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Abstract. The concept of strong w [ρ, f, q]−summability of order (α, β) for
sequences of complex (or real) numbers is introduced in this work. We also give

some inclusion relations between the sets of ρ-statistical convergence of order

(α, β), strong wβα [ρ, f, q]−summability and strong wβα (ρ, q)−summability.

1. Introduction

The concept of statistical convergence was introduced by Steinhaus [28] and
Fast [13] and later in 1959, Schoenberg [27] reintroduced independently. After-
wards there has appeared much research with some arguments related of this
concept (see Caserta et al. [3], Connor [4], Çakallı ([5],[6]), Çolak [7], Et et al.
([8],[9],[10]), Fridy [14], Gadjiev and Orhan [15], Kolk [17], Salat [26], Şengül et
al.([2],[29],[30],[31],[32],[33],[34]) and many others).

The statistical convergence order α was introduced by Çolak [7] as follows:
The sequence x = (xk) is said to be statistically convergent of order α to L if

there is a complex number L such that

lim
n→∞

1

nα
|{k ≤ n : |xk − L| ≥ ε}| = 0.

Let 0 < α ≤ β ≤ 1. Then the (α, β)−density of the subset E of N is defined by

δβα (E) = lim
n

1

nα
|{k ≤ n : k ∈ E}|β

if the limit exists (finite or infinite), where |{k ≤ n : k ∈ E}|β denotes the βth power
of number of elements of E not exceeding n.

If x = (xk) is a sequence such that satisfies property P (k) for all k except a set of
(α, β)−density zero, then we say that xk satisfies P (k) for “almost all k according
to β” and we denote this by “a.a.k (α, β)”.

Throughout this study, we shall denote the space of sequences of real number
by w.
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Let 0 < β ≤ 1, 0 < α ≤ 1, α ≤ β and x = (xk) ∈ w. Then we say the sequence
x = (xk) is statistically convergent of order (α, β) if there is a complex number L
such that

lim
n→∞

1

nα
|{k ≤ n : |xk − L| ≥ ε}|β = 0

i.e. for a.a.k (α, β) |xk − L| < ε for every ε > 0, in that case a sequence x is
said to be statistically convergent of order (α, β) to L. This limit is denoted by
Sβα − limxk = L ([29]).

Let 0 < α 6 1. A sequence (xk) of points in R, the set of real numbers, is called
ρ−statistically convergent of order α to an element L of R if

lim
n→∞

1

ραn
|{k ≤ n : |xk − L| ≥ ε}| = 0

for each ε > 0, where ρ = (ρn) is a non-decreasing sequence of positive real numbers
tending to ∞ such that lim supn

ρn
n < ∞, ∆ρn = O(1) and ∆ρn = ρn+1 − xn for

each positive integer n. In this case we write stαρ − limxk = L. If ρ = (ρn) = n and
α = 1, then ρ−statistically convergent of order α is coincide statistical convergence
([5]).

Here and in what follows we suppose that the sequence ρ = (ρn) is a non-
decreasing sequence of positive real numbers tending to∞ such that lim supn

ρn
n <

∞, ∆ρn = O(1) where 0 < α 6 1 and ∆ρn = ρn+1− ρn for each positive integer n.
The notion of a modulus function was given by Nakano [21]. Following Maddox

[19] and Ruckle [25], we recall that a modulus f is a function from [0,∞) to [0,∞)
such that

i) f(x) = 0 if and only if x = 0,
ii) f(x+ y) ≤ f(x) + f(y) for x, y ≥ 0,
iii) f is increasing,
iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0,∞).
Altın [1], Et ([11], [12]), Gaur and Mursaleen [20], Işık [16], Nuray and Savaş [22],

Pehlivan and Fisher [23] and some others have been studied with some sequence
spaces defined by modulus function.

The following inequality will be used frequently throught the paper:

|ak + bk|pk ≤ A (|ak|pk + |bk|pk) (1.1)

where ak, bk ∈ C, 0 < pk ≤ sup pk = B, A = max
(
1, 2B−1

)
([18]).

2. Main Results

In this section we first give the sets of strongly wβα (ρ, q)−summable sequences
and strongly wβα [ρ, f, q]−summable sequences with respect to the modulus function
f. Secondly we state and prove the theorems on some inclusion relations between
the Sβα (ρ)− statistical convergence, strong wβα [ρ, f, q]−summability and strong
wβα (ρ, q)−summability.

Definition 2.1. Let 0 < α ≤ β ≤ 1 be given. A sequence x = (xk) is said to
be Sβα (ρ)−statistically convergent (or ρ- statistically convergent sequences of order
(α, β)) if there is a real number L such that

lim
n→∞

1

ραn
|{k 6 n : |xk − L| ≥ ε}|β = 0,
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where ραn denotes the αth power (ρn)
α

of ρn, that is ρα = (ραn) = (ρα1 , ρ
α
2 , ..., ρ

α
n, ...)

and |{k ≤ n : k ∈ E}|β denotes the βth power of number of elements of E not ex-
ceeding n. In the present case this convergence is indicated by Sβα (ρ)− limxk = L.
Sβα (ρ) will indicate the set of all Sβα (ρ)−statistically convergent sequences.

Definition 2.2. Let 0 < α ≤ β ≤ 1 and q be a positive real number. A sequence
x = (xk) is said to be strongly Nβ

α (ρ, q)−summable (or strongly N (ρ, q)−summable
of order (α, β)) if there is a real number L such that

lim
n→∞

1

ραn

(
n∑
k=1

|xk − L|q
)β

= 0.

We denote it by Nβ
α (ρ, q)− limxk = L. Nβ

α (ρ, q) will denote the set of all strongly
N (ρ, q)−summable sequences of order (α, β). If α = β = 1, then we will write

N (ρ, q) in the place of Nβ
α (ρ, q). If L = 0, then we will write wβα,0 (ρ, q) in the

place of wβα (ρ, q). Nβ
α,0 (ρ, q) will denote the set of all strongly Nρ (q)−summable

sequences of order (α, β) to 0.

Definition 2.3. Let f be a modulus function, q = (qk) be a sequence of strictly
positive real numbers and 0 < α ≤ β ≤ 1 be real numbers. A sequence x = (xk) is
said to be strongly wβα [ρ, f, q]−summable of order (α, β) if there is a real number
L such that

lim
n→∞

1

ραn

(
n∑
k=1

[f (|xk − L|)]qk
)β

= 0.

In this case, we write wβα [ρ, f, q]− limxk = L. We denote the set of all strongly
wβα [ρ, f, q]−summable sequences of order (α, β) by wβα [ρ, f, q]. In the special case
qk = q, for all k ∈ N and f (x) = x we will denote Nβ

α (ρ, q) in the place of

wβα [ρ, f, q] . wβα,0 [ρ, f, q] will denote the set of all strongly w [ρ, f, q]−summable se-

quences of order (α, β) to 0.

In the following theorems, we shall assume that the sequence q = (qk) is bounded
and 0 < d = infk qk ≤ qk ≤ supk qk = D <∞.

Theorem 2.1. The class of sequences wβα,0 [ρ, f, q] is linear space.

Proof. Omitted. �

Theorem 2.2. The space wβα,0 [ρ, f, q] is paranormed by

g (x) = sup
n

 1

ραn

(
n∑
k=1

[f (|xk|)]qk
)β

1
H

where 0 < α ≤ β ≤ 1 and H=max (1, D) .

Proof. Clearly g (0) = 0 and g (x) = g (−x) . Let x, y ∈ wβα,0 [ρ, f, q] be two se-

quences. Since qk
H
β

≤ 1 and H
β ≥ 1, using the Minkowski’s inequality and definition

of f, we have
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 1

ραn

(
n∑
k=1

[f (|xk + yk|)]qk
)β

1
H

≤

 1

ραn

(
n∑
k=1

[f (|xk|) + f (|yk|)]qk
)β

1
H

=
1

ρ
α
H
n

(
n∑
k=1

[f (|xk|) + f (|yk|)]qk
) 1

H
β

≤ 1

ρ
α
H
n


(

n∑
k=1

[f (|xk|)]qk
)β

1
H

+
1

ρ
α
H
n


(

n∑
k=1

[f (|yk|)]qk
)β

1
H

.

Hence, we have g (x+ y) ≤ g (x)+g (y) for x, y ∈ wβα,0 [ρ, f, q] . Let µ be complex
number. By defnition of f we have

g (µx) = sup
n

 1

ραn

(
n∑
k=1

[f (|µxk|)]qk
)β

1
H

≤ K
D
H
β g (x)

where [µ] denotes the integer part of µ, and K = 1 + [|µ|] . Now, let µ→ 0 for any
fixed x with g (x) 6= 0. By definition of f , for |µ| < 1 and 0 < α ≤ β ≤ 1, we have

1

ραn

(
n∑
k=1

[f (|µxk|)]qk
)β

< ε for n > N (ε) . (2.1)

Also, for 1 ≤ n ≤ N, taking µ small enough, since f is continuous we have

1

ραn

(
n∑
k=1

[f (|µxk|)]qk
)β

< ε. (2.2)

Therefore, (2.1) and (2.2) imply that g (µx)→ 0 as µ→ 0. �

Proposition 2.3. ([24]) Let f be a modulus and 0 < δ < 1. Then for each ‖u‖ ≥ δ,
we have f (‖u‖) ≤ 2f (1) δ−1 ‖u‖ .

Theorem 2.4. If 0 < α = β ≤ 1, q > 1 and lim infu→∞
f(u)
u > 0, then

wβα [ρ, f, q] = wβα (ρ, q) .

Proof. If lim infu→∞
f(u)
u > 0 then there exists a number c > 0 such that f (u) > cu

for u > 0. Let x ∈ wβα [ρ, f, q], then

1

ραn

(
n∑
k=1

[f (|xk − L|)]q
)β
≥ 1

ραn

(
n∑
k=1

[c |xk − L|]q
)β

=
cqαβ

ραn

(
n∑
k=1

|xk − L|q
)β

.

This means that wβα [ρ, f, q] ⊆ wβα (ρ, q) .
Let x ∈ wβα (ρ, q) . Thus we have
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1

ραn

(
n∑
k=1

|xk − L|q
)β
→ 0 as n→∞.

Let ε > 0, β = α and choose δ with 0 < δ < 1 such that cu < f (u) < ε for every
u with 0 ≤ u ≤ δ. Therefore, by Proposition 1, we have

1

ραn

(
n∑
k=1

[f (|xk − L|)]q
)β

=
1

ραn

 n∑
k=1

|xk−L|≤δ

[f (|xk − L|)]q


β

+
1

ραn

 n∑
k=1

|xk−L|>δ

[f (|xk − L|)]q


β

≤ 1

ραn
εqβnβ +

1

ραn

 n∑
k=1

|xk−L|>δ

[
2f (1) δ−1 |xk − L|

]q

β

≤ 1

ραn
εqαnβ +

2qβf (1)
qβ

ραnδ
qβ

(
n∑
k=1

|xk − L|q
)β

.

This gives x ∈ wβα [ρ, f, q] . �

Example 2.1. We now give an example to show that wβα [ρ, f, q] 6= wβα (ρ, q) in this

case lim infu→∞
f(u)
u = 0. Consider the sequence f (x) = x

1+x of modulus function.

Define x = (xk) by

xk =

{
k, if k = m3

0, if k 6= m3.

Then we have, for L = 0, q = 1, (ρn) = (n) and α = β

1

ραn

(
n∑
k=1

[f (|xk|)]q
)β
6

1

nα
n

1
3β → 0 as n→∞

and so x ∈ wβα [θ, f, q] . But

1

ραn

(
n∑
k=1

|xk|q
)β

=
1

nα
(
1 + 23 + 33 + · · ·+

[
3
√
n
])β

>
1

nα

[
( 3
√
n− 1)( 3

√
n)

2

]2β
=

1

nα

(
n4/3 − 2n+ n2/3

)β
4β

→∞ as n→∞

and so x /∈ wβα (p) .

Theorem 2.5. Let 0 < α ≤ β ≤ 1 and lim inf qk > 0. If a sequence is convergent
to L, then it is strongly wβα [ρ, f, q]−summable of order (α, β) to L.

Proof. We assume that xk → L. Since f be a modulus function, we have f (|xk − L|)→
0. Since lim inf qk > 0, we have [f (|xk − L|)]qk → 0. Hence wβα [ρ, f, q] − limxk =
L. �
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Theorem 2.6. Let α1, α2, β1, β2 ∈ (0, 1] be real numbers such that 0 < α1 ≤ α2 ≤
β1 ≤ β2 ≤ 1, f be a modulus function , then wβ2

α1
[ρ, f, q] ⊂ Sβ1

α2
(ρ) .

Proof. Let x ∈ wβ2
α1

[ρ, f, q] and let ε > 0 be given. Let
∑

1 and
∑

2 denote the
sums over k 6 n with |xk − L| ≥ ε and k 6 n with |xk − L| < ε respectively. Since
ρα1
n ≤ ρα2

n for each n we have

1

ρα1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

=
1

ρα1
n

[∑
1

[f (|xk − L|)]qk +
∑

2
[f (|xk − L|)]qk

]β2

≥ 1

ρα2
n

[∑
1

[f (|xk − L|)]qk +
∑

2
[f (|xk − L|)]qk

]β2

≥ 1

ρα2
n

[∑
1

[f (ε)]
qk
]β2

≥ 1

ρα2
n

[∑
1

min([f (ε)]
d
, [f (ε)]

D
)
]β2

≥ 1

ρα2
n
|{k 6 n : |xk − L| ≥ ε}|β1

[
min([f (ε)]

d
, [f (ε)]

D
)
]β1

.

We get x ∈ Sβ1
α2

(ρ) . �

Theorem 2.7. If f is a bounded modulus function and limn→∞
ρβ2n
ρ
α1
n

= 1 then

Sβ2
α1

(ρ) ⊂ wβ1
α2

[ρ, f, q] .

Proof. Let x ∈ Sβ2
α1

(ρ). Suppose that f be bounded. Therefore f (x) ≤ R, for a
positive integer R and all x ≥ 0. Then for each ε > 0 we can write

1

ρα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

≤ 1

ρα1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

=
1

ρα1
n

(∑
1

[f (|xk − L|)]qk +
∑

2
[f (|xk − L|)]qk

)β1

≤ 1

ρα1
n

(∑
1

max
(
Rd, RD

)
+
∑

2
[f (ε)]

qk
)β1

≤
(
max

(
Rd, RD

))β2 1

ρα1
n
|{k 6 n : f (|xk − L|) ≥ ε}|β2

+
ρβ2
n

ρα1
n

(
max

(
f (ε)

d
, f (ε)

D
))β2

.

Hence x ∈ wβ1
α2

[ρ, f, q] . �

Theorem 2.8. Let f be a modulus function. If lim qk > 0, then wβα [ρ, f, q] −
limxk = L uniquely.

Proof. Let lim qk = t > 0. Suppose that wβα [ρ, f, q]− limxk = L1 and wβα [ρ, f, q]−
limxk = L2. Then

lim
n

1

ραn

(
n∑
k=1

[f (|xk − L1|)]qk
)β

= 0,

and
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lim
n

1

ραn

(
n∑
k=1

[f (|xk − L2|)]qk
)β

= 0.

By definition of f and using (1.1), we may write

1

ραn

(
n∑
k=1

[f (|L1 − L2|)]qk
)β

≤ A

ραn

(
n∑
k=1

[f (|xk − L1|)]qk +

n∑
k=1

[f (|xk − L2|)]qk
)β

≤ A

ραn

(
n∑
k=1

[f (|xk − L1|)]qk
)β

+
A

ραn

(
n∑
k=1

[f (|xk − L2|)]qk
)β

where supk qk = D, 0 < β ≤ α ≤ 1 and A = max
(
1, 2D−1

)
. Hence

lim
n

1

ραn

(
n∑
k=1

[f (|L1 − L2|)]qk
)β

= 0.

Since limk→∞ qk = t we have L1 − L2 = 0. Hence the limit is unique. �

Theorem 2.9. Let ρ = (ρn) and τ = (τn) be two sequences such that ρn 6 τn for
all n ∈ N and let α1, α2, β1 and β2 be such that 0 < α1 ≤ α2 ≤ β1 ≤ β2 ≤ 1,

(i) If

lim inf
n→∞

ρα1
n

τα2
n

> 0 (2.3)

then wβ2
α2

[τ, f, q] ⊂ wβ1
α1

[ρ, f, q] ,

(ii) If

lim sup
n→∞

ρα1
n

τα2
n

<∞ (2.4)

then wβ2
α1

[ρ, f, q] ⊂ wβ1
α2

[τ, f, q] .

Proof. (i) Let x ∈ wβ2
α2

[τ, f, q] . We have

1

τα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

≥ ρα1
n

τ
α2
n

1
ρ
α1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

.

Thus if x ∈ wβ2
α2

[τ, f, q] , then x ∈ wβ1
α1

[ρ, f, q] .

(ii) Let x = (xk) ∈ wβ2
α1

[ρ, f, q] and (2.4) holds. Now, since ρn ≤ τn for all n ∈ N,
we have

1

τα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β1

≤ 1

τα2
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

=
ρα1
n

τα2
n

1

ρα1
n

(
n∑
k=1

[f (|xk − L|)]qk
)β2

for every n ∈ N. Therefore wβ2
α1

[ρ, f, q] ⊂ wβ1
α2

[τ, f, q] . �
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