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Abstract. The definitions of new type separated subsets are given in ideal

topological spaces. By using these definitions, we introduce new types of con-
nectedness. It is shown that these new types of connectedness are more general

than some previously defined concepts of connectedness in ideal topological

spaces. The new types of connectedness are compared with well-known con-
nectedness in point-set topology. Then, the intermediate value theorem for

ideal topological spaces is given. Also, for some special cases, it is shown that
the intermediate value theorem in ideal topological spaces and the intermediate

value theorem in topological spaces coincide.

1. Introduction

The concept of ideal in topological spaces was first studied by Kuratowski [16]
and Vaidyanathswamy [33]. More properties are given for ideal topological spaces
in [10]. In [10, 33], it is shown that the local function of a set is a generalization
of the concepts of closure point, ω-accumulation point and condensation point of
that set. The concept of ideal was applied not only to topology but also to different
areas of mathematics. For example, the Cantor-Bendixson Theorem is generalized
in [6]. New special spaces such as I-Rothberger [7], I-Baire [17], I-Resolvable
and I-Hyperconnected [3],I-Extremally Disconnected [12], I-Alexandroff and Ig-
Alexandroff [4] are defined by using ideal. In addition, the concepts of ideal and
local function are studied in fuzzy set theory [28], soft set theory [11] and ditopo-
logical texture spaces [15].

Connectedness is a topological invariant. So, the concept of connectedness has
an important role in general topology. The intermediate value theorem in calculus
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was generalized by means of connectedness in topological spaces [25]. Many types of
connectedness are defined by using the local function in [20,31] and these connect-
edness are stronger connectedness. The generalization of connectedness has been
defined in [18,26] More features of connectedness types given in [20] were examined
in [14]. In addition, many operators such as local closure function [1], semi-closure
local function [9] , weak semi-local function [35,36], semi-local function [13], a-local
function [2, 21], M-local function [22], c∗-local function [29], Ω-operator [19] and
ψ∗-operator [23] are defined in recent years. In this study, we define new types of
connectedness by using local functions and local closure functions. In this way, we
generalize all connectedness types in [20]. After that, new types of connectedness
are compared with well-known connectedness. Also, we define new components
with the help of new types of connectedness. In the last section, we give the inter-
mediate value theorem in ideal topological spaces. For the minimal ideal I = {∅},
we show that the intermediate value theorem in general topological spaces and the
intermediate value theorem in ideal topological spaces coincide.

2. Preliminaries

In any topological space (U, τ), we denote the interior and the closure of the
subset M as Int(M) and Cl(M), respectively. The power set of U is denoted by
P(U). Both open and closed subsets are called clopen. The collection of all open
neighborhoods of the point x is denoted by τ(x).

Definition 1. [16] Let U be nonempty set and I ⊆ P(U). If the following condi-
tions are satisfied:

(1) ∅ ∈ I.
(2) If M ∈ I and K ⊆M , then K ∈ I.
(3) If M,K ∈ I, then M ∪K ∈ I.

then the collection I is called an ideal on U .

The ideal I = {∅} is called minimal ideal and the ideal I = P(U) is called maxi-
mal ideal. Although the topology is not needed to define an ideal, some collections
of sets in the topological spaces form ideals. In any topological space (U, τ), a subset
M is called nowhere dense, if Int(Cl(M)) = ∅. The subset M is called discrete set
if M ∩Md = ∅ (where Md is derived set of M). A subset of U is called meager (or
set of first category) if it can be written as a countable union of nowhere dense sub-
sets of U . A subset of U is called relatively compact if its closure is compact. The
collection of all nowhere dense subsets Inw = {M ⊆ U : M is nowhere dense}, the
collection of all closed-discrete subsets Icd = {M ⊆ U : M is closed and discrete},
the collection of all meager subsets Img = {M ⊆ U : M is meager set}, the col-
lection of all relatively compact subsets IK = {M ⊆ U : M is relatively compact}
and If◦g = {A ⊆ U : f ◦ g(A) = ∅}, where f∼Ug are ideals on U [16, 24,33].
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If (U, τ) is a topological space with an ideal I on U , this space is called an ideal
topological space or briefly I-space. Sometimes we denote this case with the triple
(U, τ , I).

Definition 2. [16] In any I-space (U, τ), a function (.)∗ : P(U) → P(U) is defined
by

M∗(I, τ) = {x ∈ U : O ∩M /∈ I for every O ∈ τ(x)}
is called the local function of a subset M .

Sometimes we write brieflyM∗(I) orM∗ instead ofM∗(I, τ). M∪M∗ = Cl∗(M)
is a Kuratowski closure operator. So this operator generates a topology on U . This
topology is denoted by τ∗ and defined as τ∗ = {M ⊆ U : Cl∗(U \M) = (U \M)}.
Moreover τ ⊆ τ∗ and so M ⊆ Cl∗(M) ⊆ Cl(M). Elements of τ∗ are called ∗-open.
The complement of a ∗-open subset is called ∗-closed.

Proposition 1. [10,16,33] Let (U, τ) be an I-space and M,K ⊆ U .

(1) If M ⊆ K, then M∗ ⊆ K∗.
(2) M∗ = Cl(M∗) ⊆ Cl(M). That is, M∗ is closed set.
(3) (M ∪K)∗ =M∗ ∪K∗.
(4) If I = {∅}, then M∗({∅}) = Cl(M).
(5) If I = P(U), then M∗(P(U)) = ∅.

Definition 3. [1] In any I-space (U, τ), a function Γ(.) : P(U) → P(U) defined by

Γ(M)(I, τ) = {x ∈ U : Cl(O) ∩M /∈ I for every O ∈ τ(x)}
is called the local closure function of the subset M .

Sometimes we write briefly Γ(M)(I) or Γ(M) instead of Γ(M)(I, τ).
The θ-closure of any subset M is defined in [34] as Clθ(M) = {x ∈ U : Cl(O) ∩

M ̸= ∅ for every O ∈ τ(x)}.

Proposition 2. [1] Let (U, τ) be an I-space and M,K ⊆ U .

(1) If M ⊆ K , then Γ(M) ⊆ Γ(K).
(2) Γ(M) = Cl(Γ(M)) ⊆ Clθ(M). That is Γ(M) is closed set.
(3) Γ(M ∪K) = Γ(M) ∪ Γ(K)
(4) If I = {∅}, then Γ(M)({∅}) = Clθ(M).
(5) If I = P(U), then Γ(M)(P(U)) = ∅.

Lemma 1. [1] In any I-space (U, τ), M∗(I, τ) ⊆ Γ(M)(I, τ).

Definition 4. [30] Let (U, τ) be an I-space and M ⊆ U . The subset M is called
Γ-dense-in-itself if M ⊆ Γ(M).

Definition 5. [8] Let (U, τ) be an I-space and M ⊆ U . The subset M is called
∗-dense-in-itself if M ⊆M∗.

Nonempty subsets M,K of a topological space (U, τ) are called separated if
Cl(M) ∩ K = M ∩ Cl(K) = ∅. The topological space (U, τ) is called connected
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if U is not the union of two separated subsets. The subset M in a topological
space is connected if and only if M is not the union of separated subsets in the
subspace (M, τM ) or equivalently M is not the union of two separated subsets in
(U, τ). There are many expressions equivalent to definition of connectedness in
the literature [5, 25, 32]. We say that the subsets M,K are τ -separated if they are
separated subsets in (U, τ). We say that the subset M is τ -connected if it is a
connected subset in (U, τ). That an I-space (U, τ) is τ -connected means that the
topological space (U, τ) is τ -connected.

Definition 6. [20] Let (U, τ) be an I-space and M,K be nonempty subsets in
this space. These subsets are called ∗∗-separated (resp. ∗-Cl∗-separated, ∗-Cl-
separated), ifM∗∩K =M∩K∗ =M∩K = ∅ (resp. M∗∩Cl∗(K) = Cl∗(M)∩K∗ =
M ∩K = ∅, M∗ ∩ Cl(K) = Cl(M) ∩K∗ =M ∩K = ∅).

Definition 7. [20] Let (U, τ) be an I-space and M ⊆ U . The subset M is called
∗∗-connected (resp. ∗-Cl∗-connected, ∗-Cl-connected) if it is not the union of two
∗∗-separated (resp. ∗-Cl∗-separated, ∗-Cl-separated) subsets.

From these definitions, the following diagrams are obtained in [20].

Figure 1. Relations among types of separated subsets which are
defined via local function

Figure 2. Relations among types of connectedness which are de-
fined via local function

3. New Types of Separated Subsets via Local Closure

Definition 8. Let (U, τ) be an I-space and M ,K be nonempty subsets of U . These
subsets are called

(1) Γ-Cl-separated if Γ(M) ∩ Cl(K) = Cl(M) ∩ Γ(K) =M ∩K = ∅.
(2) Γ-Cl∗-separated if Γ(M) ∩ Cl∗(K) = Cl∗(M) ∩ Γ(K) =M ∩K = ∅.
(3) Γ-separated if Γ(M) ∩K =M ∩ Γ(K) =M ∩K = ∅.
(4) Γ-∗-separated if Γ(M) ∩K∗ =M∗ ∩ Γ(K) =M ∩K = ∅.
(5) 2∗-separated if M∗ ∩K∗ =M ∩K = ∅.

Theorem 1. Let (U, τ) be an I-space and M ,K be nonempty subsets of U .

(1) If M ,K are Γ-Cl-separated, then they are Γ-Cl∗-separated subsets.
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(2) If M ,K are Γ-Cl-separated, then they are ∗-Cl-separated subsets.
(3) If M ,K are Γ-Cl∗-separated, then they are Γ-separated subsets.
(4) If M ,K are Γ-Cl∗-separated, then they are ∗-Cl∗-separated subsets.
(5) If M ,K are Γ-separated, then they are ∗∗-separated subsets.
(6) If M ,K are Γ-Cl∗-separated, then they are Γ-∗-separated subsets.
(7) If M ,K are Γ-∗-separated, then they are 2∗-separated subsets.
(8) If M ,K are ∗-Cl∗-separated, then they are 2∗-separated subsets.

Proof. Since M ⊆ Cl∗(M) ⊆ Cl(M) , K ⊆ Cl∗(K) ⊆ Cl(K) and Definition 8 ,
(1)-(3)-(6)-(8) are obtained. By using Lemma 1 and Definition 8, (2)-(4)-(5)-(7)
are obtained. □

In addition to this theorem, since τ ⊆ τ∗, τ -separated subsets are τ∗-separated.
From Theorem 1 and Figure 1, we obtain the following diagram:

Figure 3. Relations among new types of separated subsets

For this diagram, counterexamples and independent concepts are shown in Ex-
ample 1 and Example 2.

Example 1. Let τ = {∅, U, {x}, {d}, {x, y}, {x, z}, {a, c}, {x, d}, {x, y, z}, {a, c, d},
{x, a, c}, {x, z, d}, {x, y, d}, {a, b, c, d}, {x, a, c, d}, {x, y, a, c}, {x, z, a, c}, {x, y, z, d},
{x, y, z, a, c}, {x, a, b, c, d}, {x, y, a, c, d}, {x, z, a, c, d}, {x, z, a, b, c, d}, {x, y, a, b, c, d},
{x, y, z, a, c, d}} be a topology on U = {a, b, c, d, x, y, z} and let I = {∅, {x}, {a}, {a, x}}
be an ideal on U . The following table gives information about some subsets of this
ideal topological space.

According to Table:

(1) C and E are Γ-Cl∗-separated subsets but not Γ-Cl-separated.
(2) D and G are ∗-Cl-separated subsets but not Γ-Cl-separated.
(3) D and G are ∗-Cl∗-separated but not Γ-Cl∗-separated.
(4) C and H are Γ-separated subsets but not Γ-Cl∗-separated.
(5) D and G are ∗∗-separated subsets but not Γ-separated.
(6) E and F are Γ-∗-separated subsets but not Γ-Cl∗-separated.
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Table 1. Information about some subsets according to the given
I-space

A = {b} A∗ = {b} Γ(A) = {a, b, c, d} Cl∗(A) = {b} Cl(A) = {b}

B = {c} B∗ = {a, b, c} Γ(B) = {a, b, c} Cl∗(B) = {a, b, c} Cl(B) = {a, b, c}

C = {d} C∗ = {b, d} Γ(C) = {b, d} Cl∗(C) = {b, d} Cl(C) = {b, d}

D = {z} D∗ = {z} Γ(D) = {x, y, z} Cl∗(D) = {z} Cl(D) = {z}

E = {a, y} E∗ = {y} Γ(E) = {x, y, z} Cl∗(E) = {a, y} Cl(E) = {a, b, c, y}

F = {b, c} F∗ = {a, b, c} Γ(F ) = {a, b, c, d} Cl∗(F ) = {a, b, c} Cl(F ) = {a, b, c}

G = {b, y} G∗ = {b, y} Γ(G) = U Cl∗(G) = {b, y} Cl(G) = {b, y}

H = {c, y} H∗ = {a, b, c, y} Γ(H) = {a, b, c, x, y, z} Cl∗(H) = {a, b, c, y} Cl(H) = {a, b, c, y}

K = {d, x} K∗ = {b, d} Γ(K) = {b, d} Cl∗(K) = {b, d, x} Cl(K) = {b, d, x, y, z}

L = {d, y} L∗ = {b, d, y} Γ(L) = {b, d, x, y, z} Cl∗(L) = {b, d, y} Cl(L) = {b, d, y}

M = {x, z} M∗ = {z} Γ(M) = {x, y, z} Cl∗(M) = {x, z} Cl(M) = {x, y, z}

(7) G and M are 2∗-separated subsets but not Γ-∗-separated.
(8) E and F are 2∗-separated subsets but not ∗-Cl∗-separated.
(9) D and G are ∗-Cl-separated subsets but not Γ-Cl∗-separated. C and E are

Γ-Cl∗-separated subsets but not ∗-Cl-separated. That is, the concepts of
∗-Cl-separated and Γ-Cl∗-separated are independent of each other.

(10) E and F are Γ-∗-separated subsets but not ∗-Cl-separated. D and G are
∗-Cl-separated subsets but not Γ-∗-separated That is, the concepts of ∗-Cl-
separated and Γ-∗-separated are independent of each other.

(11) E and F are Γ-∗-separated subsets but not ∗-Cl∗-separated. D and G are
∗-Cl∗-separated subsets but not Γ-∗-separated. That is, the concepts of Γ-∗-
separated and ∗-Cl∗-separated are independent of each other.

(12) A and E are Γ-∗-separated subsets but not Γ-separated. C and H are
Γ-separated subsets but not Γ-∗-separated. That is, the concepts of Γ-∗-
separated and Γ-separated are independent of each other.

(13) E and F are Γ-∗-separated subsets but not ∗∗-separated. D and G are
∗∗-separated subsets but not Γ-∗-separated. That is, the concepts of Γ-∗-
separated and ∗∗-separated are independent of each other.

(14) E and F are 2∗-separated subsets but not Γ-separated. C and H are Γ-
separated subsets but not 2∗-separated. That is, the concepts of 2∗-separated
and Γ-separated are independent of each other.

(15) H and K are ∗∗-separated subsets but not 2∗-separated. E and F are 2∗-
separated subsets but not ∗∗-separated. That is, the concepts of 2∗-separated
and ∗∗-separated are independent of each other.
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(16) D and G are ∗-Cl-separated subsets but not Γ-separated. C and H are Γ-
separated subsets but not ∗-Cl-separated. So, the concepts of ∗-Cl-separated
and Γ-separated are independent of each other.

(17) D and G are ∗-Cl∗-separated subsets but not Γ-separated. B and L are
Γ-separated subsets but not ∗-Cl∗-separated. So, the concepts of ∗-Cl∗-
separated and Γ-separated are independent of each other.

Lemma 2. Let (U, τ) be P(U)-space and M,K be nonempty subsets of U such
that M ∩ K = ∅. Then, the subsets M and K are Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗,
Γ-Cl∗,2∗, ∗∗)-separated.

Proof. In this space, since Γ(M) = Γ(K) = M∗ = K∗ = ∅, these subsets are Γ-Cl
(Γ-Cl∗,∗-Cl, ∗-Cl∗, Γ, Γ-∗,2∗, ∗∗)-separated. □

Example 2. Let (R, τL) be P(R)-space, where R is the set of real numbers with
left-ray topology τL i.e. τL = {(−∞, r) : r ∈ R} ∪ {∅,R}. Consider the subsets
M = (−∞, 3) and K = (3, 5) . Since Cl(M) = R and Cl(K) = [3,+∞), these
subsets are not τ -separated. ButM andK are Γ-Cl (∗-Cl, ∗-Cl∗, Γ, Γ-∗, Γ-Cl∗,2∗)-
separated subsets from Lemma 2.

In Example 1, D and G are τ -separated subsets but not Γ-Cl(Γ, Γ-∗, Γ-Cl∗)-
separated. Moreover, B and L are τ -separated subsets but not ∗-Cl (∗-Cl∗, 2∗)
separated.

Consequently, the concepts of Γ-Cl (∗-Cl, ∗-Cl∗,Γ, Γ-∗, Γ-Cl∗,2∗)-separated and
τ -separated are independent of each other.

Theorem 2. [27] In any I-space (U, τ), each of the following conditions implies
that M∗ = Γ(M) for any subset M of U :

(1) τ has a clopen base.
(2) τ is a T3-space on U .
(3) I = Icd.
(4) I = IK .
(5) Inw ⊆ I.
(6) I = Img.

Corollary 1. Assume that any of the conditions in Theorem 2 is satisfied and
M,K are the subsets in any I-space (U, τ). Then,

(1) The subsets M and K are Γ-Cl-separated if and only if they are ∗-Cl-
separated.

(2) The subsets M and K are Γ-Cl∗-separated if and only if they are ∗-Cl∗-
separated.

(3) The subsets M and K are Γ-separated if and only if they are ∗∗-separated.
(4) The subsetsM and K are 2∗-separated if and only if they are Γ-∗-separated.

Proof. It is obvious from Definition 8 and Theorem 2. □



266 F. YALAZ, A. KESKIN KAYMAKCI

Theorem 3. Let (U, τ) be an I-space and M,K ⊆ U . Subsets M and K are both
Γ-separated and Γ-∗-separated if and only if they are Γ-Cl∗-separated.

Proof. Since M and K are both Γ-separated and Γ-∗-separated,

Γ(M) ∩ Cl∗(K) = Γ(M) ∩ (K ∪K∗)

= (Γ(M) ∩K) ∪ (Γ(M) ∩K∗)

= ∅

Cl∗(M) ∩ Γ(K) = (M ∪M∗) ∩ Γ(K)

= (M ∩ Γ(K)) ∪ (M∗ ∩ Γ(K))

= ∅

and M ∩K = ∅. So, M and K are Γ-Cl∗-separated subsets.
Conversely, let M and K be Γ-Cl∗-separated subsets. From Figure 3, these

subsets are both Γ-separated and Γ-∗-separated. □

Theorem 4. Let (U, τ) be an I-space and M,K ⊆ U . Subsets M and K are both
∗∗-separated and 2∗-separated if and only if these subsets are ∗-Cl∗-separated.

Proof. Since M and K are both ∗∗-separated and 2∗-separated,

M∗ ∩ Cl∗(K) =M∗ ∩ (K ∪K∗)

= (M∗ ∩K) ∪ (M∗ ∩K∗)

= ∅

Cl∗(M) ∩K∗ = (M ∪M∗) ∩K∗

= (M ∩K∗) ∪ (M∗ ∩K∗)

= ∅

and M ∩K = ∅. So, M and K are ∗-Cl∗-separated subsets.
Conversely, let M and K be ∗-Cl∗-separated subsets. From Figure 3, these

subsets are both ∗∗-separated and 2∗-separated. □

Theorem 5. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ .

then M ∈ τ and K ∈ τ .

Proof. Since the subsetsM,K are Γ-separated,M∩Γ(K) = ∅. So,M ⊆ (U \Γ(K)).
From Proposition 2-(2), U \Γ(K) is open set and hence (M ∪K)∩ (U \Γ(K)) =M
is an open subset. Similarly, it can be showed that the subset K is open. □
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Corollary 2. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ .

then M ∈ τ and K ∈ τ .

Proof. From Figure 3 and Theorem 5 , it is obtained. □

Theorem 6. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ∗.

then M ∈ τ∗ and K ∈ τ∗.

Proof. Since the subsetsM,K are Γ-separated,M∩Γ(K) = ∅. So,M ⊆ (U \Γ(K)).
From Proposition 2-(2), U \ Γ(K) is open set. Since τ ⊆ τ∗, U \ Γ(K) ∈ τ∗ and
hence (M ∪ K) ∩ (U \ Γ(K)) = M is in τ∗. Similarly, it can be showed that the
subset K is in τ∗. □

Corollary 3. Let (U, τ) be an I-space space and M,K ⊆ U . If the following
conditions are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are Γ-dense-in-itself.
(3) M ∪K ∈ τ∗.

then M ∈ τ∗ and K ∈ τ∗.

Proof. It is obtained from Figure 3 and Theorem 6. □

Theorem 7. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-∗-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪ Γ(K) ∈ τ and Γ(M) ∪K ∈ τ .

then Γ(M) and Γ(K) are clopen subsets.

Proof. From Proposition 2-(2), Γ(M) and Γ(K) are closed subsets. We only show
that they are open subsets. Since the subsetsM,K are Γ-∗-separated, Γ(M)∩K∗ =
∅. So, Γ(M) ⊆ (U \ K∗). From Proposition 1-(2), U \ K∗ is open set and hence
(Γ(M)∪K)∩ (U \K∗) = Γ(M) is open. Similarly, it can be showed that the subset
Γ(K) is open. □

Corollary 4. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:
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(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪ Γ(K) ∈ τ and Γ(M) ∪K ∈ τ .

then Γ(M) and Γ(K) are clopen subsets.

Proof. It is obtained from Figure 3 and Theorem 7. □

Theorem 8. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-∗-separated.
(2) The subsets M,K are Γ-dense-itself.
(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. From Proposition 1-(2), M∗ and K∗ are closed subsets. We must show that
they are open subsets. Since the subsets M,K are Γ-∗-separated, M∗ ∩ Γ(K) = ∅.
SoM∗ ⊆ U \Γ(K). Since U \Γ(K) is open subset, (M∗∪K)∩(U \Γ(K)) =M∗ ∈ τ .
Similarly, it can be showed that the subset K∗ is open.

□

Corollary 5. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗)-separated.
(2) The subsets M,K are Γ-dense-itself.
(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. It is obtained from Figure 3 and Theorem 8. □

Theorem 9. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are 2∗-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. From Proposition 1-(2), M∗ and K∗ are closed subsets. We must show that
they are open subsets. Since the subsets M,K are 2∗-separated, M∗ ∩K∗ = ∅. So,
M∗ ⊆ U \K∗. Since U \K∗ is open, (M∗ ∪K)∩ (U \K∗) =M∗ ∈ τ . Similarly, it
can be showed that the subset K∗ is open. □

Corollary 6. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗, Γ-∗)-separated.
(2) The subsets M,K are ∗-dense-itself.
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(3) M∗ ∪K ∈ τ and M ∪K∗ ∈ τ .

then M∗ and K∗ are clopen subsets.

Proof. From Figure 3 and Theorem 9, it is obtained. □

Theorem 10. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are ∗∗-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪K ∈ τ .

then M and K are open subsets.

Proof. Since the subsets M,K are ∗∗-separated, M ∩ K∗ = ∅. So M ⊆ U \ K∗.
Since U \ K∗ is open subset, (M ∪ K) ∩ (U \ K∗) = M is in τ . Similarly, it can
show that the subset K is open. □

Corollary 7. Let (U, τ) be an I-space and M,K ⊆ U . If the following conditions
are satisfied:

(1) The subsets M,K are Γ-Cl ( Γ-Cl∗, Γ, ∗-Cl, ∗-Cl∗, τ)-separated.
(2) The subsets M,K are ∗-dense-itself.
(3) M ∪K ∈ τ .

then M and K are open subsets.

Proof. From Figure 3 and Theorem 10, it is obtained. □

Theorem 11. Let (U, τ) be {∅}-space and M,K ⊆ U . Then the following state-
ments are equivalent:

(1) The subsets M and K are ∗∗-separated.
(2) The subsets M and K are τ -separated.

Proof. Since M∗({∅}) = Cl(M), K∗({∅}) = Cl(K), these expressions are equiva-
lent. □

Theorem 12. Let (U, τ) be {∅}-space and M,K ⊆ U . Then the following state-
ments are equivalent:

(1) The subsets M and K are 2∗-separated.
(2) The subsets M and K are ∗-Cl∗-separated.
(3) The subsets M and K are ∗-Cl-separated.

Proof. Since M∗({∅}) = Cl∗(M) = Cl(M) and K∗({∅}) = Cl∗(K) = Cl(K), these
expressions are equivalent. □

Theorem 13. Let (U, τ) be {∅}-space and M,K ⊆ U . Then the following state-
ments are equivalent:

(1) The subsets M and K are Γ-∗-separated.
(2) The subsets M and K are Γ-Cl∗-separated.
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(3) The subsets M and K are Γ-Cl-separated.

Proof. Since M∗({∅}) = Cl∗(M) = Cl(M) and K∗({∅}) = Cl∗(K) = Cl(K), these
expressions are equivalent. □

4. New Types of Connectedness via Local Closure

Definition 9. Let (U, τ) be an I-space and M ⊆ U . The subset M is called Γ-Cl
(resp. Γ, Γ-∗, Γ-Cl∗, 2∗)-connected if it is not the union of two Γ-Cl (resp. Γ, Γ-∗,
Γ-Cl∗, 2∗)-separated subsets in I-space (U, τ). Otherwise, the subset M is called
not Γ-Cl (resp. Γ, Γ-∗, Γ-Cl∗, 2∗)-connected . Particularly, if U is Γ-Cl (resp. Γ,
Γ-∗, Γ-Cl∗, 2∗)-connected, the I-space (U, τ) is called Γ-Cl (resp. Γ, Γ-∗, Γ-Cl∗,
2∗)-connected I-space.

Theorem 14. In any I-space,
(1) Every Γ-Cl∗-connected subset is Γ-Cl-connected.
(2) Every ∗-Cl-connected subset is Γ-Cl-connected.
(3) Every Γ-connected subset is Γ-Cl∗-connected.
(4) Every ∗-Cl∗-connected subset is Γ-Cl∗-connected.
(5) Every ∗∗-connected subset is Γ-connected.
(6) Every Γ-∗-connected subset is Γ-Cl∗-connected.
(7) Every 2∗-connected subset is Γ-∗-connected.
(8) Every 2∗-connected subset is ∗-Cl∗-connected.

Proof. (1) Let M be Γ-Cl∗-connected subset. Suppose that it is not Γ-Cl-
connected. So, there are subsets K, S which are Γ-Cl-separated and
K∪S =M . From Theorem 1-(1), the subsetsK and S are Γ-Cl∗-separated.
Hence, the subset M is not Γ-Cl∗-connected. This is a contradiction. Con-
sequently, the subset M is Γ-Cl-connected.

By using Theorem 1 (or Figure 3), other proofs are obtained similarly. □

The following diagram is obtained by Theorem 14 and Figure 2.

Figure 4. Relations among new types of connectedness
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For this diagram, counterexamples and independent concepts are shown in Ex-
ample 3 and Example 4.

Example 3. Consider the I-space in Example 1.

(1) The subset P = {y, z} is Γ (resp. Γ-Cl∗, Γ-Cl, Γ-∗)-connected but not ∗∗
(resp. ∗-Cl∗, ∗-Cl, 2∗)-connected.

(2) The subset R = {a, d} is Γ-Cl-connected but not Γ-Cl∗-connected.
(3) The subset S = {c, d} is Γ-Cl∗-connected but not Γ-connected.
(4) The subset T = {a, c} is ∗-Cl∗ (resp. Γ-Cl∗)-connected but not 2∗ (resp. Γ-∗)-

connected.
(5) The subset P = {y, z} is Γ-Cl∗-connected but not ∗-Cl-connected. The

subset R = {a, d} is ∗-Cl-connected but not Γ-Cl∗-connected. That is, the
concepts of ∗-Cl-connected and Γ-Cl∗-connected are independent of each
other.

(6) The subset P = {y, z} is Γ-connected but not ∗-Cl-connected. The subset
R = {a, d} is ∗-Cl-connected but not Γ-connected. That is, the concepts of
Γ-connected and ∗-Cl-connected are independent of each other.

(7) The subset P = {y, z} is Γ-∗-connected but not ∗-Cl-connected. The subset
R = {a, d} is ∗-Cl-connected but not Γ-∗-connected. That is, the concepts
of Γ-∗-connected and ∗-Cl-connected are independent of each other.

(8) The subset P = {y, z} is Γ-∗-connected but not ∗-Cl∗-connected. The subset
T = {a, c} is ∗-Cl∗-connected but not Γ-∗-connected. That is, the concepts
of Γ-∗-connected and ∗-Cl∗-connected are independent of each other.

(9) The subset P = {y, z} is Γ-connected but not 2∗-connected. The subset
S = {c, d} is 2∗-connected but not Γ-connected. That is, the concepts of
Γ-connected and 2∗-connected are independent of each other.

(10) The subset P = {y, z} is Γ-connected but not ∗-Cl∗-connected. The subset
S = {c, d} is ∗-Cl∗-connected but not Γ-connected. That is, the concepts of
Γ-connected and ∗-Cl∗-connected are independent of each other.

(11) The subset S = {c, d} is Γ-∗-connected but not Γ-connected. The subset
T = {a, c} is Γ-connected but not Γ-∗-connected. That is, the concepts of
Γ-∗-connected and Γ-connected are independent of each other.

(12) The subset S = {c, d} is Γ-∗-connected but not ∗∗-connected. The subset
T = {a, c} is ∗∗-connected but not Γ-∗-connected. That is, the concepts of
Γ-∗-connected and ∗∗-connected are independent of each other.

(13) The subset S = {c, d} is 2∗-connected but not ∗∗-connected. The subset
T = {a, c} is ∗∗-connected but not 2∗-connected. That is, the concepts of
2∗-connected and ∗∗-connected are independent of each other.

Lemma 3. Let (U, τ) be P(U)-space and M be a subset of U . If the subset M
has more than one element, it is not Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗,2∗, ∗∗ )-
connected.
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Proof. Let K,S be nonempty subsets such that M = K ∪ S and K ∩ S = ∅.
From Lemma 2, the subsets K and S are Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗,2∗, ∗∗)-
separated. So, M is not Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗,2∗, ∗∗ )-connected.

□

Example 4. Consider the P(R)-space in Example 2. The subset M = (−∞, 3) is
τL-connected but not Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗, 2∗)-connected from Lemma
3.

According to the I-space given in Example 1, S = {c, d} is Γ-Cl (∗-Cl∗, ∗-Cl,
Γ-∗, Γ-Cl∗, 2∗)-connected but not τ -connected. Moreover, the subset P = {y, z} is
Γ-connected but not τ -connected.

Consequently, the concepts of Γ-Cl (∗-Cl∗, ∗-Cl, Γ, Γ-∗, Γ-Cl∗, 2∗)-connected
and τ -connected are independent of each other.

Lemma 4. [1] Let (U, τ) be a topological space and M ⊆ U . If the subset M is
open, Cl(M) = Clθ(M).

Lemma 5. If the subset M is clopen in any I-space,
M∗ ⊆ Γ(M) ⊆M = Cl(M) = Clθ(M).

Proof. It is obtained by Lemma 4, Lemma 1 and Proposition 2-(2). □

Theorem 15. If any I-space (U, τ) is Γ-Cl-connected, then it is τ -connected. That
is, if the set U is Γ-Cl-connected, then U is τ -connected.

Proof. Suppose that U is Γ-Cl-connected but not τ -connected. So, there is a clopen
proper subset M in this space. From Lemma 5,

Γ(M) ∩ Cl(U \M) ⊆M ∩ (U \M) = ∅
Cl(M) ∩ Γ(U \M) ⊆M ∩ (U \M) = ∅

and M ∩ (U \M) = ∅. So, the subsets M and (U \M) are Γ-Cl-separated. Since
M ∪ (U \M) = U , U is not Γ-Cl-connected. This is a contradiction. As a result,
U is τ -connected. □

Theorem 16. If any I-space (U, τ) is Γ-Cl∗(Γ, Γ-∗, 2∗, ∗-Cl, ∗-Cl∗, ∗∗)-connected,
then it is τ -connected.

Proof. The proof is obtained by Figure 4 and Theorem 15. □

Corollary 8. Suppose that any of the conditions in Theorem 2 is satisfied and let
M be subsets in any I-space (U, τ). Then,

(1) The subset M is Γ-Cl-connected if and only if it is ∗-Cl-connected.
(2) The subset M is Γ-Cl∗-connected if and only if it is ∗-Cl∗-connected.
(3) The subset M is Γ-connected if and only if it is ∗∗-connected.
(4) The subset M is 2∗-connected if and only if it is Γ-∗-connected.
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Proof. It is obvious from Definition 9 and Theorem 2. □

Corollary 9. Let (U, τ) be an I-space and M,K be subsets of U .

(1) If the subsets M ,K are both Γ-separated, Γ-∗-separated subsets and S =
M ∪K, then S is not Γ-Cl∗-connected subset.

(2) If the subset S is not Γ-Cl∗-connected, there are both Γ-separated and Γ-∗-
separated subsets M ,K such that M ∪K = S.

(3) If the subsets M ,K are both 2∗-separated, ∗∗-separated subsets and S =
M ∪K, then S is not ∗-Cl∗-connected subset.

(4) If the subset S is not ∗-Cl∗-connected, there are both 2∗-separated and ∗∗-
separated subsets M ,K such that M ∪K = S.

Proof. It is obtained from Theorem 3 and Theorem 4. □

The following corollaries are obtained from Theorem 11, Theorem 12 and The-
orem 13, respectively.

Corollary 10. Let (U, τ) be {∅}-space and M ⊆ U . Then the following statements
are equivalent:

(1) The subset M is ∗∗-connected.
(2) The subset M is τ -connected.

Corollary 11. Let (U, τ) be {∅}-space and M ⊆ U . Then the following statements
are equivalent:

(1) The subset M is 2∗-connected.
(2) The subset M is ∗-Cl∗-connected.
(3) The subset M is ∗-Cl-connected.

Corollary 12. Let (U, τ) be {∅}-space and M ⊆ U . Then the following statements
are equivalent:

(1) The subset M is Γ-∗-connected.
(2) The subset M is Γ-Cl∗-connected.
(3) The subset M is Γ-Cl-connected.

Theorem 17. Let (U, τ) be {∅}-space and M ⊆ U . If the subset M is τ -connected,
then it is Γ ( Γ-Cl∗, Γ-Cl, ∗-Cl, ∗-Cl∗, Γ-∗, 2∗)-connected.

Proof. Let the subset M be τ -connected. From Corollary 10, M is ∗∗-connected.
So, it is Γ ( Γ-Cl∗, Γ-Cl, ∗-Cl, ∗-Cl∗)-connected by Figure 4. Moreover M is 2∗-
connected and Γ-∗-connected by Corollary 11 and Corollary 12, respectively. □

Considering {∅}-space (U, τ) given in Theorem 17, it is seen that Γ ( Γ-Cl∗, Γ-Cl,
∗-Cl, ∗-Cl∗, Γ-∗, 2∗)-connectedness is more general concept than the well-known
τ -connectedness. Moreover, in this space, ∗∗-connectedness and τ -connectedness
are coincident concepts from Corollary 10. However, in any I-space (U, τ), when
τ -connectedness of only the set U is considered in Theorem 15 and Theorem 16, it
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is seen that the concept of τ -connectedness is more general than the concept of Γ
( Γ-Cl∗, Γ-Cl, ∗-Cl, ∗-Cl∗, Γ-∗, 2∗)-connectedness. So the following result is easily
obtained.

Corollary 13. Let (U, τ) be {∅}-space. The following statements are equivalent:

(1) The set U is Γ-Cl-connected.
(2) The set U is Γ-Cl∗-connected.
(3) The set U is Γ-∗-connected.
(4) The set U is 2∗-connected.
(5) The set U is ∗-Cl-connected.
(6) The set U is ∗-Cl∗-connected.
(7) The set U is ∗∗-connected.
(8) The set U is τ -connected.
(9) The set U is Γ-connected.

Proof. It is obtained by Theorem 15, Theorem 16 and Theorem 17. □

5. Theorems on New Types of Connectedness via Local Closure

Theorem 18. Let (U, τ) be an I-space. If M is Γ-Cl-connected subset of U and
S, T are Γ-Cl-separated subsets such thatM ⊆ S∪T , then eitherM ⊆ S orM ⊆ T .

Proof. Since M = (M ∩ S) ∪ (M ∩ T ) and the subsets S, T are Γ-Cl-separated,

Γ(M ∩ S) ∩ Cl(M ∩ T ) ⊆ Γ(S) ∩ Cl(T ) = ∅
Cl(M ∩ S) ∩ Γ(M ∩ T ) ⊆ Cl(S) ∩ Γ(T ) = ∅

and (M ∩ S) ∩ (M ∩ T ) ⊆ S ∩ T = ∅. If (M ∩ S) and (M ∩ T ) are nonempty
subsets, the subset M is not Γ-Cl-connected. This is a contradiction. So, either
(M ∩ S) = ∅ or (M ∩ T ) = ∅. Since M ⊆ S ∪ T , either M ⊆ S or M ⊆ T . □

Theorem 19. Let (U, τ) be an I-space. If M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected
subset of U and S, T are Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-separated subsets such that M ⊆
S ∪ T , then either M ⊆ S or M ⊆ T .

Proof. It is obtained similar to the proof of Theorem 18. □

Theorem 20. Let (U, τ) be an I-space and M,K ⊆ U . If M is Γ-Cl-connected
subset and M ⊆ K ⊆ Γ(M), then K is Γ-Cl-connected subset.

Proof. Suppose that the subset K is not Γ-Cl-connected. Then, there exist Γ-Cl-
separated nonempty subsets T, S such that T ∪ S = K. Since the subsets S and T
are Γ-Cl-separated and M ⊆ K = S ∪ T , by using Theorem 18, we have M ⊆ S
or M ⊆ T . Suppose that M ⊆ S. Then, from Proposition 2-(1), Γ(M) ⊆ Γ(S).
From the hypothesis, T ⊆ K ⊆ Γ(M) ⊆ Γ(S). Since Γ(M), Γ(S) are closed subsets
by Proposition 2-(2), Cl(T ) ⊆ Γ(M) ⊆ Γ(S), and since the subsets S and T are
Γ-Cl-separated, Cl(T ) = Cl(T ) ∩ Γ(M) ⊆ Cl(T ) ∩ Γ(S) = ∅. That is, T = ∅. This
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is a contradiction. Similarly, a contradiction is obtained if M ⊆ T . Consequently,
the subset K is Γ-Cl-connected. □

Theorem 21. Let (U, τ) be an I-space and M,K ⊆ U . If M is Γ-Cl∗(resp. Γ)-
connected subset of U and M ⊆ K ⊆ Γ(M), then K is Γ-Cl∗(resp. Γ)-connected
subset.

Proof. It is obtained similar to the proof of Theorem 20. □

Corollary 14. Let (U, τ) be an I-space and M ⊆ U .

(1) If M is both ∗-dense-in-itself and Γ-Cl-connected subset, then M∗ is Γ-Cl-
connected.

(2) IfM is both ∗-dense-in-itself and Γ-Cl∗(resp. Γ)-connected subset, thenM∗

is Γ-Cl∗(resp. Γ)-connected.
(3) If M is both Γ-dense-in-itself and Γ-Cl-connected subset, then Γ(M) is

Γ-Cl-connected.
(4) If M is both Γ-dense-in-itself and Γ-Cl∗(resp. Γ)-connected subset, then

Γ(M) is Γ-Cl∗(resp. Γ)-connected.
(5) If M is both Γ-dense-in-itself and Γ-Cl-connected subset, then Cl(M) is

Γ-Cl-connected.
(6) If M is both Γ-dense-in-itself and Γ-Cl∗(resp. Γ)-connected subset, then

Cl(M) is Γ-Cl∗(resp. Γ)-connected.

Proof. (1) Since M is ∗-dense-in-itself and by Lemma 1, M ⊆ M∗ ⊆ Γ(M).
From Theorem 20 , M∗ is Γ-Cl-connected subset.

(2) By using Theorem 21, it is obtained similar to the proof of (1).
(3) Since M is Γ-dense-in-itself, we have M ⊆ Γ(M) ⊆ Γ(M). From Theorem

20, Γ(M) is Γ-Cl-connected subset.
(4) By using Theorem 21, it is obtained similar to the proof of (3).
(5) Since M is Γ-dense-in-itself, M ⊆ Γ(M) and so M ⊆ Cl(M) ⊆ Cl(Γ(M)).

Since Γ(M) is closed subset from Proposition 2-(2),M ⊆ Cl(M) ⊆ Cl(Γ(M)) =
Γ(M). That is, M ⊆ Cl(M) ⊆ Γ(M) and M is Γ-Cl-connected from the
hypothesis. Using Theorem 20, we obtain that Cl(M) is Γ-Cl-connected
subset.

(6) Since M is Γ-dense-in-itself, M ⊆ Cl(M) ⊆ Γ(M) is obtained as in the
proof of (5). M is Γ-Cl∗(resp. Γ)-connected from the hypothesis. By using
Theorem 21, we obtain that Cl(M) is Γ-Cl∗(resp. Γ)-connected subset.

□

Theorem 22. Let (U, τ) be an I-space and {Nk : k ∈ ∆} be a nonempty collection
of Γ-Cl-connected subsets of U (where ∆ is arbitrary index set). If

⋂
k∈∆Nk ̸= ∅,

then
⋃

k∈∆Nk is Γ-Cl-connected.

Proof. Suppose that
⋃

k∈∆Nk is not Γ-Cl-connected. Then, there exist Γ-Cl-
separated nonempty subsets T, S such that T ∪S =

⋃
k∈∆Nk. Since

⋂
k∈∆Nk ̸= ∅,
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there exists a point x ∈ Nk for every k ∈ ∆. Since T, S are Γ-Cl-separated and
x ∈

⋃
k∈∆Nk, we have x ∈ T or x ∈ S. Suppose now that x ∈ S. So, Nk ∩ S ̸= ∅

for every k ∈ ∆. Then, by Theorem 18, Nk ⊆ S for every k ∈ ∆. Therefore,
we obtain

⋃
k∈∆Nk ⊆ S. That is, T = ∅. This is a contradiction. Similarly, a

contradiction is also obtained if we suppose that x ∈ T . Consequently,
⋃

k∈∆Nk is
Γ-Cl-connected. □

Theorem 23. Let (U, τ) be an I-space and {Nk : k ∈ ∆} be a nonempty collection
of Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subsets of U . If

⋂
k∈∆Nk ̸= ∅, then

⋃
k∈∆Nk

is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 22. □

Theorem 24. Let (U, τ) be an I-space, {Nk : k ∈ ∆} be a nonempty collection of
Γ-Cl-connected subsets and M be Γ-Cl-connected subset. If M ∩Nk ̸= ∅ for every
k ∈ ∆, then M ∪ (

⋃
k∈∆Nk) is a Γ-Cl-connected subset.

Proof. For every k ∈ ∆, since Nk and M are Γ-Cl-connected subsets such that
M ∩Nk ̸= ∅ , by using Theorem 22, we obtain that the subset M ∪Nk are Γ-Cl-
connected for every k ∈ ∆. Since M ⊆M ∪Nk for every k ∈ ∆ , M ⊆

⋂
k∈∆(M ∪

Nk) ̸= ∅. From Theorem 22,
⋃

k∈∆(M ∪Nk) =M ∪ (
⋃

k∈∆Nk) is a Γ-Cl-connected
subset. □

Theorem 25. Let (U, τ) be an I-space, {Nk : k ∈ ∆} be a nonempty collection
of Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subsets and M be Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subset. If M ∩ Nk ̸= ∅ for every k ∈ ∆, then M ∪ (

⋃
k∈∆Nk) is a

Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset.

Proof. By using Theorem 23, it is obtained similar to the proof of Theorem 24. □

Theorem 26. Let (U, τ) be an I-space and {Nk : k ∈ N} be a nonempty collection
of Γ-Cl-connected subsets such that Nk∩Nk+1 ̸= ∅ for every k ∈ N. Then

⋃
k∈NNk

is a Γ-Cl-connected subset.

Proof. We can use induction method. Firstly, N1 is Γ-Cl-connected. Now assume
that the theorem is true for k− 1. That is, N1 ∪N2 ∪ ...∪Nk−1 is Γ-Cl-connected.
From Theorem 22,Mk = N1∪N2∪ ...∪Nk is Γ-Cl-connected and

⋂
k∈NMk = N1 ̸=

∅. Again from Theorem 22,
⋃

k∈NMk =
⋃

k∈NNk is a Γ-Cl-connected subset. □

Theorem 27. Let (U, τ) be an I-space and {Nk : k ∈ N} be a nonempty collection
of Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subsets such that Nk ∩ Nk+1 ̸= ∅ for every
k ∈ N. Then

⋃
k∈NNk is a Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset.

Proof. By using Theorem 23, it is obtained similar to the proof of Theorem 26. □

Theorem 28. Let (U, τ) be an I-space and M ⊆ U . If for each distinct pair of
points a, b ∈ M there is a Γ-Cl-connected subset E such that a, b ∈ E ⊆ M , then
M is Γ-Cl-connected subset.
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Proof. Suppose that the subset M is not Γ-Cl-connected. Then there are Γ-Cl-
separated nonempty subsets S,K such that S ∪ K = M . Let a ∈ S and b ∈ K.
By hypothesis, there is Γ-Cl-connected subset E such that a, b ∈ E ⊆ M . Since
E ⊆ S ∪ K, E ⊆ S or E ⊆ K by Theorem 18. Suppose that E ⊆ S. So,
b ∈ S ∩K ̸= ∅. This is a contradiction. Similarly, a contradiction is obtained if we
suppose that E ⊆ K. □

Theorem 29. Let (U, τ) be an I-space and M ⊆ U . If for each distinct pair of
points a, b ∈ M there is a Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset E such that
a, b ∈ E ⊆M , then M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 28. □

Theorem 30. Let (U, τ) be Γ-Cl-connected I-space, M be Γ-Cl-connected subset
and K,C be Γ-Cl-separated subsets. If U \M = K ∪ C, then both M ∪ K and
M ∪ C are Γ-Cl-connected subsets.

Proof. Suppose that M ∪ K is not Γ-Cl-connected. There are Γ-Cl-separated
nonempty subsets S, T such that S ∪ T = M ∪ K. Since M ⊆ S ∪ T = M ∪ K
and M is a Γ-Cl-connected subset, M ⊆ S or M ⊆ T , by Theorem 18. Suppose
that M ⊆ T . Then, S ∪ T = M ∪K ⊆ T ∪K, and so S ⊆ K. Since K and C are
Γ-Cl-separated subsets, S and C are Γ-Cl-separated subsets. So,

Γ(S) ∩ Cl(T ∪ C) = [Γ(S) ∩ Cl(T )] ∪ [Γ(S) ∩ Cl(C)] = ∅
Cl(S) ∩ Γ(T ∪ C) = [Cl(S) ∩ Γ(T )] ∪ [Cl(S) ∩ Γ(C)] = ∅

and S∩(T ∪C) = (S∩T )∪(S∩C) = ∅. As a result, S and T ∪C are Γ-Cl-separated
subsets. Since U \M = K ∪ C, we have U = M ∪ (K ∪ C) = S ∪ (T ∪ C). This
contradicts with the fact that (U, τ) is an Γ-Cl-connected I-space. Consequently,
the subset M ∪K is Γ-Cl-connected.

If M ⊆ S, a contradiction can be obtained again in this way. Similarly, it can
be proved that M ∪ C is Γ-Cl-connected subset. □

Theorem 31. Let (U, τ) be Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected I-space, M be a
Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected subset and K,C be Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-separated
subsets. If U \M = K ∪ C, then M ∪K and M ∪ C are Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subsets.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 30. □

Theorem 32. Let (U, τ) be an I-space and M,K be Γ-Cl-connected subsets of U .
If these subsets are not Γ-Cl-separated, then M ∪K is Γ-Cl-connected subset.

Proof. Suppose that M ∪ K is not Γ-Cl-connected subset. So, there are Γ-Cl-
separated nonempty subsets S, T such that S ∪ T = M ∪ K. Then, we have
M ⊆ S∪T and K ⊆ S∪T . From Theorem 18, there are four cases to be considered:

(1) M ⊆ S and K ⊆ S
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(2) M ⊆ S and K ⊆ T
(3) M ⊆ T and K ⊆ T
(4) M ⊆ T and K ⊆ S

If case (1) or case (3) is satisfied, then T = ∅ or S = ∅, respectively. Both are
contradiction.

Suppose that case (2) is satisfied. If M = S and K = T , then the subsets M
and K are Γ-Cl-separated. This is a contradiction. If M ⫋ S, then T ⫋ K due to
S ∪ T =M ∪K. Similarly, if K ⫋ T , then S ⫋M . These contradict with case (2).
Additionally, for case (4), we obtain similar contradictions. Consequently, M ∪K
is Γ-Cl-connected subset. □

Theorem 33. Let (U, τ) be an I-space and M,K ⊆ U . If these subsets are not
Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-separated, thenM∪K is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected
subset.

Proof. By using Theorem 19, it is obtained similar to the proof of Theorem 32. □

Lemma 6. Let (U, τ) be an I-space and M,K be subsets of U . Then

Γ(M ∩K) ⊆ Γ(M) ∩ Γ(K).

Proof. Let x ∈ Γ(M∩K). Then, [Cl(O)∩(M∩K)] /∈ I for every O ∈ τ(x). Because
of the definition of ideal, Cl(O) ∩M /∈ I and Cl(O) ∩K /∈ I. So, x ∈ Γ(M) and
x ∈ Γ(K). That is, x ∈ Γ(M) ∩ Γ(K). □

In the following example, we show that the inclusion Γ(M ∩K) ⊆ Γ(M)∩Γ(K)
strictly hold.

Example 5. Consider the I-space in Example 1. In Table 1, Γ(A ∩ B) = ∅ ⫋
{a, b, c} = Γ(A) ∩ Γ(B).

Theorem 34. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is both Γ-Cl-connected and closed.
(2) Γ(M) ⊆ Cl(M) and Γ(U \M) ⊆ Cl(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd(M) ̸= ∅ where Bd(M) is boundary of the subset M .

Proof. Suppose that K∩Bd(M) = ∅. So, K∩(Cl(M)∩Cl(U \M)) = ∅. The subset
K can be expressed as K = U ∩K = (M ∪(U \M))∩K = (M ∩K)∪((U \M)∩K).
Then, by using Lemma 6,

Γ(M ∩K) ∩ Cl((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ [Cl(U \M) ∩ Cl(K)]

⊆ Cl(M) ∩ Γ(K) ∩ Cl(U \M) ∩K = ∅

Cl(M ∩K) ∩ Γ((U \M) ∩K) ⊆ Cl(M) ∩ Cl(K) ∩ [Γ(U \M) ∩ Γ(K)]

⊆ Cl(M) ∩K ∩ Cl(U \M) ∩ Γ(K) = ∅
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and (M ∩K)∩ ((U \M)∩K) = ∅ . Therefore, the subset K is not Γ-Cl-connected.
This is a contradiction. Consequently, K ∩Bd(M) ̸= ∅. □

Theorem 35. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is Γ-connected.
(2) Γ(M) ⊆ Cl(M) and Γ(U \M) ⊆ Cl(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd(M) ̸= ∅.

Proof. Suppose that K∩Bd(M) = ∅. So, K∩(Cl(M)∩Cl(U \M)) = ∅. The subset
K can be expressed as K = U ∩K = (M ∪(U \M))∩K = (M ∩K)∪((U \M)∩K).
Then, by using Lemma 6,

Γ(M ∩K) ∩ ((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ (U \M) ∩K
⊆ Cl(M) ∩ Γ(K) ∩ Cl(U \M) ∩K = ∅

(M ∩K) ∩ Γ((U \M) ∩K) ⊆M ∩K ∩ Γ(U \M) ∩ Γ(K)

⊆ Cl(M) ∩K ∩ Cl(U \M) ∩ Γ(K) = ∅

and (M ∩K) ∩ ((U \M) ∩K) = ∅ . Therefore, the subset K is not Γ-connected.
This is a contradiction. Consequently, K ∩Bd(M) ̸= ∅. □

Theorem 36. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is both Γ-Cl∗-connected and ∗-closed.
(2) Γ(M) ⊆ Cl∗(M) and Γ(U \M) ⊆ Cl∗(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩ Bd∗(M) ̸= ∅ where Bd∗(M) is boundary of the subset M with respect to
τ∗.

Proof. Suppose that K ∩Bd∗(M) = ∅. So, K ∩ (Cl∗(M) ∩ Cl∗(U \M)) = ∅. The
subset K can be expressed as K = U ∩K = (M ∪ (U \M))∩K = (M ∩K)∪ ((U \
M) ∩K). Then,

Γ(M ∩K) ∩ Cl∗((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ [Cl∗(U \M) ∩ Cl∗(K)]

⊆ Cl∗(M) ∩ Γ(K) ∩ Cl∗(U \M) ∩K = ∅

Cl∗(M ∩K) ∩ Γ((U \M) ∩K) ⊆ Cl∗(M) ∩ Cl∗(K) ∩ [Γ(U \M) ∩ Γ(K)]

⊆ Cl∗(M) ∩K ∩ Cl∗(U \M) ∩ Γ(K) = ∅

and (M ∩ K) ∩ (K ∩ (U \ M)) = ∅ . Therefore, the subset K is not Γ-Cl∗-
connected. This is a contradiction. So, K ∩Bd∗(M) ̸= ∅.

□
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Corollary 15. Let (U, τ) be an I-space. If the following conditions are satisfied
for the subsets M and K:

(1) The subset K is Γ-∗ ( 2∗)-connected and ∗-closed.
(2) Γ(M) ⊆ Cl∗(M) and Γ(U \M) ⊆ Cl∗(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd∗(M) ̸= ∅.

Proof. It is obvious from Figure 4 and Theorem 36. □

Theorem 37. Let (U, τ) be an I-space. If the following conditions are satisfied for
the subsets M and K:

(1) The subset K is Γ-connected.
(2) Γ(M) ⊆ Cl∗(M) and Γ(U \M) ⊆ Cl∗(U \M).
(3) K ∩M ̸= ∅ and K ∩ (U \M) ̸= ∅.

then K ∩Bd∗(M) ̸= ∅.

Proof. Suppose that K ∩Bd∗(M) = ∅. So, K ∩ (Cl∗(M) ∩ Cl∗(U \M)) = ∅. The
subset K can be expressed as K = U ∩K = (M ∪ (U \M))∩K = (M ∩K)∪ ((U \
M) ∩K). Then

Γ(M ∩K) ∩ ((U \M) ∩K) ⊆ Γ(M) ∩ Γ(K) ∩ (U \M) ∩K
⊆ Cl∗(M) ∩ Γ(K) ∩ Cl∗(U \M) ∩K = ∅

(M ∩K) ∩ Γ((U \M) ∩K) ⊆M ∩K ∩ [Γ(U \M) ∩ Γ(K)]

⊆ Cl∗(M) ∩K ∩ Cl∗(U \M) ∩ Γ(K) = ∅
and (M ∩ K) ∩ (K ∩ (U \ M)) = ∅ . Therefore, the subset K is not Γ-Cl∗-

connected. This is a contradiction. Finally, K ∩Bd∗(M) ̸= ∅.
□

6. New Type Components via Local Closure

Definition 10. Let (U, τ) be an I-space and x be a point of U . The union of all
Γ-Cl(resp. Γ-Cl∗, Γ, Γ-∗, 2∗)-connected subsets that contain the point x is called
Γ-Cl(resp. Γ-Cl∗, Γ, Γ-∗, 2∗)-component of U containing x. That is, we define a
Γ-Cl(resp. Γ-Cl∗, Γ, Γ-∗, 2∗)-component of the point x as follows:

(1) The subset CΓ-Cl(x) =
⋃
{M ⊆ U : M is Γ-Cl-connected and x ∈ M} is

called Γ-Cl-component of the point x.
(2) The subset CΓ-Cl∗(x) =

⋃
{M ⊆ U : M is Γ-Cl∗-connected and x ∈ M} is

called Γ-Cl∗-component of the point x.
(3) The subset CΓ(x) =

⋃
{M ⊆ U : M is Γ-connected and x ∈ M} is called

Γ-component of the point x.
(4) The subset CΓ-∗(x) =

⋃
{M ⊆ U :M is Γ-∗-connected and x ∈M} is called

Γ-∗-component of the point x.
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(5) The subset C2∗(x) =
⋃
{M ⊆ U : M is 2∗-connected and x ∈ M} is called

2∗-component of the point x.

Theorem 38. Let (U, τ) be an I-space and x be a point of U .

(1) The subset CΓ-Cl(x) is Γ-Cl-connected subset which contains x.
(2) The subset CΓ-Cl(x) is maximal Γ-Cl-connected subset which contains x .

Proof. (1) Since x ∈
⋂
{M ⊆ U : M is Γ-Cl-connected and x ∈ M} ≠ ∅,

CΓ-Cl(x) =
⋃
{M ⊆ U :M is Γ-Cl-connected and x ∈M} is Γ-Cl-connected

by Theorem 22.
(2) It is obvious from Definition 10 and (1).

□

Theorem 39. Let (U, τ) be an I-space and x be a point of U .

(1) The subset CΓ-Cl∗(x)(resp. CΓ(x), CΓ-∗(x), C2∗(x)) is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subset which contains x.

(2) The subset CΓ-Cl∗(x)(resp. CΓ(x), CΓ-∗(x), C2∗(x)) is maximal Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-
connected subset which contains x .

Proof. By using Theorem 23 and Definition 10 , it is obtained similar to the proof
of Theorem 38 . □

Theorem 40. Let (U, τ) be an I-space and x, y ∈ U . Then

(1) CΓ-Cl(x) ∩ CΓ-Cl(y) = ∅ or CΓ-Cl(x) = CΓ-Cl(y).
(2) The set of all distinct Γ-Cl-components forms a partition of U .

Proof. (1) Let CΓ-Cl(x) ∩ CΓ-Cl(y) ̸= ∅. From Theorem 38-(1) and Theorem
22, CΓ-Cl(x) ∪ CΓ-Cl(y) is Γ-Cl-connected. We have CΓ-Cl(x) ⊆ CΓ-Cl(x) ∪
CΓ-Cl(y) and CΓ-Cl(y) ⊆ CΓ-Cl(x)∪CΓ-Cl(y). From Theorem 38 -(2), CΓ-Cl(x)∪
CΓ-Cl(y) ⊆ CΓ-Cl(x) and CΓ-Cl(x) ∪ CΓ-Cl(y) ⊆ CΓ-Cl(y). So, CΓ-Cl(x) ∪
CΓ-Cl(y) = CΓ-Cl(x) = CΓ-Cl(y).

(2) Since
⋃

x∈U CΓ-Cl(x) = U , it is obvious from (1).
□

Theorem 41. Let (U, τ) be an I-space and x, y ∈ U . Then,

(1) CΓ-Cl∗(x) ∩ CΓ-Cl∗(y) = ∅ or CΓ-Cl∗(x) = CΓ-Cl∗(y).
(2) CΓ(x) ∩ CΓ(y) = ∅ or CΓ(x) = CΓ(y).
(3) CΓ-∗(x) ∩ CΓ-∗(y) = ∅ or CΓ-∗(x) = CΓ-∗(y).
(4) C2∗(x) ∩ C2∗(y) = ∅ or C2∗(x) = C2∗(y).
(5) The set of all distinct CΓ-Cl∗(x)(resp. CΓ(x), CΓ-∗(x), C2∗(x))-components

forms a partition of U .

Proof. By using Theorem 39 and Theorem 23, all statements above are obtained
similar to the proof of Theorem 40. □

Theorem 42. Let (U, τ) be an I-space. If M is Γ-Cl-connected and nonempty
clopen subset of U , then M is Γ-Cl-component.
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Proof. Let CΓ-Cl(x) be Γ-Cl-component of the point x ∈M . From Theorem 38-(2),
M ⊆ CΓ-Cl(x). Suppose that M ⫋ CΓ-Cl(x). Then, (M ∩ CΓ-Cl(x)) ∩ [(U \M) ∩
CΓ-Cl(x)] = ∅ and (M ∩ CΓ-Cl(x)) ∪ [(U \M) ∩ CΓ-Cl(x)] = CΓ-Cl(x). From Lemma
5,

Γ(M) ∩ Cl(U \M) ⊆ Cl(M) ∩ (U \M) =M ∩ (U \M) = ∅
Cl(M) ∩ Γ(U \M) ⊆M ∩ Cl(U \M) =M ∩ (U \M) = ∅

These imply that

Γ(M ∩ CΓ-Cl(x)) ∩ Cl((U \M) ∩ CΓ-Cl(x)) = ∅
Cl(M ∩ CΓ-Cl(x)) ∩ Γ((U \M) ∩ CΓ-Cl(x)) = ∅

So, CΓ-Cl(x) is not Γ-Cl-connected. This is a contradiction. Consequently, M =
CΓ-Cl(x). That is, M is Γ-Cl-component. □

Theorem 43. Let (U, τ) be an I-space. If M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-connected
and nonempty clopen subset of U , then M is Γ-Cl∗(resp. Γ, Γ-∗, 2∗)-component.

Proof. By using Lemma 5, it is obtained similar to the proof of Theorem 42. □

7. The Image of New Types of Connectedness Under a Continuous
Map in Ideal Topological Spaces

f : (U, τ1, I) → (Y, τ2) is continuous map means that f : (U, τ1) → (Y, τ2) is
continuous.

Theorem 44. Let (U, τ1) be Γ-Cl-connected I-space and (Y, τ2) be any topological
space. If f : (U, τ1, I) → (Y, τ2) is a continuous map, then f(U) is τ2-connected.

Proof. From Theorem 15 , the set U is τ1-connected. Since the image of a connected
space under a continuous map is connected, f(U) is τ2-connected. □

Corollary 16. Let (U, τ1) be Γ-Cl
∗ (Γ, Γ-∗, 2∗, ∗-Cl, ∗-Cl∗, ∗∗)-connected I-space

and (Y, τ2) be any topological space. If f : (U, τ1, I) → (Y, τ2) is a continuous map,
then f(U) is τ2-connected.

Proof. It is obvious from Theorem 44 and Figure 4. □

Corollary 17. Let f : (U, τ1, I) → (Y, τ2) be continuous and surjective function.
If U is Γ-Cl (Γ-Cl∗, Γ, Γ-∗, 2∗)-connected, then Y is τ -connected.

Proof. It is obvious from Theorem 44 and Corollary 16. □

It is shown in [14] that Corollary 17 is also satisfied for ∗-Cl (∗-Cl∗, ∗∗)-
connectedness. This is clear from Theorem 44 and Corollary 16. Because Γ-Cl-
connectedness is more general than ∗-Cl (∗-Cl∗, ∗∗)-connectedness.
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Theorem 45. [25](Intermediate Value Theorem) Let f : (U, τ1) → (Y, τ2) be con-
tinuous map, where (U, τ1) is a τ1-connected topological space, Y is an ordered set
with ” < ” and τ2 is order topology on Y . If a, b ∈ U and f(a) < r < f(b), then
there exists a point c ∈ U such that f(c) = r.

Now, we give the intermediate value theorem for the ideal topological spaces.

Theorem 46. Let f : (U, τ1, I) → (Y, τ2) be continuous map, where (U, τ1) is a
Γ-Cl (Γ-Cl∗, Γ, Γ-∗, 2∗, ∗-Cl, ∗-Cl∗, ∗∗)-connected I-space, Y is an ordered set
with ” < ” and τ2 is order topology on Y . If a, b ∈ U and f(a) < r < f(b), then
there exists a point c ∈ U such that f(c) = r.

Proof. From Theorem 15 (and Corollary 16), the set U is τ1-connected. That is,
(U, τ1) is connected space. Then, the claim is obtained by Theorem 45. □

Specially, if we choose the minimal ideal I = {∅} in Theorem 46, by using
Corollary 13, we obtain the intermediate value theorem. That is, a special case of
Theorem 46 gives the intermediate value theorem.
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