 

sufficient number of different fabric defects due to the low 

probability of occurrence of defective fabrics in the fabric 

industry. This situation also leads to loss of production and 

labor in database construction. Therefore, this study focuses 

on detecting two different fabric defects. The first is the 

warp defect (H1), the second is the horizontal deformation 

defect (H2). Both types of defects were produced specially 

by the fabric operator and the defective fabric images were 

recorded. Accordingly, fabric images belonging to three 

classes without defect (14099 pieces), H1 (8936 pieces), 

and H2 (17289 pieces) were recorded in the DB1 database 

(see Figure 5). Produced dataset is available via this link 

https://github.com/MahdiHatami/denim-fabric-dataset. 

The high size of the images in DB1 makes it difficult to 

detect small defect regions and causes memory 

insufficiency problems. Therefore, 1200 1920 DB1 

images were saved in a new data set (DB2) in the form of 

300 320 patches. The fabric images were divided into 6 

equal parts and transferred to DB2. However, a patch must 

be taken from the defective parts of the H1 and H2 images. 

For this, the Defected Patch Capture (DPC) algorithm, 

whose stages are shown in Figure 6, is used. 

The DPC algorithm developed within the scope of this 

study takes high-resolution defective images as input and 

only determines the center of the defective area (See Figure 

7). Accordingly, the image in the spatial domain is 

transformed into a spectral image using the FFT 

transformation in the first step. Later, a special mask was 

designed to filter the main frequencies of weft and warp 

patterns in the fabric images. The two-level mask image 

contains five parallel ellipses. After the original spectral 

image is masked, reverse FFT conversion is made and a 

filtered fabric image is obtained. By filtering, defective 

areas became visible and defect-free areas were suppressed. 

A second process to make the defective areas more 

prominent is the power-law transformation. Finally, using a 

certain threshold (0.2), the image was reduced to a binary 

level. The two types of defects to be detected have a linear 

structure. For this reason, the longest striped region in the 

binary image was determined using Hough transform. The 

center of the detected line was set to be the center of the 

patch and 300 320 sized patches were taken from the 

defective area and recorded in DB2. As a result, a total of 

31110 images (8265 H1, 5975 H2, and 16870 without 

defects) were recorded in the DB2 dataset. 

 

 

Figure 5. Fabric images. (left) without defect, (middle) warp defect-H1, (right) horizontal deformation defect-H2 
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Figure 6. Splitting input image to patches 

 

It should be emphasized that defeted fabric production is 

approximately 1-2% of the normal production. Therefore, 

the number of fabric defect images is very low compared to 

the none-defected fabric image. There is an imbalance in 

obtained high resolution raw fabric images. However, this 

imbalance was resolved by producing patches from defect 

fabric images. For this, firstly, the defect region was made 

clear in the frequency domain, then the patches that would 

include the relevant region were saved. In this way, the 

number of defect images has been brought closer to the 

number of none-defected images. Training and testing 

activities were carried out on an improved training set. 

2.2.3 Determining the appropriate CNN architecture 

In this section, the structure of the CNN architecture that 

provides the highest classification accuracy is investigated. 

For this purpose, four different CNN architectures with 

different layer depth, convolution mask number, and mask 

sizes were designed (see Table 1). Thus, the classification 

performances of a deeply structured architecture and a 

shallow architecture were evaluated. The parameters of the 

architectures used were set as epoch "10", optimizer 

"sgdm", package size "128", weight-decay "0.0005" and 

learning coefficient "0.001" and training/testing activities 

were carried out. For this, a server computer with 8GB 

GDDR5 GPU memory and Nvidia Quadro M4000 graphics 

card was used. 75% (~23322) of 31110 images in DB2 

were used for training and 25% (~7778) for testing. As a 

result of the comparison, it was seen that the CNN network, 

whose architecture is clearly shown in Figure 8, provides 

the highest classification accuracy in training and test sets. 

This architecture number 4 which performs best amount 

other archtectures structure given in Table 2. 

 

 

 

Figure 7. Stages of defected patch capture algorithm 
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Table 1. The CNN architectures 

 Layer Number Total parameters Train Accuracy (%) Test Accuracy (%) 

CNN Architecture 1 11 75.243 93.44 93.28 

CNN Architecture 2 16 7.773 93.44 93.64 

CNN Architecture 3 11 160.173 91.09 90.28 

CNN Architecture 4 19 4.325 97,6 97,3 

 

Table 2. The CNN architectures 4 structures 

                                           Layer Output Size 

Conv1 5 × 5, 10, stride(1,1)  300 × 320 ×  10 

Pool1 5 × 5, 10, stride(2,2) 150 × 160 × 10 

Conv2 5 × 5, 7, stride(1,1) 150 × 160 × 7 

Pool2 5 × 5, 7, stride(2,2) 75 × 80 × 7 

Conv3 5 × 5, 7, stride(1,1) 75 × 80 × 7 

Pool3 5 × 5, 7, stride(2,2) 37 × 40 × 7 

Fully connected 10360 3 

 

 

Figure 8. The proposed CNN architecture 4 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Comparison of Defect Detection Methods 

In this section, the performance of defect detection methods 

is evaluated by considering the classification accuracy and 

working time. Before proceeding with the classification 

processes, the incorrectly classified images in the 

automatically generated DB2 data set were transferred to 

the correct classes. For this, the proposed CNN architecture 

has not been classified correctly and the images in the 5% 

incorrect portion have been examined by the fabric operator 

and transferred to the correct classes. The approach known 

as "negative mining" in the literature has been repeated 

three times and the data set has been updated. The results 

obtained by running the classical defect detection methods 

and the proposed CNN architecture on the updated DB2 

dataset are presented in Table 3 also the validation accuracy 

and cross entropy loss presented in Figure 9 respectively. 

 

  

a b 

Figure 9. a) Classification accuracy b) Cross entropy loss 
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Table 3. Classification results of defect detection methods. (M: Million) 

 Accuracy (%) Time (sec) 

Methods Feature Numbers       Train        Test For one image 

Statistical 259 96.00 88.23 0.011 

HOG 128 96.90 91.93 0.047 

CoHOG 1536 95.31 87.52 0.312 

Fourier 7 83.10 80.70 0.003 

Wavelet 18 85.00 72.70 0.066 

Shearlet 59 59.20 33.40 0.302 

InceptionV3 6M 78.8 78,3 0.7 

MobileNetV2 4.2M 65.5 63.5 0.65 

Xception 22.8M 81.3 80.5 1.34 

Self-Supervised 0.8M 94 94.2 0.88 

Proposed model (Architecture 4) 4325 97.6 97.3 0.0061 

 

When the results in Table 3 are examined, it is seen that the 

proposed CNN-based architecture has the highest 

classification accuracy. The reason for this is that CNN can 

extract low, medium, and high-level features from images 

thanks to its layered structure and can classify these 

features with high accuracy with the help of a fully 

connected layer. Also, the times of the methods to render a 

fabric image are given in the last column of the table. These 

time values were calculated by taking the arithmetic 

average of 100 image processing times. Accordingly, it is 

seen that the proposed CNN architecture works quite fast, 

so it is the most suitable method to use in real-time systems. 

HOG and CoHOG methods calculate local and global 

features of fabric images based on gradient calculations. 

The light change in the fabric images and some non-defect 

noise information negatively affected the durability of the 

method. However, they have reached a better result than 

classical feature extraction methods in detecting fabric 

defects. Energy, contrast, correlation, and regularity used as 

statistical attributes seem to be successful in distinguishing 

fabric defects from the background. However, the success 

achieved in the training of the classifier is not at the desired 

level in the testing process of the classifier. Although the 

fabric images in the database have a regular pattern, this 

order is disrupted in the defect areas. The regularity 

parameter used is effective in capturing this situation. 

However, energy, correlation and contrast calculations were 

not sufficient to detect the defect with spatial pixel 

information. The reason for this is the insufficient local 

analysis of the fabric regions. Because the statistical 

calculations deal with the image as a whole, and therefore it 

is not possible to notice regional changes and reflect them 

on statistics. In other words, the statistical distribution in 

the pixel regions where the fabric defect occurs is lost 

among the pixel statistics of the whole image. 

Fourier, shearlet, and wavelet transform methods that 

extract attributes by converting the image from the spatial 

domain to frequency domain failed to achieve the desired 

success in both the training and testing processes of the 

classifier. In particular, the Shearlet transformation method 

gave unsuccessful results in the type of woven fabric and its 

defects. In the Shearlet transformation applied in a multi-

scale and angular direction, textural features of the fabric 

images in different levels and directions were obtained. 

However, defects expressing the distortion of regular fabric 

patterns could not be distinguished from the background 

and regular patterns. The most important reason for this is 

that the method is not resistant to situations such as noise 

and light changes. In addition, since the types of defects 

examined are similar to the regular structure in the fabric, 

the shearlet method together with the wavelet transform and 

Fourier transform methods did not reflect the defective 

regions strongly in the frequency spectrum. The sub-band 

images obtained in the wavelet transform method were 

modeled with the Gauss function. However, there is no 

special study to express the defective regions of the image 

with the parameters of the Gaussian function. In the method 

based on wavelet transform and Gaussian distribution, the 

frequency components of the defective regions are ignored 

and a spectrum or sub-band analysis to express the defect is 

not performed. In these methods, updates should be made to 

analyze and examine the defective area at the local level. In 

Fourier transform, defective regions are visibly apparent in 

the spectrum. However, this information was lost during the 

calculation of statistical 7 different feature information 

from this spectrum with a classical method. Therefore, it 

has been understood that the frequency spectrum needs to 

be analyzed with different methods. On the other hand, 

state-of-the-art methods that achieve better classification 

rate on much larger datasets. We have seen that it has worse 

results than the cnn architecture we designed for denim 

fabric dataset. In the proposed CNN-based fabric defect 

detection method, exactly this point was taken into 

consideration and the spectrum information of the Fourier 

transform was analyzed in a very different way. The 

frequencies of weft and warp patterns are filtered and the 

defective areas are made clear. In addition, the regions that 

do not contain defects are suppressed and the defect is 

brought to the fore. 

3.2 Real-Time Defect Detection Application 

Fabric defects are less likely to occur, making it difficult to 

perform a systematic comparison of the algorithm. 

Furthermore, it takes extra time and cost to change a loom’s 

warp beam, which limits the ability to quickly alter fabric 
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materials for online evaluation. These reasons lead us to 

evaluate the accuracy of the system. To perform real-time 

defect detection, we used our trained CNN 4 deep network 

architecture, which is described in Section 3. The proposed 

embedded vision-based defect detection has mounted on the 

Picanol OptiMax loom (see Figure 10). Hardware and image 

acquisition strategies have been described in Section 3. 

NVIDIA’s Nano card is chosen as the embedded platform. 

This low-cost card has a suitable hardware infrastructure to 

run CNN architectures. Software in Python programming 

language has been developed so that the images provided by 

the BlackFly camera can be stored and classified in Nano. 

This software transfers 5 images of 1920 1200 per second 

to Nano’s RAM using the API of the camera.  

The transferred images are first subjected to size reduction 

and then to patching. Finally, each patch is given as an 

input to the deep model which is loaded into the Nano and 

used the trained model to classify defects. The proposed 

framework has analyzed the denim fabric for about 24 

hours and with images of over 30000. The majority of 98% 

of the captured frames are defect-free fabric images (i.e., 

approx. 600 images contain defects). After completing the 

real-time defect detection process, we compared the results 

of our detection system and quality control reports. 

Examining the results of the quality control unit gives us an 

overall overview of the two separate defect detection 

methods. Thus, an objective comparison has been 

conducted between our real-time system and quality control 

unit.  Our proposed method can detect all of the defects 

labeled by the quality control unit which is 550 defects. In 

addition to this, our system can capture extra 29 defects 

which overlooked by the quality control unit. In case a 

defective image is detected, the defect type and information 

about the number of meters of the fabric roll are recorded in 

a separate database and defect reports are produced. The 

generated defect reports have been matched with the defect 

reports produced in the quality control unit and the detected 

defects have been verified. Classification results are given 

in Table (4).   

4. CONCLUSION 

In this paper, a real-time fabric defect detection system is 

proposed and implemented. The proposed defect detection 

system includes three main modules: vision system, CNN 

model, an embedded module.  Firstly, a novel fabric 

database has been contracted by using an industrial vision 

system on a loom. Then, an effective CNN model with 

negative mining is proposed for fabric defect detection. In 

the proposed methodology, a novel defective patch capture 

algorithm based on fast Fourier transform is developed to 

suppress the background and highlight defect regions. This 

algorithm improves the effectiveness and distinctiveness of 

the CNN model. CNN model is trained using defective 

patch capture algorithm.  

Real-time defect detection has been performed by moving 

the trained architecture to the embedded platform. The 

proposed model has some advantages such as the low 

computational cost and high detection rates. These 

advantages are the significant reasons for a detection 

system. Thus, real-time defect detection is performed, and 

high defect detection results have been obtained on a loom. 

However due to the environmental noise and loom machine 

vaibration our test classification results dropped by ~0.7%. 

As noticed in the experiments, there are different defect 

types in fabric production. The constraints of camera and 

light source reduced the distinctiveness between foreground 

defects and fabric background texture in the obtained 

images. Therefore, in future work, we have planned to 

solve these problems. We will expand the fabric defect 

database in terms of the kinds of defects. Moreover, we also 

apply various learning algorithms to the fabric defect 

detection. To further real time defect detection, the design 

of learning algorithms will be investigated. 
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Figure 10. Real-time defect detection system. 

 

Table 4. Real-time defect detection results 

 Ground truth Quality control unit Our proposed method 

Total images 30000 30000 30000 

Defect-free 29400 27165 28371 

Defected 600 550 579 

Classification results ~92.40% ~96.5% 
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