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Abstract
The aim of this paper is to introduce semitopological δ-group and topological δ-group with
the concept of δ-group which arise from approximately algebraic structures. Furthermore,
it is shown that product space determined with δ-topological subspaces is a δ-topological
space. Fundamental system of open δ-neighborhoods and related properties were investi-
gated.
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1. Introduction
A topological group is an algebraic group endowed with a topology so that the multipli-

cation and inversion operations are continuous in all variables together. A semitopological
group is an algebraic group endowed with a topology such that for each variable, only the
multiplication operation is continuous [4].

Efremovič developed the theory of proximity spaces in the early 1950s when he ax-
iomatically defined the proximity relation "A is near B" for subsets A and B of any set X
[2,3]. The set X together with this relation was called an proximity space and is a natural
generalization of a topological group. He demonstrated that a topology can be introduced
in a proximity space by defining the closure of a subset A of X as the collection of all
points of X near A. One can discover compact introduction to the theory of proximity
spaces and their generalizations in [12]. Furthermore, for descriptive proximities one can
see [1].

In 2017 and 2018, approximately semigroups, approximately ideals, approximately
groups, approximately subgroups and approximately rings were introduced by İnan [5–8].
Approximately Γ-semigroups and approximately Γ-rings were also defined [9, 14]. Some
instances of these approximately algebraic structures in digital images equipped with prox-
imity relations were described in these articles. Approximately algebraic structures provide
a foundation for more applicable fields like image analysis and classification difficulties.

The aim of this paper is to introduce semitopological δ-group and topological δ-group
with the concept of δ-group which arise from approximately algebraic structures. Fur-
thermore, it is shown that product space determined with δ-topological subspaces is a
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δ-topological space. Fundamental system of open δ-neighborhoods and related properties
were investigated.

2. Preliminaries
Definition 2.1 ([2,3]). Let X be a non-empty set and δ be a relation on P (X). δ is called
an Efremovic̆ proximity that satisfy following axioms:

(A1) A δ B implies B δ A,
(A2) A δ B implies A 6= ∅ and B 6= ∅,
(A3) A ∩ B 6= ∅ implies A δ B,
(A4) A δ (B ∪ C) iff A δ B or A δ C,
(A5) {x} δ {y} iff x = y,
(A6) A δ B implies ∃E ⊆ X such that A δ E and Ec δ B
for all A, B, C ∈ P (X) and all x, y ∈ X. Also, (X, δ) is called an Efremovic̆ proximity

space.

In a discrete space, a non-abstract point has a location and has features that can be
measured [10]. Let X be a non-empty set of non-abstract points.

Probe functions φi : X → R represent a feature of a sample point in a picture. Let
Φ(x) = (φ1(x), · · · , φn(x)) (n ∈ N) be an object description, which is a feature vector of
x, which provides a description of each x ∈ X. After the choosing a set of probe functions,
one obtain a descriptive proximity relation.

Definition 2.2 ([11]). Let X be a non-empty set of non-abstract points, Φ be an object
description and A be a subset of X. Then the set description of A is defined as

Q(A) = {Φ(a) | a ∈ A}.

Definition 2.3 ([11,13]). Let X be a non-empty set of non-abstract points and A, B be
two subsets of X. Then the descriptive (set) intersection of A and B is defined as

A ∩
Φ

B = {x ∈ A ∪ B | Φ (x) ∈ Q (A) and Φ (x) ∈ Q (B)} .

Definition 2.4 ([11]). Let X be a non-empty set of non-abstract points and A, B be any
two subsets of X. If Q(A) ∩ Q(B) 6= ∅, then A is called descriptively near B and denoted
by AδΦB. If Q(A) ∩ Q(B) = ∅, then A δΦ B reads A is descriptively far from B.

Throught this manuscript it considered Efremovic̆ proximity relation with the notation
δ and descriptive Efremovic̆ proximity relation with the notation δΦ [11].

Lemma 2.5 ([11]). Let (X, δ) be an Efremovic̆ proximity space and A, B, C, D ⊆ X. If
A δ B, A ⊆ C and B ⊆ D, then C δ D.

Lemma 2.5 is also true for the descriptive Efremovic̆ proximity relation δΦ.

Definition 2.6. Let (X, τ) be a topological space and A ⊆ X. Closure of A in (X, τ),
which we denote with clA, is the intersection of all closed sets containing A or the smallest
closed set containing A.

Definition 2.7. Let (X, τX) and (Y, τY ) be topological spaces. A function f : X → Y
is said to be continuous if the inverse image of every open subset of Y is open in X. In
other words, if V ∈ τY , then its inverse image f−1(V ) ∈ τX .

Theorem 2.8. Let (X, τX) and (Y, τY ) be topological spaces and f : X → Y be a function.
Then f is continuous iff inverse image of every closed subset of Y is closed in X.

Theorem 2.9 ([12]). If a subset A of a proximity space (X, δ) is defined to be closed iff
xδA implies x ∈ A, then the collection of complements of all closed subsets so defined
yields a topology τ = τ(δ) on X.
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A proximity relation δ on X induces a topology τ = τ(δ) on X if one defines the closure
clA of A to be the intersection of all closed subsets containing A.

Definition 2.10 ([12]). If there is a topology τ and a proximity relation δ on a set X
such that τ = τ(δ), then τ and δ are said to be compatible.

Lemma 2.11 ([12]). If (X, δ) be a proximity space and A ⊆ X, then A ∈ τ(δ) iff xδ(X\A)
for every x ∈ A.

Definition 2.12 ([12]). Let (X, δ) be a proximity space and A ⊆ X. A subset B of X is
a δ-neighbourhood of A iff Aδ(X\B) and denoted by A � B.

Lemma 2.13 ([12]). Let (X, δ) be a proximity space, clA and IntA denote, respectively,
the closure and interior of A in τ(δ). Then

(i) A � B implies clA � B,
(ii) A � B implies A � IntB.

Therefore A ⊆ IntB, showing that a δ-neighbourhood is a topological neighbourhood.

Definition 2.14 ([12]). Let (X, δ) be a proximity space and A, B ⊆ X. A function
f : X −→ X is called a proximally continuous mapping or δ-continuous mapping iff

AδB implies f (A) δf (B) .
Equivalently, f is a δ-continuous mapping iff

C � D implies f−1 (C) � f−1 (D)
for C, D ⊆ X.

Theorem 2.15 ([12]). A δ-continuous mapping f : X −→ X is continuous with respect
to τ(δ).

3. δ-groups

Definition 3.1. Let (X, δ) be a proximity space and A ⊆ X. A δ-approximation of A is
defined as

Aδ = {x ∈ X | xδA}.

If we consider (X, δΦ) descriptive proximity space instead of (X, δ), then δΦ-approximation
of A is defined as

AδΦ = {x ∈ X | xδΦA}.

Definition 3.2. Let (X, δ) be a proximity space and “·” be a binary operation on X.
G ⊆ X is called a δ-groupoid if x · y ∈ Gδ for all x, y ∈ G.

Definition 3.3. Let (X, δ) be a proximity space and “·” be a binary operation on X.
G ⊆ X is called a δ-group if the followings are true:
(δG1) For all x, y ∈ G, x · y ∈ Gδ,
(δG2) For all x, y, z ∈ G, (x · y) · z = x · (y · z) property holds in Gδ,
(δG3) There exists e ∈ Gδ such that x · e = e · x = x for all x ∈ G (e is called the

δ-identity element of G),
(δG4) There exists y ∈ G such that x · y = y · x = e for all x ∈ G (y is called the inverse

of x in G and denoted as x−1).

A subset S of X is called a δ-semigroup if
(δS1) x · y ∈ Sδ for all x, y ∈ S,
(δS2) (x · y) · z = x · (y · z) property holds in Sδ for all x, y, z ∈ S
properties are satisfied.
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If δ-semigroup have a δ-identity element e ∈ Sδ such that x · e = e · x = x for all x ∈ S,
then S is called a δ-monoid.

If x · y = y · x property holds in Gδ for all x, y ∈ G, then G is called commutative
δ-group.

Similarly, concepts of δΦ-groupoid and δΦ-group can be defined.

Definition 3.4. Let (X, τ) be a topological space endowed with δΦ and A ⊆ X. Descrip-
tive closure of A in (X, τ), which we denote with clΦA, is the descriptive intersection of
all closed sets containing A.

4. Semitopological δ-groups
Let (X, τ) be a topological space and τ be a topology compatible with the proximity

relation δ. This topology is denoted by τ(δ) and it is called a δ-topology. Moreover,
(X, τ(δ)) is called a δ-topological space. Also, if δΦ is consider instead of δ, (X, τ(δΦ)) is
a δΦ-topological space.

Let A be a subset of X. The subspace topology on A is defined by

τA(δ) = {A ∩ U | U ∈ τ(δ)} or τA(δΦ) = {A ∩ U | U ∈ τ(δΦ)} .

Let A1, A2 be subspaces of X and A = A1 ×A2. A product topology on X is a topology
generated by subsets of the form p−1

1 (U1) and p−1
2 (U2), where U1, U2 are open sets of

A1, A2 and p1, p2 are canonical projections by p1 : A → A1, p2 : A → A2, respectively. It
is clear that the canonical projections p1 and p2 are continuous.

Theorem 4.1. Let X be a δ-topological space and A ⊆ X. Then clA = Aδ.

Proof. If clA denotes the intersection of all closed sets containing A and Aδ = {x ∈
X | xδA}, then we must show that clA = Aδ. If x ∈ Aδ, then xδA. From Lemma 2.5,
this implies xδclA and since clA is closed, x ∈ clA. Thus Aδ ⊆ clA. To prove the reverse
inclusion it suffices to prove that Aδ is closed, i.e., xδAδ implies x ∈ Aδ. Assuming x /∈ Aδ,
then xδA so that, by the Axiom (A6), there is a set E such that xδE and EcδA. Thus no
point of Ec is proximal to A, i.e., Aδ ⊆ E which together with xδE implies that xδAδ. □

Theorem 4.2. Let X be a δΦ-topological space and A ⊆ X. Then clΦA = AδΦ.

Proof. If clΦA denotes the descriptive intersection of all closed sets containing A and
AδΦ = {x ∈ X | xδΦA}, then we must show that clΦA = AδΦ . If x ∈ AδΦ , then xδΦA.
From Lemma 2.5, this implies xδΦ (clΦA) and since clΦA is closed, x ∈ clΦA. Thus
AδΦ ⊆ clΦA. To prove the reverse inclusion it suffices to prove that AδΦ is closed, i.e.,
xδΦAδ implies x ∈ AδΦ . Assuming x /∈ AδΦ , then xδΦA so that, by the Axiom (A6), there
is a set E such that xδΦE and EcδΦA. Thus no point of Ec is descriptive proximal to A,
i.e., AδΦ ⊆ E which together with xδΦE implies that xδΦAδ. □

Theorem 4.3. Let X be a δ-topological space, A1, A2 be subspaces of X and A = A1 ×A2.
Then product space (A, τ) on X is a δ-topological space.

Proof. To show that (A, τ) is a δ-topological space, it is sufficient to prove that is com-
patible with the given topology, that is, (x, y) δB if and only if (x, y) ∈ clB for (x, y) ∈ A

and B1 × B2 = B ⊆ A such that B1 ⊆ A1 and B2 ⊆ A2. From Theorem 4.1,
(x, y) ∈ clB ⇐⇒ (x, y) ∈ Bδ

⇐⇒ (x, y) δB.
□

Let X be a δΦ-topological space, A1, A2 be subspaces of X and A = A1 × A2. From
Theorem 4.2, it is easily shown that product space (A, τ) on X is a δΦ-topological space.
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Definition 4.4. Let X be a δ-topological space, G, Gδ ⊆ X be subspaces of X and G
be a δ-group with the multiplication on X. G is called semitopological δ-group if the
multiplication G × G −→ Gδ, (x, y) 7→ xy is continuous (in each variable separately).
Definition 4.5. Let X be a δ-topological space, G, Gδ ⊆ X be subspaces of X and G be a
δ-group with the multiplication on X. G is called topological δ-group if the multiplication
G × G −→ Gδ, (x, y) 7→ xy and inversion G −→ G, x 7→ x−1 are continuous.

Moreover, in Definitions 4.4 and 4.5 if δΦ is considered instead of δ, G is a semitopological
δΦ-group and G is a topological δΦ-group, respectively.

Digital images consist of a certain number of pixels. Each pixel is named according to
its row and column, due to its location. Pixels can be processed by taking their color into
account along with their location. In Example 4.6, a topological δΦ-group sample will be
investigated on a 36-pixel digital image.
Example 4.6. Let X be a digital image endowed with descriptive proximity relation δΦ
and consists of 36 pixels as in Figure 1. In digital image X, each of pixels is a singleton
and so it is closed set as in the discret topology. Similarly, subsets of digital images and
δΦ-approximations of these subsets are also closed sets. If we consider τ(δΦ) as a set of
these closed sets, then τ(δΦ) is a topology compatible with the relation δΦ. Hence digital
image X is a δΦ-topological space.

Figure 1. Digital image X

A pixel xij is an element at position (i, j) in X. Let φ be a probe function that represent
RGB colour of each pixel are given in Table 1.

Table 1. RGB colour of each pixel
Red Green Blue

x00 205 216 176
x01 215 215 215
x02 235 235 235
x03 194 225 225
x04 100 168 255
x05 215 225 225
x10 194 194 194
x11 147 179 147
x12 215 225 225
x13 235 235 235
x14 194 225 225
x15 192 192 192

Red Green Blue

x20 215 215 215
x21 174 194 194
x22 205 216 176
x23 174 215 215
x24 215 235 235
x25 194 225 225
x30 174 194 194
x31 215 235 235
x32 194 225 225
x33 147 179 147
x34 194 225 225
x35 174 215 215

Red Green Blue

x40 215 215 215
x41 174 215 215
x42 215 225 225
x43 215 235 235
x44 205 216 176
x45 192 192 192
x50 235 235 235
x51 215 235 235
x52 192 192 192
x53 215 235 235
x54 192 192 192
x55 215 235 235
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Let
∗ : X × X −→ X

(xij , xkl) 7−→ xij ∗ xkl = xpr, i + k = p mod (5) and j + l = r mod (5)

be a binary operation on X and G = {x22, x33} be a subimage of X.
We can compute the δΦ-approximation of G by using the Definition 3.1. GδΦ = {x ∈

X | xδΦG}, where Q(G) = {Φ(xij) | xij ∈ G}. Then Q ({xij}) ∩ Q (G) 6= ∅ such that
xij ∈ X. From Table 1, we obtain

Q(G) = {Φ (x22) , Φ (x33)}
= {(205, 216, 176) , (147, 179, 147)}.

Hence we get GδΦ = {x00, x11, x22, x33, x44}. Obviously, G, GδΦ ⊆ X are subspaces of
(X, τ(δΦ)) with similar considerations as in X.

The operation we will consider for G to be a δΦ-group is as follows:
∗ : G × G −→ GδΦ
(xij , xkl) 7−→ xij ∗ xkl = xpr, i + k = p mod (5) and j + l = r mod (5).

Since
(δΦG1) For all xij , xkl ∈ G, xij ∗ xkl ∈ GδΦ ,
(δΦG2) For all xij , xkl, xmn ∈ G, (xij ∗ xkl)∗xmn = xij ∗ (xkl ∗ xmn) property holds in GδΦ ,
(δΦG3) For all xij ∈ G, xij ∗ x00 = x00 ∗ xij = xij and hence x00 ∈ GδΦ is a proximal

identity element of G,
(δΦG4) Since x22 ∗ x33 = x33 ∗ x22 = x00, x−1

22 = x33 and x−1
33 = x22, that is, x33, x22 are

inverses of x22, x33, respectively
are satisfied, the subimage G of the image X is indeed a δΦ-group in descriptive proxim-

ity space (X, δΦ) with the operation “ ∗ ”. Also, since xij ∗xkl = xkl ∗xij for all xij , xkl ∈ G
property holds in GδΦ , G is a commutative δΦ-group.

Furthermore, since the operation G × G −→ GδΦ , (x, y) 7→ x ∗ y and the inversion
G −→ G, x 7→ x−1 are continuous, then G is a topological δΦ-group.

Let x, y ∈ G and W , W ′ be neighbourhoods of xy ∈ Gδ and x−1 ∈ G, respectively. The
multiplication is continuous iff there exist neighbourhoods U of x and V of y in G such that
UV ⊆ W ⊆ Gδ, where UV := {uv |u ∈ U, v ∈ V }. The inversion is continuous iff there
exists a neighbourhood U of x ∈ G such that U−1 ⊆ W ′, where U−1 := {u−1 |u ∈ U }.

Theorem 4.7. Every topological δ-group is a semitopological δ-group.

Proof. In topological δ-group G ⊆ X, since the multiplication G×G −→ Gδ, (x, y) 7→ xy
and inversion G −→ G, x 7→ x−1 are continuous, obviously G ⊆ X is also a semitopological
δ-group. □

Theorem 4.8. Let g be a fixed element of a semitopological δ-group G. Then the onto
mappings rg : Gδ −→ Gδ, x 7→ xg and lg : Gδ −→ Gδ, x 7→ gx are homeomorphisms for
all x ∈ G.

Proof. It is clear that rg is an one to one and onto mapping. Let W be a neighbourhood
of xg. Since G is a semitopological δ-group, there exists a neighbourhood U of x such
that Ug ⊆ W . Therefore rg is continuous. Moreover, it is easy to see that the inverse
r−1

g of rg is the mapping x 7→ xg−1 which is continuous by the same argument as above.
Consequently, rg is a homeomorphism. Similarly, lg is also a homeomorphism. □

In Theorem 4.8, rg and lg are called the right and left δ-translations of G, respectively.
It is obvious that r−1

g = rg−1 and l−1
g = lg−1 .
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Corollary 4.9. Let X be a δ-topological space, F ⊆ X be a closed, P ⊆ X be an open, A
be an arbitrary subset of a semitopological δ-group G and g ∈ G. Then

(i) Fg and gF are closed.
(ii) Pg, gP , AP and PA are open.

Proof. Since the mappings are homeomorphisms from Theorem 4.8, (i) is obvious. Simi-
larly, Pg and gP are open in (ii). Since AP =

∪
g∈G

gP , PA =
∪

g∈G
Pg and the union of open

sets is open, AP and PA are open. □
Corollary 4.10. Let G be a semitopological δ-group. For any g, h ∈ G, there exists a
homeomorphism ρ : G −→ G such that ρ (g) = h.
Proof. Let g−1h = a ∈ G and consider the mapping ρ : x 7→ xa from Theorem 4.8. Hence
ρ is a homeomorphism by Theorem 4.8 and ρ (g) = h. □

If Corollary 4.10 is true, then a δ-topological space is called a homogeneous.
Corollary 4.11. Let G be a semitopological δ-group, A be an arbitrary subset of G and
g ∈ G. Then cl (gA) = g (clA), cl (Ag) = (clA) g and cl

(
A−1)

= (clA)−1.
Proof. It is clear from Theorem 4.8. □
Definition 4.12. Let X be a δ-topological space and δ-neighbourhood of x ∈ X is de-
noted by U δ

x . Then
{

U δ
x

}
= {B| {x} � B} is called a fundamental system of open δ-

neighbourhoods of x ∈ X.

Theorem 4.13. Let G be a semitopological δ-group and e be an identity of G. If
{

U δ
e

}
is a fundamental system of open δ-neighbourhoods of e, then

{
gU δ

e

}
and

{
U δ

e g
}

, where g

runs over G, form bases of the δ-topology of G.
Proof. Let g ∈ G and W be an open neighbourhood of g. From Theorem 4.8, since
l−1
g : x 7→ g−1x is a homeomorphism in x, l−1

g (W ) = g−1W is an open set containing e

and hence there exists a U δ
e in

{
U δ

e

}
such that U δ

e ⊂ g−1W . This implies gU δ
e ⊂ W which

proves that
{

gU δ
e

}
is a base of the δ-topology on G. Similarly, it is clear that

{
U δ

e g
}

is
also a base of the δ-topology on G. □

It is shown in Theorem 4.14 that the converse of the Theorem 4.13 is also true.
Theorem 4.14. Let a filter base

{
U δ

e

}
be given so that each U δ

e contains e and for each U δ
e

and each x ∈ U δ
e , there exist V and W in

{
U δ

e

}
such that xV ⊂ U δ

e and Wx ⊂ U δ
e . Then

there exists a δ-topology on G so that G, endowed with this δ-topology, is a semitopological
δ-group.

Proof. Let {U} be a non-empty family of U =
n∩

i=1

(
U δ

e

)
i
. Furthermore, gU = g

n∩
i=1

(
U δ

e

)
i

=
n∩

i=1
g

(
U δ

e

)
i

for any g ∈ G. If g ∈
n∩

i=1

(
U δ

e

)
i
, then there exists a Vi for each i, 1 ≤ i ≤ n,

such that gVi ⊂
(
U δ

e

)
i

and hence g
n∩

i=1
Vi =

n∩
i=1

gVi ⊂
n∩

i=1

(
U δ

e

)
i
. This shows that the family

{U} also satisfies the conditions assumed for the filter base
{

U δ
e

}
. By the definition of a

subbase, the family of finite intersections of the family
{

gU δ
e

}
, where g runs over G, forms

a base of the δ-topology on G.
Now if h ∈

n∩
i=1

g
(
U δ

e

)
i
, then g−1h ∈

(
U δ

e

)
i

for each i, 1 ≤ i ≤ n, and by assumption,

there exists a Vi ∈
{

U δ
e

}
such that g−1hVi ⊂

(
U δ

e

)
i

or hVi ⊂ g
(
U δ

e

)
i
. Therefore h

n∩
i=1

Vi =
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n∩
i=1

hVi ⊂
n∩

i=1
g

(
U δ

e

)
i
. Then {hU}, where U runs over {U}, forms a fundamental system of

open δ-neighbourhoods of h ∈ G. Similary, {Uh} is also a fundamental system of open
δ-neighbourhoods of h ∈ G.

Lastly, we have to show that G is a semitopological δ-group. Let we consider the
mapping G × G −→ Gδ, (g, h) 7→ gh. Assume that g is fixed and let U be any member
in {U}. Then ghU is a member of a fundamental system of open δ-neighbourhoods of
gh. Since h ∈ hU and hU is a δ-neighbourhood of h as shown in the previous paragraph,
g (hU) ⊂ ghU. Therefore the mapping (g, h) 7→ gh is continuous in h, while g is kept fixed.
Similarly, one proves the mapping (g, h) 7→ gh is continuous in g by considering Ugh as a
δ-neighbourhood of gh. As a result, G is a semitopological δ-group. □
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