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Abstract 

In this study, we acquire I-statistical convergence of sequences of fuzzy star–shaped numbers. We examine topological and algebraic 

features of the obtained new sequence spaces. We put forward to significant examples of these new notions. 
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Bulanık Yıldız-Şekilli Sayıların I-İstatistiksel Yakınsak Dizi Uzayları 

Öz 

Bu çalışmada, bulanık yıldız-şekilli sayıların I-istatistiksel yakınsaklığını elde ettik. Elde edilen yeni dizi uzaylarının bazı topolojik ve 

cebirsel özelliklerini inceledik. Bu yeni kavramların önemli örneklerini ortaya koyduk.  
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1. Introduction 

Kostyrko et al. [7] proposed ideal convergence and 

examined significant features of this convergence concept. Then, 

ideal convergence of fuzzy numbers was presented by Kumar 

and Kumar [8]. Some implementations of ideal convergence can 

be seen in [6,9]. I-statistical convergence was investigated by 

Savaş and Das [10]. Theory of fuzzy was firstly originated by 

Zadeh [11]. Zadeh primarily studied the convexity feature of 

fuzzy sets. Some applications of fuzzy sets can be found in [11]. 

As a result of the significance of the star-shapedness and 

convexity that can be examined as a natural extension to this 

feature, it can be investigated in various ways ([2,3]). Diamond 

[1] presented the formulation of the fuzzy star-shaped numbers 

and examined the features of 𝐿𝑝-metric for 𝑝 ≥ 1 on the same 

study. 

Throughout the study, we denote the set of all sequences 𝑡 =
(𝑡𝑘) of fuzzy star-shaped numbers in ℝ𝑛 by 𝑤∗(𝑆𝑛). Significant 

definitions and notations which are used in present paper can be 

found in [4,5,10,12]. 

2. Material and Method 

With the description in the introduction, it can be observed 

that this study is qualitative with grounded theory method. 

Papers [1] and [12] put forward to concept of fuzzy star-shaped 

numbers and also [4], [5] provide a fundamental survey of the 

convergence concepts of fuzzy star-shaped numbers.  

By utilizing the notions of statistical convergence, ideal and 

fuzzy star-shaped numbers, we acquire new class of I-statistical 

convergence of sequences of fuzzy star–shaped numbers. 

3. Results and Discussion  

Now, we aim to present the sequence spaces 𝑐𝑆(𝐼)(𝑆𝑛), 𝑐0
𝑆(𝐼)(𝑆𝑛) 

and 𝑙∞
𝑆(𝐼)(𝑆𝑛) of fuzzy star-shaped numbers with regards to the 

𝐿𝑝-metric. We identify 

𝑐𝑆(𝐼)(𝑆𝑛) = {𝑡 = (𝑡𝑘)

∈ 𝑤∗(𝑆𝑛): {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘, 𝑡0) ≥ 𝜉|

≥ 𝜁} ∈ 𝐼 for some 𝜉 > 0 and some 𝑡0 ∈ 𝑆
𝑛} ; 

 

𝑐0
𝑆(𝐼)(𝑆𝑛) = {𝑡 = (𝑡𝑘)

∈ 𝑤∗(𝑆𝑛): {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘, 0̅) ≥ 𝜉|

≥ 𝜁} ∈ 𝐼 for some 𝜉 > 0 and som𝑒 0̅ ∈ 𝑆𝑛} ; 

𝑙∞
𝑆(𝐼)(𝑆𝑛) = {𝑡 = (𝑡𝑘) ∈ 𝑤

∗(𝑆𝑛): ∃𝐻

> 0 such that {𝑘

∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘, 0̅) ≥ 𝐻| ≥ 𝜁} ∈ 𝐼; } 

𝑚𝑆(𝐼)(𝑆𝑛) = 𝑐𝑆(𝐼)(𝑆𝑛) ∩ 𝑙∞
𝑆(𝐼)(𝑆𝑛) and 𝑚0

𝑆(𝐼)(𝑆𝑛) = 𝑐0
𝑆(𝐼)(𝑆𝑛) ∩

𝑙∞
𝑆(𝐼)(𝑆𝑛). 

 

Definition 3.1. A sequence 𝑡 = (𝑡𝑘) is named to be I-statistically 

Cauchy if for each 𝜉, 𝜁 > 0, 

{𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘, 𝑡𝑗) ≥ 𝜉| ≥ 𝜁} ∈ 𝐼. 

Theorem 3.1. The spaces 𝑐𝑆(𝐼)(𝑆𝑛), 𝑐0
𝑆(𝐼)(𝑆𝑛) and 𝑙∞

𝑆(𝐼)(𝑆𝑛) are 

linear. 

Proof. Assume 𝑡 = (𝑡𝑘) and 𝑟 = (𝑟𝑘) be sequences of 𝑐𝑆(𝐼)(𝑆𝑛) 
which convergence to t0 and 𝑟0 respectively and 𝛼, 𝛽 be scalars. 

Then 

𝐾{𝜉, 𝜁} = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘, 𝑡0) ≥

𝜉

2
| ≥ 𝜁} ∈ 𝐼, 

𝐿{𝜉, 𝜁} = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑟𝑘 , 𝑟0) ≥

𝜉

2
| ≥ 𝜁} ∈ 𝐼. 

𝜌𝑝(𝛼𝑡 + 𝛽𝑟, 𝛼𝑡0 + 𝛽𝑟0)

= (∫𝜌𝐻([𝛼𝑡𝑘 + 𝛽𝑟𝑘]
𝜎 , [𝛼𝑡0 + 𝛽𝑟0]

𝜎)𝑝
1

0

𝑑𝜎)

1

𝑝

= (∫𝜌𝐻(𝛼[𝑡𝑘]
𝜎 + 𝛽[𝑟𝑘]

𝜎 , 𝛼[𝑡0]
𝜎

1

0

+ 𝛽[𝑟0]
𝜎)𝑝 𝑑𝜎)

1

𝑝

≤ (∫𝜌𝐻([𝛼𝑡𝑘]
𝜎 + [𝛼𝑡0]

𝜎)𝑝
1

0

𝑑𝜎)

1

𝑝

+ (∫𝜌𝐻([𝛽𝑟𝑘]
𝜎 + [𝛽𝑟0]

𝜎)𝑝
1

0

𝑑𝜎)

1

𝑞

= |𝛼|(∫𝜌𝐻([𝑡𝑘]
𝜎 + [𝑡0]

𝜎)𝑝
1

0

𝑑𝜎)

1

𝑞

+ |𝛽|(∫𝜌𝐻([𝑟𝑘]
𝜎 + [𝑟0]

𝜎)𝑝
1

0

𝑑𝜎)

1

𝑞

= |𝛼|𝜌𝑝(𝑡, 𝑡0) + |𝛽|𝜌𝑝(𝑟, 𝑟0). 

Now 

𝑀{𝜉, 𝜁} = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝛼𝑡 + 𝛽𝑟, 𝛼𝑡0 + 𝛽𝑟0) ≥ 𝜉| ≥ 𝜁}

⊆ {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: |𝛼|𝜌𝑝(𝑡, 𝑡0) ≥

𝜉

2
| ≥ 𝜁}

∪ {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: |𝛽|𝜌𝑝(𝑟, 𝑟0) ≥

𝜉

2
| ≥ 𝜁}

= {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡, 𝑡0) ≥

𝜉

2|𝛼|
| ≥ 𝜁}

∪ {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑟, 𝑟0) ≥

𝜉

2|𝛽|
| ≥ 𝜁}

⊆ {𝐾 {
𝜉

2|𝛼|
, 𝜁} ∪ 𝐿 {

𝜉

2|𝛽|
, 𝜁}} ∈ 𝐼. 
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This gives that (𝛼𝑡 + 𝛽𝑟) ∈ 𝑐𝑆(𝐼)(𝑆𝑛). As a result, 𝑐𝑆(𝐼)(𝑆𝑛) is a 

linear space. 

 

Theorem 3.2. The inclusions 𝑐0
𝑆(𝐼)(𝑆𝑛) ⊂ 𝑐𝑆(𝐼)(𝑆𝑛) ⊂ 𝑙∞

𝑆(𝐼)(𝑆𝑛) 
are strict. 

 

Proof. Obviously 𝑐0
𝑆(𝐼)(𝑆𝑛) ⊂ 𝑐𝑆(𝐼)(𝑆𝑛). Now, to indicate that 

𝑐0
𝑆(𝐼)(𝑆𝑛) is a proper subset of 𝑐𝑆(𝐼)(𝑆𝑛), consider 𝑡 = (𝑡𝑘) ∈
𝑤∗(𝑆𝑛) as 

 

𝑡𝑘(𝑠) = {
𝑠,          0 ≤ 𝑠 < 2

3 − 𝑠, 2 ≤ 𝑠 ≤ 3
0,         otherwise.

 

 

Obviously the sequence (𝑡𝑘) ∈ 𝑐
𝑆(𝐼)(𝑆𝑛) but (𝑡𝑘) ∉ 𝑐0

𝑆(𝐼)(𝑆𝑛), 

that is (𝑡𝑘) ∈ 𝑐
𝑆(𝐼)(𝑆𝑛)/𝑐0

𝑆(𝐼)(𝑆𝑛). Now, contemplate a sequence 

𝑡 = (𝑡𝑘) ∈ 𝑐
𝑆(𝐼)(𝑆𝑛). Then, there is a 𝑡0 ∈ 𝑆

𝑛 such that 𝐼 −
𝑠𝑡𝑙𝑖𝑚𝑡𝑘 = 𝑡0, that is, 

 

{𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘, 𝑡0) ≥ 𝜉| ≥ 𝜁} ∈ 𝐼. 

 

We get 

 

𝜌𝑝(𝑡𝑘, 0̅) ≤ 𝜌𝑝(𝑡𝑘, 𝑡0) + 𝜌𝑝(𝑡0, 0̅). 

 

This denotes that (𝑡𝑘) have to belongs to 𝑙∞
𝑆(𝐼)(𝑆𝑛). Subsequent 

is an example to demonstrate the strictness of the inclusion 

𝑐𝑆(𝐼)(𝑆𝑛) ⊂ 𝑙∞
𝑆(𝐼)(𝑆𝑛). 

 

Example2.1. Contemplate the subsequent sequence: 

𝑡𝑘(𝑠) =

{
 
 

 
 
1 + 2𝑠

2
,        for 

−1

2
≤ s ≤

1

2

2(1 − 𝑠), for 
1

2
≤ s ≤ 1

0,         otherwise.

 

 

Take I as a non maximal ideal. Determine a sequence 𝑟 = (𝑟𝑘) 
as 

 

𝑟𝑘 = {
𝑡𝑘, 𝑘 ∈ 𝐾
0, otherwise.

 

 

We acquire (𝑟𝑘) ∈ 𝑙∞
𝑆(𝐼)(𝑆𝑛) but (𝑟𝑘) ∉ 𝑐

𝑆(𝐼)(𝑆𝑛). 

 

Also, assume the sequence (𝑡𝑘) be identified as 

 

𝑡𝑘(𝑠) =

{
 
 

 
 1 − 𝑘𝑠, 0 ≤ 𝑠 ≤

1

𝑘

1 + 𝑘𝑠,
−1

𝑘
≤ 𝑠 ≤ 0   for 𝑘 = 2𝑚

0, otherwise.

 

 

Otherwise 

 

𝑡𝑘(𝑠) = {

𝑠 + 5, −5 ≤ 𝑠 ≤ 0
1,         0 ≤ 𝑠 ≤ 2

−𝑠 + 5, 2 ≤ 𝑠 ≤ 5 
0,            otherwise.  

    

 

Consequently, (𝑡𝑘) ∈ 𝑙∞
𝑆(𝐼)(𝑆𝑛) but (𝑡𝑘) ∉ 𝑐

𝑆(𝐼)(𝑆𝑛). Hence, the 

inclusions 𝑐0
𝑆(𝐼)(𝑆𝑛) ⊂ 𝑐𝑆(𝐼)(𝑆𝑛) ⊂ 𝑙∞

𝑆(𝐼)(𝑆𝑛) are strict. 

 

Theorem 3.3. If I is not maximal then 𝑐𝑆(𝐼)(𝑆𝑛) is neither 

normal nor monotone. 

 

Proof. We examine the subsequent example. Think a sequence 

𝑡 = (𝑡𝑘) ∈ 𝑤
∗(𝑆𝑛) 

 

𝑡𝑘(𝑠) =

{
  
 

  
 2𝑠,              if    0 ≤ s ≤

1

2

1,             if   
1

2
≤ s ≤

3

2

−2(𝑠 − 2), if 
3

2
≤ s ≤ 2 

0,             otherwise.  

 

 

Then, (tk) ∈ c
S(I)(Sn). As I is not maximal, we identify a 

sequence r = (rk) as 

 

𝑟𝑘 = {
𝑡𝑘, 𝑘 ∈ 𝐾
0, otherwise.

 

 

such that 𝑟 = (rk) exists in the canonical pre-image of (tk) of K-

step spaces of 𝑐𝑆(𝐼)(𝑆𝑛). But (𝑟𝑘) ∉ 𝑐
𝑆(𝐼)(𝑆𝑛). Hence, 𝑐𝑆(𝐼)(𝑆𝑛) 

is not monotone, so it is not normal. 

 

Theorem 3.4. The spaces 𝑐0
𝑆(𝐼)(𝑆𝑛), 𝑐𝑆(𝐼)(𝑆𝑛), 𝑙∞

𝑆(𝐼)(𝑆𝑛) are 

sequence algebra. 

 

Proof. When K and L are fuzzy star-shaped numbers then, their 

product is determined as 

 

𝜇𝐾.𝐿(𝑦) = sup𝑦=𝑧.𝑥min(𝜇𝐾(𝑧), 𝜇𝐿(𝑥)) 
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for every 𝑦 ∈ ℝ. Assume 𝑡0 be 𝐼 − 𝑠𝑡𝑙𝑖𝑚𝑡𝑘 and 𝑟0 be 𝐼 −
𝑠𝑡𝑙𝑖𝑚𝑟𝑘 . For 𝜎 ∈ [0,1] and 𝛼, 𝛽 ≥ 0. 

 

𝜌𝐻([𝑡𝑘]
𝜎[𝑟𝑘]

𝜎 , [𝑡0]
𝜎[𝑟0]

𝜎)
≤ 𝛼𝜌𝑝([𝑡𝑘]

𝜎 , [𝑡0]
𝜎) + 𝛽𝜌𝑝([𝑟𝑘]

𝜎 , [𝑟0]
𝜎). 

 

Thus, we obtain 

 

𝜌𝐻(𝑡𝑘𝑟𝑘 , 𝑡0𝑟0) ≤ 𝛼𝜌𝑝(𝑡𝑘, 𝑡0) + 𝛽𝜌𝑝(𝑟𝑘 , 𝑟0). 

 

Let 𝜉, 𝜁 > 0 be taken. Then 

 

𝐾 {
𝜉

2
, 𝜁} = {𝑘 ∈ ℕ:

1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(tk, t0) ≥

𝜉

2
| ≥ 𝜁} ∈ 𝐼, 

𝐿 {
𝜉

2
, 𝜁} = {𝑘 ∈ ℕ:

1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑟𝑘 , 𝑟0) ≥

𝜉

2
| ≥ 𝜁} ∈ 𝐼. 

Think the set 

 

𝑀{𝜉, 𝜁} = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘𝑟𝑘 , 𝑡0𝑟0) ≥ 𝜉| ≥ 𝜁}. 

 

It suffices to denote that 𝑀{𝜉, 𝜁} ⊆ 𝐾{𝜉, 𝜁} ∪ 𝐿{𝜉, 𝜁}. Then 

 

{𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑘𝑟𝑘 , 𝑡0𝑟0) ≥ 𝜉| ≥ 𝜁}

⊆ 𝛼 {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(tk, t0) ≥

𝜉

2
| ≥ 𝜁}

∪ 𝛽 {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(rk, r0) ≥

𝜉

2
| ≥ 𝜁}. 

 

Since 

 

𝑀{𝜉, 𝜁} ⊆ {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(tk, t0) ≥

𝜉

2𝛼
| ≥ 𝜁}

∪ {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(rk, r0) ≥

𝜉

2𝛽
| ≥ 𝜁}. 

As a result 𝑀{𝜉, 𝜁} ⊆ 𝐾{𝜉, 𝜁} ∪ 𝐿{𝜉, 𝜁}. 

 

Theorem 3.5. The function ℎ:𝑚𝑆(𝐼)(𝑆𝑛) → ℝ given by ℎ(𝑝) =
𝐼 − 𝑠𝑡𝑙𝑖𝑚𝑝 is a Lipschitz function and so uniformly continuous. 

 

Proof. Assume 𝑡, 𝑟 ∈ 𝑚𝑆(𝐼)(𝑆𝑛) with 𝑝 ≠ 𝑟 such that ℎ(𝑡) = 𝐼 −
𝑠𝑡𝑙𝑖𝑚𝑡 and ℎ(𝑟) = 𝐼 − 𝑠𝑡𝑙𝑖𝑚𝑟. Then 

 

𝐾𝑝 = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡, ℎ(𝑡)) ≥ ‖𝑡 − 𝑟‖| ≥ 𝜁} ∈ 𝐼, 

 

𝐿𝑝 = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑟, ℎ(𝑟)) ≥ ‖𝑡 − 𝑟‖| ≥ 𝜁} ∈ 𝐼. 

 

Therefore 

 

𝐾𝑝
𝑐 = {𝑘 ∈ ℕ:

1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡, ℎ(𝑡)) ≥ ‖𝑡 − 𝑟‖| < 𝜁} ∈ 𝐹(𝐼), 

 

𝐿𝑝
𝑐 = {𝑘 ∈ ℕ:

1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑟, ℎ(𝑟)) ≥ ‖𝑡 − 𝑟‖| < 𝜁} ∈ 𝐹(𝐼). 

 

So 𝑀𝑝
𝑐 = 𝐾𝑝

𝑐 ∩ 𝐿𝑝
𝑐 ∈ 𝐹(𝐼). Namely 𝑀𝑝

𝑐 ≠ ∅. Let 𝑘 ∈ 𝑀𝑝
𝑐 such 

that 

 

𝜌𝑝(ℎ(𝑡), ℎ(𝑟)) ≤ 𝜌𝑝(ℎ(𝑡), 𝑡) + 𝜌𝑝(𝑡, 𝑟) + 𝜌𝑝(𝑟, ℎ(𝑟))

≤ 3‖𝑡 − 𝑟‖. 

 

As a result, h is Lipschitz continuous. 

 

Theorem 3.6. When 𝑡, 𝑟 ∈ 𝑚𝑆(𝐼)(𝑆𝑛), then (𝑡. 𝑟) ∈ 𝑚𝑆(𝐼)(𝑆𝑛) 
and ℎ(𝑡𝑟) = ℎ(𝑡)ℎ(𝑟). 

 

Proof. As 𝑡, 𝑟 ∈ 𝑚𝑆(𝐼)(𝑆𝑛), for 𝜉, 𝜁 > 0 the subsequent 

conditions supplies 

 

𝐾𝑝 = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡, ℎ(𝑡)) ≥ 𝜉| <

𝜁

2𝑀
} ∈ 𝐹(𝐼), 

 

𝐿𝑟 = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑟, ℎ(𝑟)) ≥ 𝜉| <

𝜁

2𝑁
} ∈ 𝐹(𝐼), 

 

where 𝑀,𝑁 > 0 where 𝜌𝑝(𝑡, 0̅) < 𝑀 and 𝜌𝑝(𝑟, 0̅) < 𝑁. Think 

the set 

 

𝑅 = {𝑘 ∈ ℕ:
1

𝑘
|𝑛 ≤ 𝑘: 𝜌𝑝(𝑡𝑟, ℎ(𝑡)ℎ(𝑟)) ≥ 𝜉| < 𝜁} 

 

and let 𝑘 ∈ 𝐾𝑝 ∩ 𝐿𝑟 . 

Now 

 

𝜌𝑝(𝑡𝑟, ℎ(𝑡)ℎ(𝑟)) ≤ 𝜌𝑝(𝑡𝑟, 𝑡ℎ(𝑟)) ≤ 𝜌𝑝(𝑡ℎ(𝑟), ℎ(𝑡)ℎ(𝑟))

≤ 𝜌𝑝(𝑡, 0)𝜌𝑝(𝑟, ℎ(𝑟))

+ 𝜌𝑝(ℎ(𝑟), 0)𝜌𝑝(𝑡, ℎ(𝑡)) ≤
𝜁

2𝑀
𝑀 +

𝜁

2𝑁
𝑁

= 𝜁. 
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Hence, 𝐾𝑝 ∩ 𝐿𝑟 ∈ 𝑅, so that 𝑅 ∈ 𝐹(𝐼). So (𝑡. 𝑟) ∈ 𝑚𝑆(𝐼)(𝑆𝑛) and 

ℎ(𝑡𝑟) = ℎ(𝑡)ℎ(𝑟). 

 

4. Conclusions and Recommendations 

In this study, we investigate I-statistical convergence of 

sequences of fuzzy star–shaped numbers. We put forward to 

topological and algebraic features of the obtained new sequence 

spaces. We examine significant examples of these new notions. 
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