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Abstract
This research aims to investigate the asset allocation performance of three different optimization methods commonly 
applied in the literature for a portfolio composed of univariate returns generated from Mixed and Elliptic copulas 
instead of historical data. As a result, returns of five equities traded at the BIST30 index of the Turkish Stock Market 
were obtained. Dynamics of the univariate return series are modelled with GARCH processes with Student-t distributed 
innovations. Following the marginal modelling, a five-dimensional dependence structure between the series is modelled 
with Elliptical and Mixed copulas. From the fitted Mixed and Elliptical copula functions, daily returns of the equities are 
simulated which are employed by the specified optimization methods in order to find out methodology specific optimal 
portfolio allocations. Performance of the constructed optimal portfolios are compared according to varying risk and 
reward to variability ratios yielding results especially in favor of the Mixed and Student t copulas. The main contribution 
of this research is to be able to fill the gap in the literature on the out-of-sample portfolio allocation performance of 
copula functions where there are still fewer papers compared to the dependency modelling or the in-sample portfolio 
allocation performance of copulas. 
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Introduction

Optimal allocation of scarce funds between the assets of a portfolio is a long-standing de-
bate that Markowitz first grounds in 1952. Markowitz (1952) developed the Mean-Variance 
(MV) model suggesting to use of quantitative measures of risk and return in asset selection 
problems. Since then, there is growing literature on the applications, shortcomings, possible 
improvements and extensions of the model under the name Modern Portfolio Theory. Signi-
ficantly, the advances in technology made it possible to overcome some of the shortcomings 
leading the way to further developments.   
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One of the earliest criticisms of the MV model is made on the risk measure. Variance as 
a symmetric measure of deviations from the mean is criticized for equally penalizing upside 
and downside deviations. Moreover, research on the characteristics of return series showed 
that financial returns are leptokurtic, skewed with autocorrelation and changing variance le-
ading to a higher occurrence of joint tail movements compared to normal distribution. If the 
returns are skewed with high kurtosis, then variance will not be able to correctly specify the 
magnitude of the losses.    

In the meantime, the correlation coefficient as one of the most frequently applied linear 
dependency measures is criticized for not being able to model the tail co-movements of pre-
valent returns especially at the times of financial market boom or distress. On the other hand, 
Copula functions (Sklar, 1959) can model nonlinear dependence structures with extreme co-
movements that can be observed on the tails of the return distributions without any restriction 
on the types of the marginal distributions. 

Considering the above-mentioned series specific characteristics and modelling issues, this 
paper employs Elliptical and Mixed copulas based on Generalized Auto-Regressive Conditio-
nal Heteroskedasticity (GARCH) (Bollerslev, 1986; Engle, 1982) models to capture the dyna-
mic structure of the univariate returns together with the multivariate dependence between the 
series. Compared to most of the papers that mainly use the traditional method of historical 
returns or return forecasts of conditional mean and/or variance models, this paper employs 
returns simulated from copula functions to determine optimal weights of Tangency, Global 
Minimum CVaR (GMCVaR) and Global Minimum Variance (GMV) portfolios for the out-
of-sample period by also comparing their results with the traditional methods. Additionally, 
as an alternative to variance, minimum risk portfolios are obtained from Conditional Value at 
Risk (CVaR) measure that considers the expected value of the losses exceeding the threshold 
of VaR. The main contribution of this research is that there is still a small number of papers 
investigating performance of copula functions in the out-of-sample portfolio allocation tasks.

This paper consists of seven main sections. In Literature Review, following a brief intro-
duction to Modern Portfolio Theory, an overview of the literature on copula functions emp-
loyed in portfolio allocation context are given. The methodology of the paper is explained in 
the Theoretical Background section. Data and Marginal Models part of the paper introduces 
the data and parameter estimates of the univariate marginals. Copula Fits and Return Simula-
tions section explains the steps employed to fit the copula functions, obtain return simulations 
and determine the methodology specific optimal portfolio allocations. Research findings are 
summarized, and the paper is concluded in the last two sections.
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Literature Review

Before Harry Markowitz (1952), portfolios were constructed according to a simple/naive 
diversification approach that assumed a positive relation between the number of assets in a 
portfolio and its performance with a decreasing portfolio risk by simply adding more assets 
to the portfolio. 

In 1952, Markowitz with his publication named “Portfolio Selection” showed that it was 
not possible to diversify all portfolio risk with the simple diversification approach since the 
co-movement of asset returns were too high. He defined variance of returns as a portfolio risk 
estimator and expected value of the returns as the desired property of a portfolio. As a result, 
for the first time a quantitative return/risk framework for asset selection was proposed. Since 
then, the Mean-Variance (MV) model of Harry Markowitz (1952) and its further develop-
ments named Modern Portfolio Theory are the standard tools frequently applied in Finance. 
Furthermore, William Sharpe (1964), Tobin (1958), Lintner (1965), Jensen (1969), Fama 
(1970), Merton and Samuelson (1974), Merton (1980), Elton, Gruber, and Padberg (1978) 
and others contributed to the development of the MV framework.

Nevertheless, some of the assumptions of the MV model were highly criticized. One of 
them was the portfolio risk measure. Variance that is a symmetric measure of deviations from 
the portfolio mean, was found insufficient in measuring portfolio risk. As a result, varying 
risk measures were proposed that consider only the downside deviations from the mean, 
such as Semi-variance (H. Markowitz, 1959) or only the lower tail of the return distributions 
such as Lower Partial Moment (LPM) (Bawa & Lindenberg, 1977), VaR (Jorion, 2000) and 
CVaR (Acerbi & Tasche, 2002; Uryasev, 2000). Moreover, Rockafellar and Uryasev (2000, 
2002) developed an algorithm that allowed minimizing portfolio CVaR similar to minimizing 
portfolio variance in the MV framework. Furthermore, Patton (2004) examined the impact 
of skewness of univariate return series and the asymmetric dependence of the returns on 
portfolio allocation by constructing and comparing portfolios based on a bivariate normal 
distribution and copula based on more flexible distributions. Results of the study showed 
an improved portfolio allocation performance in terms of the investor’s utility when copula 
functions were employed compared to the bivariate normal model.

Riccetti (2013) applied the copula-GARCH model to obtain optimal weights of commo-
dity portfolios that maximized the expected utility of an investor in terms of the CRRA utility. 
The researcher compared the macro asset allocation performance of copula-GARCH, mean-
variance and univariate GARCH processes. According to the results of the study, Riccetti 
(2013) argued that the univariate GARCH(1,1) was better at macro asset allocation of com-
modity portfolios compared to the copula-GARCH model. Kresta (2015) employed a Student 
t copula based AR(1)-GARCH(1,1) model to forecast future stock returns to find maximum 
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Sharpe portfolios. According to the results, optimal portfolios of the copula-GARCH model 
yielded higher final wealth and lower maximum drawdown values compared to the portfolios 
of the bootstrapping method.   

Acık Kemaloglu and Kızılok Kara (2015) modelled  the dependence structure of four 
series (two indices: BIST30, BIST100 and two exchange rates: USD, EUR) by employing 
four copula functions in a static and dynamic context. Among the applied static and dynamic 
copulas, researchers indicated that dynamic tDCC was the best to model the dependence 
structure of the variables. According to the results of applied portfolio optimization based 
on CVaR risk measure, researchers argued that investing 35% of wealth in BIST30, 30% in 
USD, 20% in EUR and 15% in BIST100 yields a portfolio with the minimum CVaR value. 
In another study, Kızılok Kara and Acık Kemaloglu (2016) modelled the dependence of EUR 
and USD currency returns with static and dynamic copulas to find optimum CVaR portfolios 
with a changing point approach. Han, Li, and Xia (2017) suggested applying robust portfolio 
optimization methods by modelling the dynamic structure of the return series of ten indexes 
with DCC copula and copula based GARCH. The results of the study that used only bivariate 
copula functions indicated an outperformance of Worst-Case Conditional Value at Risk with 
copulas (WCVaR) method in the out-of-sample period, in contrast to the in-sample period in 
which the static robust method had higher cumulative portfolio returns. Sahamkhadam, Step-
han, and Östermark (2018) applied copula based ARMA-GARCH-EVT and GARCH-EVT 
for modelling conditional mean, variance and the dependence structure of ten stock indexes. 
From the fitted models, one day ahead returns of the indices were obtained and optimal 
weights for the Minimum CVaR, Global Minimum Variance (GMV) and Sharpe portfolios 
were determined. The performance of the portfolios was evaluated with an out-of-sample 
back-testing approach. According to the results, ARMA-GARCH-EVT-copula based Sharpe 
portfolio outperformed the benchmark portfolio in terms of cumulative portfolio wealth and 
elliptical copulas based GARCH-EVT models performed better at reducing portfolio risk 
compared to the benchmark models that were based on historical returns.  

Jin and Lehnert (2018) proposed various Dynamic Conditional Elliptical copulas by ex-
tending the dynamic equicorrelation (DECO) model to copula functions. Researchers emp-
loyed the proposed copulas to model the dependence structure of 89 US companies listed 
in a credit default swap index (CDX.NA.IG). Following the dependency modelling, they 
estimated VaR and expected shortfall (ES) measures of equally weighted and value-weighted 
portfolios. Researchers constructed optimal portfolios by applying the Mean-Variance (MV) 
model of Markowitz (1952) and the minimum ES optimization of Rockafellar and Uryasev 
(2000). Results of the research indicated the importance of marginal modelling especially 
for dynamic high dimensional models. Moreover, researchers argued that an improvement 
in portfolio risk management could be achieved by accurately modelling the dependence 
structure of variables and choosing an optimization method that also considered the tail risk. 



Özgür, Sarıkovanlık / Optimal Portfolio Allocation with Elliptical and Mixed Copulas

465

On the other hand, Trabelsi and Tiwari (2019) employed GPD distribution for the tails of the 
marginal density functions and simulated returns from Normal and Student t copulas. Rese-
archers used the simulated returns to find minimum CVaR portfolios and compared optimal 
portfolio VaR and CVaR values with the historical simulation. Results of the study showed 
an improved market risk estimation performance when the returns were simulated from the 
copula functions compared to historical simulation. In a more recent study, Yu and Liu (2021) 
proposed an investor specific mean-CVaR optimization model consisting of individual risk 
tolerance assessment. Researchers categorized individual risk tolerances based on demograp-
hic characteristics and employed a fuzzy comprehensive evaluation method to determine the 
investors’ (individuals) risk tolerances. They modelled the univariate returns with the copula-
GARCH and obtained the minimum CVaR portfolios for the given expected return thresholds 
determined by the investors’ risk tolerance. 

Theoretical Background

In this research, different types of copula functions were applied to model the dependency 
between five stocks and to simulate the univariate returns composing a portfolio. However, 
in dependency modelling with copula functions, the variables  are assumed to be random 
independent and identically distributed. Since most of the time the return series is autocorre-
lated with a changing variance with respect to time, a pre-model that would be able to capture 
series specific patterns was necessary. For this purpose, the Generalized Autoregressive Con-
ditional Heteroskedasticity (GARCH) model (Bollerslev, 1986; Engle, 1982) was employed. 
Building up on Engle (1982), Bollerslev (1986) defined GARCH(p,q) model as:

				    (1)

where  is a sequence of iid random variables with zero mean and variance one.  is 
the error term sequence and  is the conditional variance. When the  parameter of the 
conditional variance equation equals to zero, then Equation 1 would define Engle (1982)’s 
Autoregressive Conditional Heteroskedasticity (ARCH) model. Additionally, the parameters 
of  have the positivity constraints of .

Modelling Dependence with Copulas
It was Sklar (1959) who first introduced copula as a multivariate function that associates 

(ties) univariate marginals of a multivariate distribution. More formally, let  
be the univariate marginal distribution functions and F is an n-dimensional multivariate dist-
ribution defined on . The joint multivariate distribution F can be decomposed into a copula 
function C and its univariate marginals as:

						      (2)
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While the variables of each univariate margin are assumed to be iid, the dependence bet-
ween the variables of the margins are defined by the copula C that is given by:

				    (3)

where  is the copula parameter,  are the quantile functions and 
. The density c of the copula C is obtained by:

					     (4)

Since this paper applies, Normal, Student t and a mixed copula from two copulas of the 
Archimedean family, a brief introduction is given in the following paragraphs. For a more 
detailed discussion consult the research of  Joe (1997) and Nelsen (2006).

In dependency modelling, Normal (Gaussian) and Student t copulas are frequently applied 
copula types from the Elliptical family. Normal copula obtained from multivariate normal 
distribution is radially symmetric and has zero upper and lower tail dependence parame-
ters. As a result, the co-movement of the variables when either taking very high or very 
low values cannot be modelled with Normal copula. For a multivariate random vector of 

 an n-dimensional Normal copula function  is defined by:

			   (5)

In Equation  defines the inverse cdf of standard normal distribution,  is the 
linear correlation matrix. On the other hand, Student t copula derived from the multivariate 
Student’s-t distribution is also a radially symmetric copula that has positive and equal upper 
(UTD) and lower tail dependence (LTD) parameters. An n-dimensional Student t copula  
is defined as (Demarta & McNeil, 2005): 

			   (6)

where  represents the inverse cdf of Student’s-t distribution with the degrees of free-
dom parameter  and  is the correlation matrix.

The third copula type employed in this paper was a mixed copula which was constructed 
from Gumbel (Gumbel, 1960) and Clayton copulas (Clayton, 1978) with equal weights. The 
need for diverse asymmetric dependence structures with enhanced flexibility led the way to 
the development of Archimedean copulas. An Archimedean copula with a strict generator 
function  is defined as:

				    (7)

where  is the inverse of the generator function  which is a continuous and strictly 
decreasing function mapped from  onto  with the properties of  and 
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. Moreover, the properties of Clayton and Gumbel copulas are summarized in Table 
1 (Nelsen, 2006). Both Clayton and Gumbel copulas have tail dependence parameters only on 
one tail of the distribution defined either on the lower or upper tail of the distribution. 

Table 1
Properties of the N-dimensional Archimedean Copulas

Copula Definition Generator Func./ LTD, 
UTD

Clayton

Gumbel

Mixed Copulas
Mixed Copula was proposed as a more flexible alternative to single copulas. Since a con-

vex union of n-dimensional single copulas is also defined as a copula, a mixture of single 
copulas was suggested (Nelsen, 2006). Let  be a vector of weights with  
and  for all  and let  be n-dimensional copulas. The mixture of 
j number of n-dimensional copulas with weight vector  is an n-dimensional Mixed copula 
defined by:

	 (8)

Mixed copulas can be constructed from any of the Elliptical and Archimedean copulas. This 
research employed an equally weighted  combination of 5-dimensional 
Clayton and Gumbel copulas. While Clayton copula has only lower and Gumbel copula has 
only upper positive tail dependence parameters, constructed mixed copula has both upper and 
lower tail dependence with varying dependence strengths on the tails allowing for radial asy-
mmetry. 

Portfolio Optimization
This paper approached the problem of selecting the most appropriate portfolio asset combi-

nation in three different ways. First, the traditional MV model of Harry Markowitz (1952) was 
applied to find Global Minimum Variance Portfolios (GMVP). According to Harry Markowitz 
(1952), the risk of a portfolio was defined by variance and investors would prefer the smallest 
risk for a certain level of return. Furthermore, returns were normally distributed and there were 
not any transaction costs. On the other hand, Global Minimum Variance Portfolio (GMVP) 
(Merton, 1980) is also defined as one of the portfolios on the efficient frontier but among the 
efficient portfolios it is the one with the smallest risk level. GMVP is obtained by solving the 
minimization objective of: 

				    					     (9)
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In Equation 9, w is the vectoral representation of the weights of returns, 
 is the covariance matrix and W is the set of feasible solutions defined by: 

 and . The set of W defines total in-
vestment and long only constraints of the optimization applied in this paper. 

As a second approach, instead of variance, portfolio Conditional Value at Risk (CVaR) 
measure was employed as the main minimization objective of portfolio optimization which 
was implemented by Rockafellar and Uryasev (2000). Global Minimum CVaR Portfolio 
(GMCVaR) is defined as the portfolio with a minimum CVaR value which is on the efficient 
frontier constructed by mean-CVaR efficient portfolios. GMCVaR has an objective of:

				    					     (10)

Where  is the probability level, w is the vectoral representation of the weights of returns, 
and W is the set of feasible solutions defined as above. According to Rockafellar and Uryasev 
(2000), convex GMCVaR portfolio optimization objective can be re-written as a minimizati-
on of a linear objective with respect to linear constraints such as:

			   					    (11)

			   (12)

where r is the vector of random portfolio returns ,  is the minimum loss, w is 
the weight vector and  is the portfolio loss function. For the purpose to rewrite 
nonlinear optimization objective into a linear one, the auxiliary variables  are defined as 

. Mean-CVaR portfolio optimization doesn’t necessitate elliptically distri-
buted portfolio returns as it is in mean-variance optimization. 

Finally, the third approach applied to select optimal asset allocation was the maximum 
return per unit of risk portfolio or in other words Tangency Portfolio. It is a portfolio in the 
mean-variance framework of Harry Markowitz (1952) with an objective of maximizing risk 
free rate differenced  portfolio expected return / risk ratio which is the Sharpe Ratio (Shar-
pe, 1966, 1994). Tangency or Maximum Sharpe is a portfolio on the mean-variance efficient 
frontier where it is tangent to the Capital Market Line (CML). The optimization problem is 
defined as:

				    					     (13)

In Equation 13,  is the vectoral representation of the mean returns,  and  are the cova-
riance matrix and vectoral representation of return weights, respectively. Moreover, W is the 
set of feasible solutions as defined previously. In this research, the risk free rate was chosen to 
be equal to zero, since the attitude of investors to positive portfolio returns that might be be-
low or above risk-free rate changes significantly compared to gaining solely negative returns.
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Portfolio Performance Evaluation
Outcomes of the applied optimal asset allocation methods were evaluated with risk and 

reward to per unit of risk-based measures. Variance, VaR and CVaR were utilized as portfolio 
risk measures. Portfolio specific VaR and CVaR values were estimated with the nonparamet-
ric approach. Portfolio VaR is the negative of 5th% quantile of the portfolio returns or in other 
words it is the 95th% quantile of the portfolio losses:

				    				   (14)

In Equation 14,  represents the distribution of portfolio returns (r). Portfolio CVaR is the 
mean value of portfolio losses that are equal to and greater than portfolio VaR value:

			   			   (15)

Across applied varying portfolio optimization methodologies, the ones that minimize 
portfolio risk (GMV or GMCVaR portfolios) are expected to yield lower portfolio risk mea-
sures, either variance or CVaR depending on the optimization method.

Furthermore, portfolios are compared according to their reward to variability ratios or 
in other words risk-adjusted performance measures. From a growing number of measures, 
Sharpe Ratio (Sharpe, 1966, 1994) and Omega-Sharpe Ratios (Kazemi, Schneeweis, & Gup-
ta, 2003) were employed in this paper. As defined in the previous subsection (3.3 Portfolio 
Optimization), the Sharpe ratio is the risk-free rate differenced portfolio expected return / 
portfolio standard deviation ratio. It is a well-known and commonly applied performance 
measure in finance literature. Nevertheless, the ratio is criticized for being inaccurate under 
nonnormal return distributions. On the other hand, Keating and Shadwick (2002) suggested 
the Omega measure as a probability weighted ratio of portfolio returns above and below a 
threshold return ( ):

				    				    (16)

where x is the random portfolio returns and (a,b) are the extreme tail (minimum and maxi-
mum) realizations of the portfolio return distribution, respectively. Moreover,  
is the cdf of the portfolio returns.

Later, as a modification of Omega, Kazemi et al. (2003) proposed Sharpe-Omega Ratio. 
First, Kazemi et al. (2003) showed that Omega equals to the ratio of the European call and 
European put option prices that were written on the portfolio:

				   (17) 

In Equation 17, f(x) represents the density of portfolio returns, C( ) and P( ) are the undis-
counted European call and Put option prices written on the portfolio. From Equation 17, Ka-



Istanbul Business Research 52/3

470

zemi et al. (2003) derived and defined the Sharpe-Omega as the ratio of the expected excess 
portfolio return over the value of the put option written on the portfolio:

				    				    (18)

where  is defined as the expected portfolio return,  is the threshold or the minimum 
acceptable return (MAR). In this research, similar to the assumption of zero risk-free rate for 
the Sharpe ratio and Tangency portfolio optimization, MAR or the threshold return  is also 
assumed to be zero.

Additionally, D Ratio suggested by Bacon (2008) was applied to compare the perfor-
mance of the portfolios. D Ratio is defined as the ratio of the sum of portfolio negative and 
positive returns considering their frequency:

				    			   (19)

where  is the portfolio return i, T is the number of portfolio returns,  and  are the total 
number of returns that are below and above zero, respectively.

Final portfolio wealth values ( ) of the optimal portfolios are also compared with an 
assumption of 100 base (beginning) value ( ):

				    				    (20)

In Equation 20,  is defined as the return of an optimal portfolio at day k of the out of 
sample period. So that an investor is assumed to rebalance its portfolio on a daily basis.

Data and Marginal Models

This research employed five equities traded at BIST30 Index of the Turkish Stock Market. 
The data consisted of 1,390 observations for the period of 19 June 2013 – 28 December 2018. 
Three of the five companies; BIM Birleşik Mağazalar A.Ş. (BIMAS), Türkiye Halk Bankası 
(HALKB) and Türk Hava Yolları (Turkish Airlines, THYAO) operate in Retail, Finance and 
Airline industries, respectively. The rest are Holding companies; Sabancı Holding (SAHOL) 
and Koç Holding (KCHOL) that operate in various industries. Daily closing prices of the 
stocks were obtained from BORSA Istanbul A.S. The returns were calculated by:

				    				    (21)



Özgür, Sarıkovanlık / Optimal Portfolio Allocation with Elliptical and Mixed Copulas

471

Ta
bl

e 
2

D
es

cr
ip

tiv
e 

St
at

is
tic

s
In

-S
am

pl
e 

Pe
ri

od
 (1

9/
06

/2
01

3 
- 3

0/
12

/2
01

6)
 F

ul
l S

am
pl

e 
(1

9/
06

/2
01

3 
– 

28
/1

2/
20

18
)

St
at

 / 
St

oc
k

B
IM

A
S

H
A

L
K

B
K

C
H

O
L

SA
H

O
L

T
H

YA
O

B
IM

A
S

H
A

L
K

B
K

C
H

O
L

SA
H

O
L

T
H

YA
O

M
ea

n
0.

02
1

-0
.0

73
0.

04
2

-0
.0

15
-0

.0
54

0.
05

4
-0

.0
67

0.
02

8
-0

.0
25

0.
04

9
M

ed
ia

n
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
M

in
-7

.7
76

-1
3.

17
2

-7
.0

26
-1

0.
79

5
-1

3.
44

9
-7

.7
76

-1
5.

38
7

-7
.1

92
-1

0.
79

5
-1

3.
44

9
M

ax
7.

60
5

13
.6

38
8.

28
9

8.
41

7
10

.3
44

7.
60

5
13

.6
38

8.
28

9
8.

41
7

10
.3

44
SD

1.
68

8
2.

34
6

1.
72

6
1.

91
3

2.
21

7
1.

62
8

2.
44

5
1.

73
0

1.
82

9
2.

38
0

Sk
ew

ne
ss

-0
.0

06
-0

.3
46

0.
06

2
-0

.0
27

-0
.2

66
0.

18
1

-0
.3

37
0.

00
6

-0
.1

67
-0

.2
74

K
ur

to
si

s
4.

90
9

6.
88

6
4.

96
3

4.
73

2
6.

56
7

4.
94

0
7.

21
4

4.
69

6
4.

78
5

5.
37

7
Ja

rq
ue

-B
er

a
13

6.
3*

**
58

0.
2*

**
14

4.
6*

**
11

2.
3*

**
48

4.
7*

**
22

7.
1*

**
10

59
.6

**
*

16
7.

9*
**

19
2.

3*
**

34
6.

8*
**

A
D

F 
st

at
.

-1
0.

40
**

-9
.8

57
**

-1
0.

54
**

-1
0.

38
**

-9
.1

3*
*

-1
1.

53
**

-1
1.

49
**

-1
1.

02
**

-1
1.

39
**

-1
0.

31
**

LB
 Q

(1
0)

0.
57

6
0.

63
5

0.
07

5
0.

28
9

0.
00

4
0.

01
6

0.
25

8
0.

05
1

0.
06

5
0.

00
0

LM
(5

)
0.

00
0

0.
01

1
0.

08
3

0.
04

0
0.

00
0

0.
00

0
0.

00
9

0.
01

6
0.

00
0

0.
00

0
LM

(1
0)

0.
00

3
0.

12
1

0.
00

0
0.

00
0

0.
00

6
0.

00
0

0.
04

2
0.

00
0

0.
00

0
0.

00
0

N
ot

es
: *

**
 a

nd
 *

* 
in

di
ca

te
 si

gn
ifi

ca
nc

e 
at

 1
%

 a
nd

 %
5 

le
ve

ls
, r

es
pe

ct
iv

el
y.

 p
 v

al
ue

s o
f t

he
 L

ju
ng

-B
ox

 a
nd

 A
rc

h 
LM

 te
st

s a
re

 re
po

rte
d.

 



Istanbul Business Research 52/3

472

Series specific descriptive statistics are given in Table 2. According to the obtained sta-
tistics, returns are skewed and have excess kurtosis. Applied Jarque-Bera test for normality 
also confirmed the violation of the normality assumption of financial return series. Moreover, 
plots of price, return and absolute return series of stocks are given in Figure 1.

Figure 1. Plots of Price, Return and Absolute Return Series

Out of 1,390 observations spanning to five and half years, 887 of them were used for 
the first GARCH model parameter estimation window. GARCH(1,1) specifications with 
Student’s t residuals efficiently captured the heteroskedastic and fat tailed return series. AR(1) 
was also included in a specification in case of serial autocorrelation, see THYAO in Table 3.
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Table 3
GARCH(1,1) Specifications for the First Estimation Window
Return GARCH Fit AR(1) ω α1 β1 ν LB(12) LM(10)
BIMAS GARCH(1,1) - 0.212   0.073** 0.853*** 5.871*** 0.580 0.645
HALKB GARCH(1,1) - 0.807 0.065 0.784*** 5.057*** 0.860 0.757
KCHOL GARCH(1,1) -   0.081*    0.039** 0.933*** 6.597*** 0.204 0.752
SAHOL GARCH(1,1) - 0.340 0.047** 0.856*** 9.265*** 0.669 0.613
THYAO AR(1)-GARCH(1,1) -0.0735** 0.733** 0.089** 0.758*** 5.163*** 0.234 0.643
Notes: See the notes under Table 2. GARCH innovations are modelled with Student’s t distribution.

In this research one day ahead, rolling windows approach was applied. As mentioned 
above, the first window included return observations from 1 to 887 and was used to simulate 
returns for the first day of the out-sample period consisting of 503 observations (the data star-
ting from 888 to 1,390). The second fit window consisted of observations from 2 to 888 and 
was used to simulate returns for the second day of the out-sample period. One day ahead rol-
ling windows approach was applied until simulations of the returns were obtained for every 
single day of the out-sample period. As a result, univariate GARCH processes given in Table 
3 are re-estimated for a total of 503 windows keeping the window size constant.

Copula Fits and Return Simulations

Following the marginal modelling, pseudo-uniform variables were obtained from the 
standardized innovations of the GARCH filtered series. For the first window, when the scat-
terplots of the pseudo-uniform variables are examined (see Figure 2), it can be seen that the 
series are both lower and upper tail dependent with varying dependence strengths on the tails.

         

Figure 2. Scatterplots of the Pseudo-Uniform Variables of Series Obtained in First Window
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Additionally, the applied multivariate Radial Symmetry Test (Genest & Nešlehová, 2014; 
Kojadinovic, 2017), confirmed our observation with strong evidence against radial symmetry 
(see also the recent work of Billio, Frattarolo, and Guégan (2022) in which a randomization 
based high dimensional copula radial symmetry test was proposed). Since, Student t copula 
is a radial symmetric copula, this finding is in favor of  the mixed Clayton-Gumbel copula. 
Especially, if it is considered that in this research there are 503 windows in which the para-
meters of the copula functions were re-estimated in that case the assumption of symmetric 
dependence on the lower and upper parts of the multivariate distributions was not realistic.

On the next step, the parameters of Normal, Student t and the equally weighted mixture 
of Clayton-Gumbel copulas were estimated from the pseudo-uniform variables. For this pur-
pose, Maximum Pseudo-Likelihood estimation method was used by employing the “Copula” 
package (Hofert, Kojadinovic, Maechler, & Yan, 2018) of R software (R Core Team, 2019). 
From the fitted copula functions, 1-day ahead returns were simulated by obtaining daily 1,000 
return values for each stock. Using the daily simulated returns, optimal portfolio weights of 
stocks were determined by employing the three different optimization methodologies exp-
lained in the Portfolio Optimization subsection. More formally; let  be pseudo-uniform 
variables simulated from the fitted 5-dimensional copula function. For d=1,2,…,5, d is the 
return number, i=1,2,…,503 is the data fit window and s=1,…,1,000 is the number of simula-
tion. The estimation steps, can be summarized as follows:

-  , return and window specific standardized innovations are estimated.

- One day ahead 1,000 return simulations were obtained from the window and return spe-
cific GARCH equations;  .

- One day ahead optimal portfolio weights were estimated using the GMV, GMCVaR and 
Tangency portfolio optimization models from the simulated returns. The optimization con-
ditions included the assumptions of no transaction costs, total investment of the beginning 
wealth and no short selling of the assets.

- The previous steps were repeated until daily optimal portfolio weights of stocks were 
estimated for every single day of the out-sample period. 

- Once, all the copula and optimization model specific daily optimal portfolio weights 
were determined, they were multiplied with the realized stock returns (the corresponding out 
of sample period returns) and the final model specific daily optimal portfolio returns were 
obtained. 

Additional to the copula functions, daily optimal portfolio weights were also estimated 
from the historical data and univariate GARCH simulations. Furthermore, equally weighted 
(EWP) or in other words 1/n naive portfolio was also included in the performance evaluati-
ons, since many studies reported the outperformance of EWP. 
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Empirical Findings

Performance of the constructed portfolios from varying methods was compared accor-
ding to the estimated reward, risk and reward to variability measures summarized in Table 
4. According to Table 4, portfolio with the minimum variance measure is constructed from 
the daily optimal weights of Global Minimum Variance portfolios of historical returns. Since 
variance is a symmetric estimate, it does not correctly account for the deviations below the 
mean when the portfolio return distribution is not symmetric.

Table 4
Performance Measures of the Optimal Portfolios

Method Port. 
Mean Variance VaR5% ES5% Sharpe 

Ratio

Sharpe-
Omega 
Ratio

DRatio
Portfolio 

Final 
Wealth

EWP 0.0494 1.9775 2.4721 3.2428 0.0351 0.0963 0.8390 121.96
GMVhis 0.0639 1.3744 1.9577 2.5573 0.0545 0.1532 0.7726 133.19
GMCVaRhis 0.0553 1.3753 1.9223 2.5591 0.0471 0.1325 0.8385 127.58
TPhis 0.0636 2.2782 2.3800 3.4356 0.0421 0.1178 0.8035 130.02
GMVgarch 0.0458 1.5623 2.0628 2.7977 0.0367 0.1001 0.8564 121.08
GMCVaRgarch 0.0423 1.5812 2.1397 2.8684 0.0336 0.0913 0.8362 118.88
TPgarch -0.0011 2.8372 2.8477 4.1352 -0.0006 -0.0017 0.9474 92.57
GMVnc 0.0652 1.4098 1.9568 2.5597 0.0549 0.1561 0.8020 133.95
GMCVaRnc 0.0495 1.4546 1.9840 2.7408 0.0411 0.1161 0.8308 123.68
TPnc 0.0704 3.2951 2.5263 4.0771 0.0388 0.1165 0.9137 131.11
GMVst 0.0623 1.3998 1.9524 2.5213 0.0527 0.1490 0.8199 132.07
GMCVaRst 0.0655 1.4282 1.9034 2.5003 0.0548 0.1549 0.8093 134.13
TPst 0.1682 3.6940 2.7296 4.3275 0.0875 0.2854 0.6873 212.26
GMVmixed 0.0364 1.3851 1.9421 2.5290 0.0310 0.0849 0.8964 116.01
GMCVaRmixed 0.0245 1.4063 1.9396 2.5733 0.0207 0.0560 0.8850 109.20
TPmixed 0.1860 3.1548 2.8132 3.9176 0.1047 0.3324 0.6706 235.34
Note: Models yielding the best measures are shown in bold. EWP is the equally weighted portfolio. Following the optimization methods 
(GMV, GMCVaR and TP), suffixes of -his, -garch, -nc, -st and mixed are given to indicate data type used for the optimization that are 
historical, GARCH simulated, Normal, Student t and Mixed copula simulated returns, respectively.    

On the other hand, portfolio VaR and CVaR risk estimates take into account only the lower 
tail of the portfolio return distribution quantifying only the losses at and below of a given 
probability level. Instead of variance, if portfolio VaR and/or CVaR is considered, then the 
Global Minimum CVaR portfolio employing returns simulated from Student t copula based 
GARCH(1,1) model outperformed the rest by having the smallest portfolio risk. When the 
optimal portfolios are compared according to the reward to variability ratios, Tangency (max 
Sharpe) portfolio employing the returns simulated from the Mixed copula had the biggest 
Sharpe and Sharpe-Omega ratios with the lowest DRatio clearly showed that the ratios were 
ranked with respect to the best model. Additionally, portfolio mean, and final portfolio wealth 
values obtained from Student t and Mixed copula-Tangency portfolios outperformed the rest 
with a big difference. Time development of the portfolio cumulative wealth values of GMV, 
GMCVaR and Tangency portfolios are given on Figure 3 and Figure 4, respectively. 
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Figure 3. Time Plots of Cumulative Wealth of the GMV and GMCVaR Portfolios

From the following Figure 4, it can be seen that most of the time cumulative wealth of 
Student t copula-based Tangency portfolio was outperforming the rest but could not catch up 
the sharp rise of the Mixed copula-TP portfolio beginning in August 2018. Nevertheless, the 
rest of the models do not perform as well as copula-based models in terms of final portfolio 
wealth and reward-to-variability ratios showing the importance of tail dependence modelling. 
Especially, portfolios constructed with returns simulated from the univariate GARCH proces-
ses performed worst in most measures highlighting the importance of dependency modelling.
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Figure 4. Time Plot of Cumulative Wealth of the Tangency Portfolios

Conclusion

This paper investigated out-of-sample performance of Normal, Student t and Clayton-
Gumbel Mixed copula functions in asset allocation context with three different portfolio al-
location strategies. First, optimal global minimum risk portfolios were obtained by applying 
Global Minimum Variance optimization method from the Mean-Variance framework. As an 
alternative method, optimal portfolios were constructed from Global Minimum CVaR optimi-
zation that minimizes portfolio CVaR as a risk measure instead of variance. Moreover, since 
the purpose of an investment is to earn the highest return relative to the per unit of risk of the 
investment, Tangency or maximum Sharpe portfolio optimization was employed as the third 
portfolio allocation strategy. 

Furthermore, the performance of the copula and optimization method specific optimal 
portfolios were compared with the equally weighted portfolio as well as optimal portfolios 
constructed with GMV, GMCVaR and TP optimizations that either use historical returns or 
returns obtained from the univariate GARCH simulations. The results indicated that copula 
functions improved the out-sample asset allocation performance of the optimization models 
either by reducing the portfolio risk or by increasing the risk adjusted portfolio return. The 
usefulness of the copulas was more pronounced if extreme co-movements on the tails of the 
joint return distribution were more prevalent than suggested by normal distribution.

Moreover, the results of this study have the limitations of being dependent on the charac-
teristics of the data fit and evaluation periods. The main aim of using copula functions was 
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to model the non-linear co-movement of assets and/or the dependence that may occur on 
the tails of multivariate portfolio distributions. As a result, a portfolio allocation with copula 
functions in periods of weaker or no co-movement between the assets and without prevalence 
of extreme observations might yield results in favor of the other models. 
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