ρ-STATISTICAL CONVERGENCE DEFINED BY A MODULUS FUNCTION OF ORDER (α, β)

NAZLIM DENIZ ARAL
DEPARTMENT OF MATHEMATICS, BITLIS EREN UNIVERSITY, 13000, BITLIS, TURKEY, ORCID ID: 0000-0002-8984-2620

Abstract

The concept of strong $w[\rho, f, q]$-summability of order (α, β) for sequences of complex (or real) numbers is introduced in this work. We also give some inclusion relations between the sets of ρ-statistical convergence of order (α, β), strong $w_{\alpha}^{\beta}[\rho, f, q]$-summability and strong $w_{\alpha}^{\beta}(\rho, q)$-summability.

1. Introduction

The concept of statistical convergence was introduced by Steinhaus [28 and Fast [13] and later in 1959, Schoenberg [27] reintroduced independently. Afterwards there has appeared much research with some arguments related of this concept (see Caserta et al. [3], Connor [4], Çakallı ([5],[6), Çolak [7], Et et al. (8 , 9 , [10), Fridy [14], Gadjiev and Orhan [15], Kolk [17, Salat [26], Sengül et al. ((22, ,29), (30, , 31, , 32, , 33], (34) and many others).

The statistical convergence order α was introduced by Çolak [7] as follows:
The sequence $x=\left(x_{k}\right)$ is said to be statistically convergent of order α to L if there is a complex number L such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0 .
$$

Let $0<\alpha \leq \beta \leq 1$. Then the (α, β)-density of the subset E of \mathbb{N} is defined by

$$
\delta_{\alpha}^{\beta}(E)=\lim _{n} \frac{1}{n^{\alpha}}|\{k \leq n: k \in E\}|^{\beta}
$$

if the limit exists (finite or infinite), where $|\{k \leq n: k \in E\}|^{\beta}$ denotes the β th power of number of elements of E not exceeding n.

If $x=\left(x_{k}\right)$ is a sequence such that satisfies property $P(k)$ for all k except a set of (α, β)-density zero, then we say that x_{k} satisfies $P(k)$ for "almost all k according to β " and we denote this by "a.a.k (α, β) ".

Throughout this study, we shall denote the space of sequences of real number by w.

[^0]Let $0<\beta \leq 1,0<\alpha \leq 1, \alpha \leq \beta$ and $x=\left(x_{k}\right) \in w$. Then we say the sequence $x=\left(x_{k}\right)$ is statistically convergent of order (α, β) if there is a complex number L such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|^{\beta}=0
$$

i.e. for a.a.k $(\alpha, \beta)\left|x_{k}-L\right|<\varepsilon$ for every $\varepsilon>0$, in that case a sequence x is said to be statistically convergent of order (α, β) to L. This limit is denoted by $\left.S_{\alpha}^{\beta}-\lim x_{k}=L(\boxed{29}]\right)$.

Let $0<\alpha \leqslant 1$. A sequence $\left(x_{k}\right)$ of points in \mathbb{R}, the set of real numbers, is called ρ-statistically convergent of order α to an element L of \mathbb{R} if

$$
\lim _{n \rightarrow \infty} \frac{1}{\rho_{n}^{\alpha}}\left|\left\{k \leq n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|=0
$$

for each $\varepsilon>0$, where $\rho=\left(\rho_{n}\right)$ is a non-decreasing sequence of positive real numbers tending to ∞ such that $\limsup _{n} \frac{\rho_{n}}{n}<\infty, \Delta \rho_{n}=O(1)$ and $\Delta \rho_{n}=\rho_{n+1}-x_{n}$ for each positive integer n. In this case we write $s t_{\rho}^{\alpha}-\lim x_{k}=L$. If $\rho=\left(\rho_{n}\right)=n$ and $\alpha=1$, then ρ-statistically convergent of order α is coincide statistical convergence (5]).

Here and in what follows we suppose that the sequence $\rho=\left(\rho_{n}\right)$ is a nondecreasing sequence of positive real numbers tending to ∞ such that lim $\sup _{n} \frac{\rho_{n}}{n}<$ $\infty, \Delta \rho_{n}=O(1)$ where $0<\alpha \leqslant 1$ and $\Delta \rho_{n}=\rho_{n+1}-\rho_{n}$ for each positive integer n.

The notion of a modulus function was given by Nakano [21]. Following Maddox [19] and Ruckle [25], we recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
i) $f(x)=0$ if and only if $x=0$,
ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
iii) f is increasing,
iv) f is continuous from the right at 0 .

It follows that f must be continuous everywhere on $[0, \infty)$.
Altın [1], Et ([11], [12]), Gaur and Mursaleen [20, Işık [16], Nuray and Savaş [22], Pehlivan and Fisher [23] and some others have been studied with some sequence spaces defined by modulus function.

The following inequality will be used frequently throught the paper:

$$
\left|a_{k}+b_{k}\right|^{p_{k}} \leq A\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right)
$$

where $a_{k}, b_{k} \in \mathbb{C}, 0<p_{k} \leq \sup p_{k}=B, A=\max \left(1,2^{B-1}\right)([18)$.

2. Main Results

In this section we first give the sets of strongly $w_{\alpha}^{\beta}(\rho, q)$-summable sequences and strongly $w_{\alpha}^{\beta}[\rho, f, q]$-summable sequences with respect to the modulus function f. Secondly we state and prove the theorems on some inclusion relations between the $S_{\alpha}^{\beta}(\rho)$ - statistical convergence, strong $w_{\alpha}^{\beta}[\rho, f, q]$-summability and strong $w_{\alpha}^{\beta}(\rho, q)$-summability.
Definition 2.1. Let $0<\alpha \leq \beta \leq 1$ be given. A sequence $x=\left(x_{k}\right)$ is said to be $S_{\alpha}^{\beta}(\rho)$-statistically convergent (or ρ-statistically convergent sequences of order $(\alpha, \beta))$ if there is a real number L such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\rho_{n}^{\alpha}}\left|\left\{k \leqslant n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|^{\beta}=0
$$

where ρ_{n}^{α} denotes the α th power $\left(\rho_{n}\right)^{\alpha}$ of ρ_{n}, that is $\rho^{\alpha}=\left(\rho_{n}^{\alpha}\right)=\left(\rho_{1}^{\alpha}, \rho_{2}^{\alpha}, \ldots, \rho_{n}^{\alpha}, \ldots\right)$ and $|\{k \leq n: k \in E\}|^{\beta}$ denotes the β th power of number of elements of E not exceeding n. In the present case this convergence is indicated by $S_{\alpha}^{\beta}(\rho)-\lim x_{k}=L$. $S_{\alpha}^{\beta}(\rho)$ will indicate the set of all $S_{\alpha}^{\beta}(\rho)$-statistically convergent sequences.

Definition 2.2. Let $0<\alpha \leq \beta \leq 1$ and q be a positive real number. A sequence $x=\left(x_{k}\right)$ is said to be strongly $N_{\alpha}^{\beta}(\rho, q)$-summable (or strongly $N(\rho, q)$-summable of order $(\alpha, \beta))$ if there is a real number L such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left|x_{k}-L\right|^{q}\right)^{\beta}=0
$$

We denote it by $N_{\alpha}^{\beta}(\rho, q)-\lim x_{k}=L . N_{\alpha}^{\beta}(\rho, q)$ will denote the set of all strongly $N(\rho, q)$-summable sequences of order (α, β). If $\alpha=\beta=1$, then we will write $N(\rho, q)$ in the place of $N_{\alpha}^{\beta}(\rho, q)$. If $L=0$, then we will write $w_{\alpha, 0}^{\beta}(\rho, q)$ in the place of $w_{\alpha}^{\beta}(\rho, q) . N_{\alpha, 0}^{\beta}(\rho, q)$ will denote the set of all strongly $N_{\rho}(q)$-summable sequences of order (α, β) to 0 .

Definition 2.3. Let f be a modulus function, $q=\left(q_{k}\right)$ be a sequence of strictly positive real numbers and $0<\alpha \leq \beta \leq 1$ be real numbers. A sequence $x=\left(x_{k}\right)$ is said to be strongly $w_{\alpha}^{\beta}[\rho, f, q]-$ summable of order (α, β) if there is a real number L such that

$$
\lim _{n \rightarrow \infty} \frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta}=0
$$

In this case, we write $w_{\alpha}^{\beta}[\rho, f, q]-\lim x_{k}=L$. We denote the set of all strongly $w_{\alpha}^{\beta}[\rho, f, q]$-summable sequences of order (α, β) by $w_{\alpha}^{\beta}[\rho, f, q]$. In the special case $q_{k}=q$, for all $k \in \mathbb{N}$ and $f(x)=x$ we will denote $N_{\alpha}^{\beta}(\rho, q)$ in the place of $w_{\alpha}^{\beta}[\rho, f, q] . w_{\alpha, 0}^{\beta}[\rho, f, q]$ will denote the set of all strongly $w[\rho, f, q]-$ summable sequences of order (α, β) to 0 .

In the following theorems, we shall assume that the sequence $q=\left(q_{k}\right)$ is bounded and $0<d=\inf _{k} q_{k} \leq q_{k} \leq \sup _{k} q_{k}=D<\infty$.
Theorem 2.1. The class of sequences $w_{\alpha, 0}^{\beta}[\rho, f, q]$ is linear space.
Proof. Omitted.
Theorem 2.2. The space $w_{\alpha, 0}^{\beta}[\rho, f, q]$ is paranormed by

$$
g(x)=\sup _{n}\left\{\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}\right\}^{\frac{1}{H}}
$$

where $0<\alpha \leq \beta \leq 1$ and $H=\max (1, D)$.
Proof. Clearly $g(0)=0$ and $g(x)=g(-x)$. Let $x, y \in w_{\alpha, 0}^{\beta}[\rho, f, q]$ be two sequences. Since $\frac{q_{k}}{\frac{H}{B}} \leq 1$ and $\frac{H}{\beta} \geq 1$, using the Minkowski's inequality and definition of f, we have

$$
\begin{aligned}
\left\{\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}+y_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}\right\}^{\frac{1}{H}} \leq & \left\{\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}\right|\right)+f\left(\left|y_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}\right\}^{\frac{1}{H}} \\
= & \frac{1}{\rho_{n}^{\frac{\alpha}{H}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}\right|\right)+f\left(\left|y_{k}\right|\right)\right]^{q_{k}}\right)^{\frac{1}{\beta}} \\
\leq & \frac{1}{\rho_{n}^{\frac{\alpha}{H}}}\left\{\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}\right\}^{\frac{1}{H}} \\
& +\frac{1}{\rho_{n}^{\frac{\alpha}{H}}}\left\{\left(\sum_{k=1}^{n}\left[f\left(\left|y_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}\right\}^{\frac{1}{H}}
\end{aligned}
$$

Hence, we have $g(x+y) \leq g(x)+g(y)$ for $x, y \in w_{\alpha, 0}^{\beta}[\rho, f, q]$. Let μ be complex number. By defnition of f we have

$$
g(\mu x)=\sup _{n}\left\{\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|\mu x_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}\right\}^{\frac{1}{H}} \leq K^{\frac{D}{\beta}} g(x)
$$

where $[\mu]$ denotes the integer part of μ, and $K=1+[|\mu|]$. Now, let $\mu \rightarrow 0$ for any fixed x with $g(x) \neq 0$. By definition of f, for $|\mu|<1$ and $0<\alpha \leq \beta \leq 1$, we have

$$
\begin{equation*}
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|\mu x_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}<\varepsilon \text { for } n>N(\varepsilon) \tag{2.1}
\end{equation*}
$$

Also, for $1 \leq n \leq N$, taking μ small enough, since f is continuous we have

$$
\begin{equation*}
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|\mu x_{k}\right|\right)\right]^{q_{k}}\right)^{\beta}<\varepsilon \tag{2.2}
\end{equation*}
$$

Therefore, 2.1) and 2.2) imply that $g(\mu x) \rightarrow 0$ as $\mu \rightarrow 0$.
Proposition 2.3. ([24]) Let f be a modulus and $0<\delta<1$. Then for each $\|u\| \geq \delta$, we have $f(\|u\|) \leq 2 f(1) \delta^{-1}\|u\|$.

Theorem 2.4. If $0<\alpha=\beta \leq 1, q>1$ and $\liminf _{u \rightarrow \infty} \frac{f(u)}{u}>0$, then $w_{\alpha}^{\beta}[\rho, f, q]=w_{\alpha}^{\beta}(\rho, q)$.
Proof. If $\lim \inf _{u \rightarrow \infty} \frac{f(u)}{u}>0$ then there exists a number $c>0$ such that $f(u)>c u$ for $u>0$. Let $x \in w_{\alpha}^{\beta}[\rho, f, q]$, then

$$
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q}\right)^{\beta} \geq \frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[c\left|x_{k}-L\right|\right]^{q}\right)^{\beta}=\frac{c^{q \alpha \beta}}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left|x_{k}-L\right|^{q}\right)^{\beta}
$$

This means that $w_{\alpha}^{\beta}[\rho, f, q] \subseteq w_{\alpha}^{\beta}(\rho, q)$.
Let $x \in w_{\alpha}^{\beta}(\rho, q)$. Thus we have

$$
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left|x_{k}-L\right|^{q}\right)^{\beta} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Let $\varepsilon>0, \beta=\alpha$ and choose δ with $0<\delta<1$ such that $c u<f(u)<\varepsilon$ for every u with $0 \leq u \leq \delta$. Therefore, by Proposition 1, we have

$$
\begin{aligned}
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q}\right)^{\beta} & =\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{\substack{k=1 \\
\left|x_{k}-L\right| \leq \delta}}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q}\right)^{\beta}+\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{\substack{k=1 \\
\left|x_{k}-L\right|>\delta}}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q}\right)^{\beta} \\
& \leq \frac{1}{\rho_{n}^{\alpha}} \varepsilon^{q \beta} n^{\beta}+\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{\substack{k=1 \\
\left|x_{k}-L\right|>\delta}}^{n}\left[2 f(1) \delta^{-1}\left|x_{k}-L\right|\right]^{q}\right)^{\beta} \\
& \leq \frac{1}{\rho_{n}^{\alpha}} \varepsilon^{q \alpha} n^{\beta}+\frac{2^{q \beta} f(1)^{q \beta}}{\rho_{n}^{\alpha} \delta^{q \beta}}\left(\sum_{k=1}^{n}\left|x_{k}-L\right|^{q}\right)^{\beta}
\end{aligned}
$$

This gives $x \in w_{\alpha}^{\beta}[\rho, f, q]$.
Example 2.1. We now give an example to show that $w_{\alpha}^{\beta}[\rho, f, q] \neq w_{\alpha}^{\beta}(\rho, q)$ in this case $\liminf _{u \rightarrow \infty} \frac{f(u)}{u}=0$. Consider the sequence $f(x)=\frac{x}{1+x}$ of modulus function. Define $x=\left(x_{k}\right)$ by

$$
x_{k}=\left\{\begin{array}{lll}
k, & \text { if } & k=m^{3} \\
0, & \text { if } & k \neq m^{3}
\end{array}\right.
$$

Then we have, for $L=0, q=1,\left(\rho_{n}\right)=(n)$ and $\alpha=\beta$

$$
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}\right|\right)\right]^{q}\right)^{\beta} \leqslant \frac{1}{n^{\alpha}} n^{\frac{1}{3} \beta} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and so $x \in w_{\alpha}^{\beta}[\theta, f, q]$. But

$$
\begin{array}{r}
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left|x_{k}\right|^{q}\right)^{\beta}=\frac{1}{n^{\alpha}}\left(1+2^{3}+3^{3}+\cdots+[\sqrt[3]{n}]\right)^{\beta} \\
\geqslant \frac{1}{n^{\alpha}}\left[\frac{(\sqrt[3]{n}-1)(\sqrt[3]{n})]^{2 \beta}}{2}=\frac{1}{n^{\alpha}} \frac{\left(n^{4 / 3}-2 n+n^{2 / 3}\right)^{\beta}}{4^{\beta}} \rightarrow \infty \text { as } n \rightarrow \infty\right.
\end{array}
$$

and so $x \notin w_{\alpha}^{\beta}(p)$.
Theorem 2.5. Let $0<\alpha \leq \beta \leq 1$ and $\lim \inf q_{k}>0$. If a sequence is convergent to L, then it is strongly $w_{\alpha}^{\beta}[\rho, f, q]$-summable of order (α, β) to L.
Proof. We assume that $x_{k} \rightarrow L$. Since f be a modulus function, we have $f\left(\left|x_{k}-L\right|\right) \rightarrow$ 0 . Since $\liminf q_{k}>0$, we have $\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}} \rightarrow 0$. Hence $w_{\alpha}^{\beta}[\rho, f, q]-\lim x_{k}=$ L.

Theorem 2.6. Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in(0,1]$ be real numbers such that $0<\alpha_{1} \leq \alpha_{2} \leq$ $\beta_{1} \leq \beta_{2} \leq 1, f$ be a modulus function, then $w_{\alpha_{1}}^{\beta_{2}}[\rho, f, q] \subset S_{\alpha_{2}}^{\beta_{1}}(\rho)$.
Proof. Let $x \in w_{\alpha_{1}}^{\beta_{2}}[\rho, f, q]$ and let $\varepsilon>0$ be given. Let \sum_{1} and \sum_{2} denote the sums over $k \leqslant n$ with $\left|x_{k}-L\right| \geq \varepsilon$ and $k \leqslant n$ with $\left|x_{k}-L\right|<\varepsilon$ respectively. Since $\rho_{n}^{\alpha_{1}} \leq \rho_{n}^{\alpha_{2}}$ for each n we have

$$
\begin{aligned}
\frac{1}{\rho_{n}^{\alpha_{1}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{2}} & =\frac{1}{\rho_{n}^{\alpha_{1}}}\left[\sum_{1}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}+\sum_{2}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right]^{\beta_{2}} \\
& \geq \frac{1}{\rho_{n}^{\alpha_{2}}}\left[\sum_{1}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}+\sum_{2}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right]^{\beta_{2}} \\
& \geq \frac{1}{\rho_{n}^{\alpha_{2}}}\left[\sum_{1}[f(\varepsilon)]^{q_{k}}\right]^{\beta_{2}} \\
& \geq \frac{1}{\rho_{n}^{\alpha_{2}}}\left[\sum_{1} \min \left([f(\varepsilon)]^{d},[f(\varepsilon)]^{D}\right)\right]^{\beta_{2}} \\
& \geq \frac{1}{\rho_{n}^{\alpha_{2}}}\left|\left\{k \leqslant n:\left|x_{k}-L\right| \geq \varepsilon\right\}\right|^{\beta_{1}}\left[\min \left([f(\varepsilon)]^{d},[f(\varepsilon)]^{D}\right)\right]^{\beta_{1}}
\end{aligned}
$$

We get $x \in S_{\alpha_{2}}^{\beta_{1}}(\rho)$.
Theorem 2.7. If f is a bounded modulus function and $\lim _{n \rightarrow \infty} \frac{\rho_{n}^{\beta_{2}}}{\rho_{n}^{\alpha_{1}}}=1$ then $S_{\alpha_{1}}^{\beta_{2}}(\rho) \subset w_{\alpha_{2}}^{\beta_{1}}[\rho, f, q]$.

Proof. Let $x \in S_{\alpha_{1}}^{\beta_{2}}(\rho)$. Suppose that f be bounded. Therefore $f(x) \leq R$, for a positive integer R and all $x \geq 0$. Then for each $\varepsilon>0$ we can write

$$
\begin{aligned}
\frac{1}{\rho_{n}^{\alpha_{2}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{1}} \leq & \frac{1}{\rho_{n}^{\alpha_{1}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{1}} \\
= & \frac{1}{\rho_{n}^{\alpha_{1}}}\left(\sum_{1}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}+\sum_{2}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{1}} \\
\leq & \frac{1}{\rho_{n}^{\alpha_{1}}}\left(\sum_{1} \max \left(R^{d}, R^{D}\right)+\sum_{2}[f(\varepsilon)]^{q_{k}}\right)^{\beta_{1}} \\
\leq & \left(\max \left(R^{d}, R^{D}\right)\right)^{\beta_{2}} \frac{1}{\rho_{n}^{\alpha_{1}}}\left|\left\{k \leqslant n: f\left(\left|x_{k}-L\right|\right) \geq \varepsilon\right\}\right|^{\beta_{2}} \\
& +\frac{\rho_{n}^{\beta_{2}}}{\rho_{n}^{\alpha_{1}}}\left(\max \left(f(\varepsilon)^{d}, f(\varepsilon)^{D}\right)\right)^{\beta_{2}}
\end{aligned}
$$

Hence $x \in w_{\alpha_{2}}^{\beta_{1}}[\rho, f, q]$.
Theorem 2.8. Let f be a modulus function. If $\lim q_{k}>0$, then $w_{\alpha}^{\beta}[\rho, f, q]-$ $\lim x_{k}=L$ uniquely.
Proof. Let $\lim q_{k}=t>0$. Suppose that $w_{\alpha}^{\beta}[\rho, f, q]-\lim x_{k}=L_{1}$ and $w_{\alpha}^{\beta}[\rho, f, q]-$ $\lim x_{k}=L_{2}$. Then

$$
\lim _{n} \frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L_{1}\right|\right)\right]^{q_{k}}\right)^{\beta}=0
$$

and

$$
\lim _{n} \frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L_{2}\right|\right)\right]^{q_{k}}\right)^{\beta}=0
$$

By definition of f and using (1.1), we may write

$$
\begin{aligned}
\frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|L_{1}-L_{2}\right|\right)\right]^{q_{k}}\right)^{\beta} & \leq \frac{A}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L_{1}\right|\right)\right]^{q_{k}}+\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L_{2}\right|\right)\right]^{q_{k}}\right)^{\beta} \\
& \leq \frac{A}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L_{1}\right|\right)\right]^{q_{k}}\right)^{\beta}+\frac{A}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L_{2}\right|\right)\right]^{q_{k}}\right)^{\beta}
\end{aligned}
$$

where $\sup _{k} q_{k}=D, 0<\beta \leq \alpha \leq 1$ and $A=\max \left(1,2^{D-1}\right)$. Hence

$$
\lim _{n} \frac{1}{\rho_{n}^{\alpha}}\left(\sum_{k=1}^{n}\left[f\left(\left|L_{1}-L_{2}\right|\right)\right]^{q_{k}}\right)^{\beta}=0
$$

Since $\lim _{k \rightarrow \infty} q_{k}=t$ we have $L_{1}-L_{2}=0$. Hence the limit is unique.
Theorem 2.9. Let $\rho=\left(\rho_{n}\right)$ and $\tau=\left(\tau_{n}\right)$ be two sequences such that $\rho_{n} \leqslant \tau_{n}$ for all $n \in \mathbb{N}$ and let $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} be such that $0<\alpha_{1} \leq \alpha_{2} \leq \beta_{1} \leq \beta_{2} \leq 1$,
(i) If

$$
\begin{equation*}
\lim \inf _{n \rightarrow \infty} \frac{\rho_{n}^{\alpha_{1}}}{\tau_{n}^{\alpha_{2}}}>0 \tag{2.3}
\end{equation*}
$$

then $w_{\alpha_{2}}^{\beta_{2}}[\tau, f, q] \subset w_{\alpha_{1}}^{\beta_{1}}[\rho, f, q]$,
(ii) If

$$
\begin{equation*}
\lim \sup _{n \rightarrow \infty} \frac{\rho_{n}^{\alpha_{1}}}{\tau_{n}^{\alpha_{2}}}<\infty \tag{2.4}
\end{equation*}
$$

then $w_{\alpha_{1}}^{\beta_{2}}[\rho, f, q] \subset w_{\alpha_{2}}^{\beta_{1}}[\tau, f, q]$.
Proof. (i) Let $x \in w_{\alpha_{2}}^{\beta_{2}}[\tau, f, q]$. We have

$$
\frac{1}{\tau_{n}^{\alpha_{2}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{2}} \geq \frac{\rho_{n}^{\alpha_{1}}}{\tau_{n}^{\alpha_{2}}} \frac{1}{\rho_{n}^{\alpha_{1}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{1}}
$$

Thus if $x \in w_{\alpha_{2}}^{\beta_{2}}[\tau, f, q]$, then $x \in w_{\alpha_{1}}^{\beta_{1}}[\rho, f, q]$.
(ii) Let $x=\left(x_{k}\right) \in w_{\alpha_{1}}^{\beta_{2}}[\rho, f, q]$ and 2.4 holds. Now, since $\rho_{n} \leq \tau_{n}$ for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\frac{1}{\tau_{n}^{\alpha_{2}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{1}} & \leq \frac{1}{\tau_{n}^{\alpha_{2}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{2}} \\
& =\frac{\rho_{n}^{\alpha_{1}}}{\tau_{n}^{\alpha_{2}}} \frac{1}{\rho_{n}^{\alpha_{1}}}\left(\sum_{k=1}^{n}\left[f\left(\left|x_{k}-L\right|\right)\right]^{q_{k}}\right)^{\beta_{2}}
\end{aligned}
$$

for every $n \in \mathbb{N}$. Therefore $w_{\alpha_{1}}^{\beta_{2}}[\rho, f, q] \subset w_{\alpha_{2}}^{\beta_{1}}[\tau, f, q]$.

References

[1] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427-434.
[2] N. D. Aral and H. Şengül Kandemir, I-Lacunary statistical Convergence of order β of difference sequences of fractional order, Facta Universitatis (NIS) Ser. Math. Inform. 36(1) (2021), 43-55.
[3] A. Caserta, Di M. Giuseppe and L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.
[4] J. S. Connor, The Statistical and Strong p-Cesaro Convergence of Sequences, Analysis, 8, pp. (1988), 47-63.
[5] H. Çakallı, H. Şengül Kandemir and M. Et, ρ-statistical convergence of order beta, American Institute of Physics., https://doi.org/10.1063/1.5136141.
[6] H. Çakallı, A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009), 19-24.
[7] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121-129.
[8] M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013), 9372-9376.
[9] M. Et, M. Çınar and H. Şengül, On Δ^{m}-asymptotically deferred statistical equivalent sequences of order α, Filomat, $\mathbf{3 3}(7)$ (2019), 1999-2007.
[10] M. Et and H. Şengül, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28(8) (2014), 1593-1602.
[11] M. Et, Strongly almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar. 40(4) (2003), 463-476.
[12] M. Et, Spaces of Cesàro difference sequences of order r defined by a modulus function in a locally convex space, Taiwanese J. Math. 10(4) (2006), 865-879.
[13] H. Fast, Sur La Convergence Statistique, Colloq. Math., 2, pp. (1951), 241-244.
[14] J. Fridy, On Statistical Convergence, Analysis, 5, pp. (1985), 301-313.
[15] A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32(1) (2002), 129-138.
[16] M. Işık, Strongly almost (w, λ, q)-summable sequences, Math. Slovaca 61(5) (2011), 779788.
[17] E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928 (1991), 41-52.
[18] I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, 1970.
[19] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc, 1986, 100:161-166.
[20] A. K. Gaur and M. Mursaleen, Difference sequence spaces defined by a sequence of moduli, Demonstratio Math. 31(2) (1998), 275-278.
[21] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951), 508-512.
[22] F. Nuray and E. Savaş, Some new sequence spaces defined by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993), 657-663.
[23] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36(1) (1995), 69-76.
[24] S. Pehlivan and B. Fisher, Some sequence spaces defined by a modulus, Mathematica Slovaca, 45(3) (1995), 275-280.
[25] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.
[26] T. Salat, On Statistically Convergent Sequences of Real Numbers, Math. Slovaca. 30 (1980), 139-150.
[27] I. J. Schoenberg, The Integrability of Certain Functions and Related Summability Methods, Amer. Math. Monthly 66 (1959), 361-375.
[28] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73-74.
[29] H. Şengül, Some Cesàro summability spaces defined by a modulus function of order (α, β), Commun. Fac .Sci. Univ. Ank. Series A1 66(2) (2017), 80-90.
[30] H. Şengül, On Wijsman I-lacunary statistical equivalence of order (η, μ), J. Inequal. Spec. Funct. 9(2) (2018), 92-101.
[31] H. Şengül and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α, Filomat $\mathbf{3 2 (1 3) ~ (2 0 1 8) , ~ 4 5 1 3 - 4 5 2 1 . ~}$
[32] H. Şengül and M. Et, On (λ, I)-statistical convergence of order α of sequences of function, Proc. Nat. Acad. Sci. India Sect. A 88(2) (2018), 181-186.
[33] H. Şengül and Ö. Koyun, On (λ, A)-statistical convergence of order α, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68(2) (2019), 2094-2103.
[34] H. Şengül and M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014), 473-482.

Nazlim Deniz Aral
Department of Mathematics; Bitlis Eren University 13000; Bitlis; TURKEY, ORCID ID: 0000-0002-8984-2620

Email address: ndaral@beu.edu.tr

[^0]: 2020 Mathematics Subject Classification. Primary 40A05, 40C05; Secondary 46A45.
 Key words and phrases. Cesàro summability; modulus function; statistical convergence. (C)2019 Maltepe Journal of Mathematics.

 Submitted on March 24th, 2022. Published on May 6th, 2022
 Communicated by Huseyin CAKALLI, Ibrahim CANAK and Sefa Anıl SEZER.

