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Abstract: In this study, the thermoelastic behavior of a thick-walled homogeneous cylinder 

based on Lord-Shulman theory is investigated. It is assumed that the inner and outer surfaces of 

the cylinder are traction-free, and the outer surface is maintained at a reference temperature while 

the inner surface is subjected to a time-dependent internal temperature load. The governing 

equations in coupled form are solved with the pseudospectral Chebyshev method.  The numerical 

approach is validated with benchmark results in the literature. The temperature, radial and 

tangential stress distributions are examined for three different nondimensional times to represent 

the time-varying effects of the applied instantaneous temperature load. The effect of the coupled 

term in Lord-Shulman theory for different high temperatures is examined and the difference 

between the coupled and uncoupled solution in different time periods is tabulated and the 

difference is highlighted. 

 

 

İzotropik İçi Boş Silindirin Genelleştirilmiş Termoelastik Davranışı 
 

 

Anahtar Kelimeler 

Bağlaşımlı 

termoelastisite, 

Lord-Shulman 

Teorisi,  

Kalın cidarlı 

silindir, 

Pseudospektral 

Chebyshev 

yöntemi 

Öz: Bu çalışmada, içi boş homojen bir silindirin Lord-Shulman teorisine dayalı termoelastik 

davranışı incelenmiştir. Silindirin iç ve dış cidarlara etki eden etki eden mekanik bir yükün 

olmadığı, dış cidarda sabit bir sıcaklık, iç cidarın ise zamana bağlı bir iç sıcaklık yüküne maruz 

kaldığı varsayılmıştır. Bağlaşımlı formdaki bünye denklemleri, pseudospektral Chebyshev 

yöntemiyle çözülmüştür. Kullanılan sayısal yaklaşım, literatürde mevcut referans sonuçlarla 

doğrulanmıştır. Sıcaklık, radyal ve teğetsel gerilme dağılımları, uygulanan anlık sıcaklık yükünün 

zamanla değişen etkilerini temsil etmek için üç farklı zaman için incelenmiştir. Lord-Shulman 

teorisinde yer alan bağlaşımlı terimin farklı yüksek sıcaklıklar için etkisi incelenmiştir. Farklı 

zamanlar için bağlaşımlı ve bağlaşımsız çözümler arasındaki fark vurgulanmış ve tablo olarak 

sunulmuştur.  

 

 

1. INTRODUCTION 

 

In the advanced applications, engineering structures can 

work under challenging thermal shock loads such as in 

the nuclear blast environment, pulsed laser and 

electromagnetic radiation. Thermal stresses and 

deformations would develop from a sudden increase in 

temperature in an elastic medium, significantly altering 

the mechanical behavior of thermo-elastic materials. As 

a result, in thermoelastic problems, the coupling between 

the temperature and displacement fields becomes critical 

[1]. The conventional heat conduction equation is the 

foundation of the classical (uncoupled) thermoelasticity 

theory. The theory was established by Biot [2]. Because  

 

of its parabolic character of the energy equation, the 

conventional heat conduction theory posits that thermal 

disturbances propagate at infinite speeds. This prediction 

may be appropriate for most engineering purposes, but it 

is a physically unfeasible assumption, especially at 

extremely low temperatures near absolute zero or for 

extremely short time periods. In order to overcome 

physical discrepancy of infinite speed prediction for 

thermal disturbances, the generalized theories of 

thermoelasticity were formulated. These theories offer 

the wave type heat propagation with finite speed. This 

phenomenon is mostly described as second sound [3]. 

The Lord–Shulman (LS) theory [4], which modifies 

Fourier's law of heat conduction by introducing one 
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thermal relaxation time, is one of the well-known 

generalized theories. In the theory, the parabolic type 

heat equation is replaced by a hyperbolic one which 

ensures finite speeds of propagation for both heat and 

elastic waves. The detail for the other generalized 

thermoelastic theories and recent studies can be found 

Shakeriaski et al.’s review in [5]. 

 

Reformulation of classical thermoelastic equations by 

Lord-Shulman dates back to 1967. They presented wave-

form thermal equation instead of the law of Fourier and 

defined the term relaxation time. The relaxation time 

represents the needed time-lag to establish steady state 

heat conduction in a volume element if the element is 

exposed to thermal shock. Derivation of thermoelastic 

formulation based on generalized thermoelasticity was 

done by Furukawa et al. [6-7] for an infinite body with a 

circular cylindrical hole and for an infinite solid 

cylinder. They obtained the temperature and thermal 

stresses with one relaxation time. A coupled 

thermoelastic problem in finite domain was analyzed by 

Hosseini Tehrani and Eslami [8-9] with boundary 

element method. They studied the effect of relaxation 

times and coupling coefficient on the thermal and elastic 

wave propagation. Bases on generalized coupled 

thermoelasticity, a disk problem solved by Bagri and 

Eslami [10] by utilizing transfinite element method. 

They obtained the thermal and stress wave propagation 

through the radius of disk and illustrated the coupling 

coefficient effect on the results. A unified coupled 

thermoelasticity formulation was proposed by same 

authors [11] based on the Lord–Shulman (L–S), Green–

Lindsay (G–L), and Green–Naghdi (G–N) models for 

isotropic homogeneous cylinders and spheres. The 

structures are considered as subject to thermal shock on 

their inner walls.  The governing equations were solved 

analytically into Laplace domain and transformed to the 

time domain by a numerical Laplace inversion. 

Application of Lord-Shulman theory was also extended 

to functionally graded cylinders. In this respect, Bagri 

and Eslami [12] utilized transfinite element method and 

the numerical inverse Laplace technique under uniform 

thermal shock to introduce unified formulation based on 

Lord Shulman, Green-Lindsay and Green-Naghdi 

methods. The dynamic response of functionally graded 

thermoelastic thick-walled hollow cylinders due to time-

dependent heat flux studied by Sharma et al. [13] with an 

analytical method. They studied the effect of 

inhomogeneity for strains, stresses, displacement and 

temperature by the help of Lord-Shulman theory. The 

theory was also used for the thermoelastic problem of 

clamped axisymmetric infinite hollow cylinders under 

thermal shock with variable thermal conductivity by 

Zenkour [14]. He investigated effects of variable thermal 

conductivity and time parameters on radial displacement, 

temperature, and stresses.  Thermoelastic interactions in 

the context of Lord-Shulman theory of a hollow cylinder 

compared the optimal homotopy analysis solution to the 

exact solution by Abbas and Abd-elmaboud [15]. They 

illustrated temperature, displacement and radial stress 

distribution graphically and discussed the effect of the 

relaxation time on the results. 

 

Performing the thermoelastic behaviour analyzes in the 

literature, some researchers neglected the coupled terms, 

while others made calculations by taking these terms into 

account. However, the field of study examining the 

differences between stresses in these two different 

analyzes in the literature remained untouched. The 

originality of this work is that it examines the difference 

between stresses in analyzes with and without coupled 

terms. In this study, coupled thermoelastic behavior of a 

hollow homogeneous copper cylinder subjected to a time 

dependent internal temperature load is carried out. 

Among the generalized thermoelastic theories, Lord-

Shulman theory with one relaxation time is used. The 

non-dimensional governing equations are obtained in 

coupled form and solved numerically with 

pseudospectral Chebyshev method (PCM). The 

temperature, radial and tangential stress distributions are 

presented graphically for three different nondimensional 

times. The effect of the coupled term in the Lord-

Shulman theory on the solution for different high 

temperatures is examined and the difference between the 

coupled and uncoupled solution in different time periods 

is emphasized. 

 

2. GOVERNING EQUATIONS 

 

In the framework of Lord-Shulman theory, a linear, 

homogeneous thermoelastic continuum governing 

equations is employed for an isotropic thick-walled 

cylinder with 𝑎 ≤ 𝑟 ≤ 𝑏 . Here 𝑎  and 𝑏  are the inner 

and outer radius respectively. The schematic illustration 

of the cylinder is given in Figure 1. Under the plane 

strain condition and cylindrical symmetry consideration, 

the equation of motion in the absence of body forces is 

given by [15], 

 

𝜕𝜎𝑟𝑟

𝜕𝑟
+

1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜃𝜃) = 𝜌

𝜕2𝑢

𝜕𝑡2
 (1) 

 

 

 
Figure 1. Schematic illustration of the homogeneous hollow cylinder 

 

where 𝜌 is the mass density, 𝑢 displacement component, 

𝑟 radius. 𝜎𝑟𝑟 and 𝜎𝜃𝜃  are the radial and circumferential 

stresses respectively.  

 

𝜎𝑟𝑟 = (𝜆 + 2𝜇)
𝜕𝑢

𝜕𝑟
+ 𝜆

𝑢

𝑟
− 𝛾(𝑇 − 𝑇0)          (2) 

 

𝜎𝜃𝜃 = 𝜆
𝜕u

𝜕𝑟
+ (𝜆 + 2𝜇)

𝑢

𝑟
− 𝛾(𝑇 − 𝑇0) (3) 

 

where 𝑇  is the absolute temperature, 𝑇0  the reference 

uniform temperature of the body, λ, μ are elastic 

parameters,  𝛾  the thermal elastic coupling tensor in 
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which 𝛾 = (3𝜆 + 2𝜇)𝛼 . Since cylindrical symmetry is 

taken into account under plane strain conditions, the only 

nonzero component of the displacement vector is 𝑢𝑟, and 

u can be represented by 𝑢𝑟 = 𝑢(𝑟, 𝑡). 
 

The energy equation without heat sources is given as 

below [15], 

 

𝑘 (
𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
) = (

𝜕

𝜕𝑡
+ 𝜏0

𝜕2

𝜕𝑡2
)(𝜌𝑐𝑒𝑇

+ 𝑇0𝛾 (
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
)) 

(4) 

 

where 𝑐𝑒  is the specific heat at constant strain, 𝑘  the 

thermal conductivity and 𝜏0 is relaxation time proposed 

by Lord-Shulman theory.  

 

For convenience, the following non-dimensional 

variables are introduced [15]: 

 

𝜂 = 𝑐1χ 𝑟,     𝑈 = 𝑐1χ 𝑢,     𝜏 = 𝑐1
2χ 𝑡,     

 

𝜏0̅ = 𝑐1
2χ 𝜏0, 𝑆𝑟𝑟 =

1

𝜆+2𝜇
𝜎𝑟𝑟 , 𝑆𝜃𝜃 =

1

𝜆+2𝜇
 𝜎𝜃𝜃 ,    (5) 

 

𝜃 =
𝑇−𝑇0

𝑇0
,     𝑐1 = √

𝜆+2𝜇

𝜌
,     χ =

𝜌 𝑐𝑒

𝑘
     

 

The aforementioned governing equations are reduced to 

following equations in considerations of the non-

dimensional variables described in Equation (5). 

 

𝜕2𝑈

𝜕𝜂2
+

1

𝜂

𝜕𝑈

𝜕𝜂
−

𝑈

𝜂2
− β

𝜕𝜃

𝜕𝜂
=

𝜕2𝑈

𝜕𝜏2
 (6) 

 

𝜕2𝜃

𝜕𝜂2
+

1

𝜂

𝜕𝜃

𝜕𝜂
= (

𝜕

𝜕𝜏
+ 𝜏0̅

𝜕2

𝜕𝜏2
)(𝜃

+ 𝜖 (
𝜕𝑈

𝜕𝜂
+

𝑈

𝜂
)) 

(7) 

 

in a similar way stress equations can be obtained as, 

 

𝑆𝑟𝑟 =
𝜕𝑈

𝜕𝜂
+ 𝜉 

𝑈

𝜂
− β θ (8) 

 

𝑆𝜃𝜃 = 𝜉
𝜕𝑈

𝜕𝜂
+ 

𝑈

𝜂
− β θ (9) 

 

where β =
𝑇0𝛾

𝜌𝑐1
2  ,  𝜖 =

𝛾

𝜌𝑐𝑒
 ,  𝜉 =

𝜆

𝜌𝑐1
2  .  The boundary 

conditions in which the inner and outer surfaces of the 

cylinder are traction-free and the outer surface is 

maintained at a reference temperature, while the inner 

surface is subjected to a time-dependent internal 

temperature load, are given in dimensionless form as 

follows: 

 

𝑆𝑟𝑟(𝑎, 𝜏) = 0,       𝜃(𝑎, 𝜏) = 𝜃1𝑒
−𝛼𝜏   

  

𝑆𝑟𝑟  (𝑏, 𝜏) = 0,       𝜃(𝑏, 𝜏) = 0 (10) 

where  𝜃1 is constant and 𝛼 is an exponent of diminished 

heat flux. 

 

3. SOLUTION PROCEDURE 

 

The solution of physical variables can be performed by 

following the decomposition methodology below [15]. 

 

𝑈(𝜂, 𝜏) = 𝑈(𝜂) 𝑒𝜔𝜏,       𝜃(𝜂, 𝜏) = 𝜃(𝜂) 𝑒𝜔𝜏  
 

𝑆𝑟𝑟(𝜂, 𝜏) = 𝑆𝑟𝑟(𝜂) 𝑒𝜔𝜏,   𝑆𝜃𝜃(𝜂, 𝜏) = 𝑆𝜃𝜃(𝜂) 𝑒𝜔𝜏 (11) 

 

where 𝜔 is the angular frequency. After decomposition, 

the system of differential equations can be rewritten in 

the following form. 

 

𝜕2𝑈

𝜕𝜂2
+

1

𝜂

𝜕𝑈

𝜕𝜂
−

𝑈

𝜂2
− 𝜔2𝑈 − β

𝜕𝜃

𝜕𝜂
= 0 (12) 

 

𝜕2𝜃

𝜕𝜂2
+

1

𝜂

𝜕𝜃

𝜕𝜂
− (𝜔 + 𝜏0̅𝜔

2) (𝜃 + 𝜖 (
𝜕𝑈

𝜕𝜂
+

𝑈

𝜂
))

= 0 

(13) 

 

𝑆𝑟𝑟 =
𝑑𝑈

𝑑𝜂
+ 𝜉 

𝑈

𝜂
− β θ (14) 

 

𝑆𝜃𝜃 = 𝜉
𝑑𝑈

𝑑𝜂
+ 

𝑈

𝜂
− β θ (15) 

 

and the boundary conditions will take following form 

 

𝑆𝑟𝑟(𝑎) = 0,       𝜃(𝑎) = 𝜃1𝑒
−(𝜔+𝛼)𝜏  

  

𝑆𝑟𝑟  (𝑏) = 0,       𝜃(𝑏) = 0 (16) 
 

Then, the system of ordinary differential equations given 

in Equation (12-16) is solved with pseudospectral 

Chebyshev method in coupled form. 

 

3.1. Coupled Solution 

 

In the Lord Shulman's approach, it is presumed that if 

the body is strained, transient stress change will 

accompany these strains, and interrelatedly, the 

temperature changes induce thermal strains [16]. For this 

reason, the equation of motion for the displacement and 

the heat conduction equation have to be solved 

simultaneously. Then, the coupled form of these 

dimensionless equations may be expressed in compact 

form as: 

 

𝜕2𝑌

𝜕𝜂2
+ Lη

𝜕𝑌

𝜕𝜂
− LCY = 0 (17) 

 

where Y = [𝜃 𝑈]T  and the linear coefficient matrices 

(Lη, LC) are, 
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Lη =

[
 
 
 

1

𝜂
−𝜖(𝜔 + 𝜏0̅𝜔

2)

−β
1

𝜂 ]
 
 
 

 ,            

 

LC =

[
 
 
 
 −(𝜔 + 𝜏0̅𝜔

2)
−𝜖(𝜔 + 𝜏0̅𝜔

2)

𝜂

0 −
1

𝜂
− 𝜔2

]
 
 
 
 

 

(18) 

 

3.2. Numerical Solution of the Problem 

 

The pseudospectral Chebyshev approach is based on 

first-kind Chebyshev polynomials. In the method, a 

solution is found in the interval specified in the problem. 

Chebyshev Gauss-Lobatto points, which have a denser 

point distribution at the boundary points than the 

midpoints, are used for obtaining high accuracy results. 

In accordance with the equation below, these points are 

evenly spaced on the semicircle. 

 

𝜂𝑗 = cos (
𝑗𝜋

𝑛
),              (𝑗 = 0,1, … , 𝑛) (19) 

 

The pseudospectral Chebyshev Model is employed to 

perform the coupled thermoelastic analysis of hollow 

cylinders under the time depended temperature loading 

by referring to the study of Trefethen [17], Fornberg [18] 

and Gottlieb [19] that depends on discretization of the 

governing equation (17) with respect to the spatial 

variable using the pseudospectral Chebyshev method. 

With reference to collocation points, the first order (𝑛 +
1)𝑥(𝑛 + 1)  Chebyshev differentiation matrix will be 

created and denoted by D. First-order Chebyshev 

differentiation matrix 𝐷  provides highly precise 

approximation to 𝑈′(𝜂𝑗), 𝜃′(𝜂𝑗), 𝑈′′(𝜂𝑗), 𝜃′′(𝜂𝑗) …,  

simply by multiplying the differential matrix with vector 

data 𝑈′(𝜂𝑗) = (𝐷 𝑈)𝑗 , 𝜃′(𝜂𝑗) = (𝐷 𝜃)𝑗  𝑢′′(𝜂𝑗) =

(𝐷2 𝑈)𝑗 ,  𝜃′′(𝜂𝑗) = (𝐷2 𝜃)𝑗   suchlike where 𝑼 =
[𝑈0, … , 𝑈𝑛]𝑇  and 𝜽 = [𝜃0, … , 𝜃𝑛]𝑇  discrete vectors data 

at positions 𝜂𝑗 . The Chebyshev differentiation matrix 

computing process and codes as an m-file can be found 

in prominent references see e.g., (Trefethen, [17]), where 

the collocation points 𝜂𝑗 are numbered from right to left 

and defined in [−1,1]. The approach may be used to any 

interval with a minor modification. Accordingly, the 

coupled linear thermoelastic equation for the cylinder 

(17) is simply converted into a linear system by using the 

pseudospectral Chebyshev collocation approach as 

below: 

 

𝐿 𝒀 = 0 (20) 
 

where 

 

𝐿 = 𝐷2 + Lη𝐷 − 𝐿𝑐. (21) 

 

Boundary conditions (16) are imposed to this linear 

system (20) by only replacing the first and last row of 

the system matrix 𝐿 with the appropriate values. Then, 

the non-trivial solution of the dimensionless temperature 

and displacement distributions can be found by solving 

the linear system with any decomposition method. 

 

4. RESULTS AND DISCUSSION 

 

In this study, thermoelastic interactions of a hollow 

copper cylinder based on Lord-Shulman theory are 

analyzed by the pseudospectral Chebyshev method. It is 

assumed that the outer surface is kept at the reference 

temperature while the inner surface is subject to 

temperature degradation over time. Analyzes are made 

by increasing the internal temperatures up to 𝑇1 =
500 𝐾, which is the elastic limit of the copper material 

(𝑇0 = 293 𝐾). In the numerical calculations, following 

physical properties are used for copper [15], 

 
Table 1. Mechanical and thermal material properties of copper 

Pro Value Unit Pro Value Unit 

𝜆 7.76 𝑥 1010 𝑘𝑔 𝑚𝑠−2 𝑐𝑒 3.831 𝑥 102 𝑚2𝐾−1𝑠−2 

𝜇 3.86 𝑥 1010 𝑘𝑔 𝑚𝑠−2 𝜌 8.954 𝑥 103 𝑘𝑔 𝑚−3 

𝐾 3.68 𝑥 102 𝑘𝑔 𝑚 𝐾−1𝑠−3 𝛼 17.8 𝑥 10−6 1 𝐾−1 

 

The other quantities for the numerical calculation are 

chosen as 𝜔 = 5, 𝛼 = 3,   Ω = 5 and 𝜏0 = 0.02  [15].  
Before proceeding to solution of the current problem, the 

numerical method is tested with the benchmark solution 

[15] available in the literature. The dimensionless 

temperature and radial stress distributions at certain 

times are compared on the graph (Figure 2) with 

analytical results. In comparison, the PCM solution 

results obtained using 16 data points are found to be in 

good agreement with the analytical results. According to 

these results, the solution to the current problem is 

continued with PCM. 

 

 
(a) Temperature distribution 

 

 
(b) Radial stress distribution 

Figure 2. Distribution of temperature and radial stress in a hollow 

cylinder along the thickness at certain times 
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The non-dimensional numerical results of temperature, 

and stresses are given graphically for different values of 

time in Figure 3 for coupled and noncoupled (NC) 

conditions. In order to see the time-varying effect of the 

applied temperature load as the boundary condition, all 

results are plotted at 𝑡 = 0.02, 0.1 and 0.3 time frames. 

These frames depict the various phases of the 

temperature load.  In Figure 3(a), nondimensional 

temperature distributions are shown. In the early stage of 

loading  (𝑡 = 0.02) the inner wall temperature is almost 

at the highest value that can be reached with the applied 

load. It is observed that this value decreases as time 

progresses to 𝑡 = 0.1 and 0.3  nondimensional times. 

The dimensionless temperature distribution along the 

wall thickness decreases exponentially and reaches to 

zero at the outer wall in accordance with the boundary 

conditions. Since the results are given graphically, the 

difference between the coupled and uncoupled results is 

not clearly observed at this stage. The radial stress 

distributions satisfying the traction-free boundary 

conditions at both ends are presented in Figure 3(b). It is 

seen from the figure that the stress magnitudes are 

proportional to the temperature distributions. It is 

observed that the highest stress values occur at the 

beginning of loading (t=0.02) and after a certain period 

of time, these values decrease. The stresses reach their 

highest values in the first quarter of the wall (𝜂 ≅ 1.25)   

from the inside to the outside.  Similarly, it is observed 

in Figure 3(c) that the greatest tangential stress occurs on 

the inner wall in the provinces where the temperature 

effect is greatest.  With the advancing time, the slope of 

the tangential stress curve decreases with the wall 

thickness. It can be also observed that all stress results 

occur in the compression direction Figure 3(b-c) as the 

cylinder is subjected to internal thermal load. 

 

 
(a) Temperature distribution 

 

 
(b) Radial stress distribution 

 
(c) Tangential stress distribution 

Figure 3. Distribution of temperature, radial and tangential stresses in 
a hollow cylinder along the thickness at certain times 
 

Further research is done to see the effect of the coupled 

term on the results. The infinity norm is used to calculate 

the maximum difference between the results obtained 

from the coupled and uncoupled solutions (||𝑆𝑐𝑜𝑢𝑝𝑙𝑒𝑑 −

𝑆𝑢𝑛𝑐𝑜𝑢𝑝𝑙𝑒𝑑||∞)  at three different temperatures  

(𝜃 = 300, 400, 500) and at different time periods (𝑡 =
0.02, 0.1, 0.2) . The gradient variation of the coupled 

terms of radial and tangential stresses are given in Table 

2 and Table 3, respectively. As can be seen from the 

Table 2-3, the stress values are larger in the calculations 

made by including the coupled terms, so to stay on the 

safe side in the analysis, the coupled terms should be 

included in the analysis. In the early stages of thermal 

loading, the differences are greatest for all time periods 

and for temperature magnitudes. In addition, as the 

temperature effect increased (𝑇 = 500 𝐾), it is observed 

that the difference between the coupled and the 

uncoupled solution increased. This indicates the need for 

coupled solutions under sudden loading conditions. This 

difference tends to decrease as time progresses (𝑓𝑜𝑟 𝑡 =
0.1, 0.2). 

 
Table 2. The gradient variation of the coupled terms to radial stress 

 

Time 
𝜃 = 300 𝜃 = 400 𝜃 = 500 

𝜎𝑟𝑥10−4                   𝜎𝑟𝑥10−4                    𝜎𝑟𝑥10−4 

0.02 13.080977 17.441303 21.801629 

0.1 10.289861 13.719815 17.149768 

0.3 5.647195 7.529594 9.411992 
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Table 3. The gradient variation of the coupled terms to tangential 

stress 

Time 
𝜃 = 300 𝜃 = 400 𝜃 = 500 

           𝜎𝜃𝑥10−4                   𝜎𝜃𝑥10−4                     𝜎𝜃𝑥10−4 

0.02 17.624611 23.499481 29.374352 

0.1 13.864010 18.485347 23.106683 

0.3 7.608730 10.144973 12.681217 

 

5. CONCLUSION 

  

This article examines the combined thermoelastic 

behavior based on the Lord-Shulman theory of a hollow 

homogeneous copper cylinder whose inner surface is 

subjected to a time dependent internal temperature load. 

The coupled governing equations are solved by using the 

pseudospectral Chebyshev method. The dimensionless 

temperature, radial and tangential stress variation along 

the radius of the cylinder and in some time frames are 

obtained and shown in the figures. The influence of 

coupled and uncoupled conditions is demonstrated on 

the thermoelastic responses of the copper cylinder at 

different times, which determines the intensity of the 

thermal load. It has been noticed that in all cases, the 

highest temperature and stress values occur at the 

beginning of the instantaneous thermal loading and these 

values decrease with time. When the differences between 

the coupled and uncoupled solution results are revealed 

with the help of the infinity norm, it is observed that the 

stress values are higher in the calculations made by 

including the coupled terms. According to this analysis, 

the highest difference in the results is obtained in the 

early times of the instantaneous highest thermal loading, 

while the lowest difference is obtained in the later time 

period at the lowest temperature. For a more precise 

analysis, it may be recommended to choose the coupling 

analysis for problems involving instantaneous loading or 

high temperature difference. Besides, it can be stated that 

the PCM is a useful, sensitive numerical solution method 

and can be adopted simply for solving such problems. 
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