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PRIOR DISTRIBUTION CLASSES WITH 
COMPREHENSIVE COVERAGE 

Oya EK�C� *

ABSTRACT

The Bayes’ theorem which is the kernel of today’s Bayesian world

aimed to introduce prior distribution classes and to give a review on them.

Keywo : C
formative priors. 

tions. In statistical methods as a tool of scientific 

duction method within Bayesian 

incorporates prior knowledge in analysis. Regarding its level, form or
application restrictions, the challenging part can be seen as “prior”
especially for joiners in this world. In various areas, concerning the
requirements, there are various prior distributions suggested to be used.
However the studies that give a generic look and review on prior 
distributions classes are not seen in the literature. With this motivation, the
paper discusses prior distributions with comprehensive coverage. Thus it’s

rds lasses of prior distributions, Informative priors, Non-
in

1. INTRODUCTION

Bayesian literature is imperiously growing either due to pragmatic or conservative
reasons. But whatever the reason is, the developments imply that the method works, and 
is found useful, and gathers most of the efforts on this field.

ertainly, science has various quesC
investigations, executing “objective” estimation and analysis process is probably one of 
the most critical one of these questions. Bayesian methods by permitting prior beliefs to 
be involved with a proper way rather than ad hoc manners-inevitably as being in almost
all empirical studies-accomplish the objectivity goal indeed. However it should be said 
that Bayesian principle is criticized also just for this reason, that is “not being
objective”. If these critics are moved through philosophical basis, another aspect can be 
proposed here. In Bayesian statistics, probability is induction probability and the
purpose is to attain to highest probability; namely accuracy. Actually, impossibility of 
chieving “perfect information” justifies adopting the ina

philosophy. So, it is reasonable to update the probabilities by following justification 
process in each step of it. Regarding the beginning of the mentioned process, there is no 
need for initial assumptions in Bayesian approach. Instead prior information is 
employed here. The processes followed by Bayesian and Classical approaches can be 
summarized with the table below.
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Table 1. Philosophically, probability processes for Bayesian and Classical approaches 

Bayesian approach    Classical approach

Without assumptions    With assumptions

  Trials  Trials 

 Justification   Falsification

1
2
1

��� )g,t(p 0�)g,t(p

where “t” is a theory and
Classical app ch f ve. But the

approach begins with initial assumptions, and a part of 

formation for the analysis incontrovertibly constitutes Bayesian approach’s original

for joiners. Owing to all 

ploy for most of
odeling issues. Hence instead guiding which one to be used, a summary for almost all 

s of

this paper, the classes are given under two general titles; non-informative and 

e prior class c
are provided.

has. While determination of the tool, namely while choosing or constituting prior

 “g” is the relevant observations. As Popper (2003) also asserts, 
roa ollows deduction method as seen from the table abo

point here is that Classical 
subjectivity penetrates to analysis from there in a way. Hence, on the contrary, it can be
claimed that these assumptions in fact distort the objectivity goal. It is out of purpose to 
go through a further discussion on the distinctions between them from philosophical
aspect. As being in Bayesian literature, independently prior distributions themselves can 
be discussed; whether they lead an objective analysis or not. However, using prior 
in
part. Due to its demanding nature in describing and fitting to data, “prior information”
notion evolves as a fundamental issue within the Bayesian context and this key role 
leads the studies to effort on this area of the literature. A useful study on prior
distribution, Kass and Wasserman (1996), presents a search on selecting prior
distribution.

The most challenging part can be seen as “prior” especially
motives mentioned above, to see the whole picture, an extensive study of prior 
distributions that summarizes the literature has been aimed in this paper. And the 
subject is generically presented with classification rather than a whole discussion. There 
is no granted end in discussion of which prior is accurate to em
m
clas priors is tried to be given.

In
informative prior distributions. The basis of this categorization and the other proposed 
classifications are briefly discussed in Section 2. The rest of it is organized accordingly.
Section 3 is about non-informativ es. Se tion 4 is on informative prior 
distribution classes. In the final section some concluding remarks

2. ON THE CLASSIFICATIONS OF PRIOR DISTRIBUTIONS 

As Bayes’ theorem refers, the prior distribution of a parameter is combined with the 
probability distribution of current related data to obtain the posterior distribution which
is then used for making inferences about the parameter. In the analysis with this 
principle, prior distributions are the tools to reflect the information that the researcher
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distribution, we meet a series of types and classifications that will shed light on t
choices. Diaconis and Ylvisaker (1985) divide Bayesians b

hese
y considering prior

istributions that is preferred to use. So the prior distribution classification done 
followi

d Hamurkaro�lu (2008) propose a
ethod that one can represent one’s degree of belief in prior information on each of log 

dds ratios separately and also show that representation of very weak belief in prior 
formation on the relevant parameters using this approach is successful.

e tions can be considered as a class. For instance 
sti  “realistic” here reflects the characteristic of prior 

istributions rather than being a class of them. If a prior is realistic, it successfully

sight helps to capture

3. N

They are poor to explain the parameter, but these kinds of priors eliminate the 

d
accordingly is as in the ng.

Classical Bayesians approve choosing non-informative priors as flat or uniform prior. 
Modern Parametric Bayesians choose conjugate priors which have designed properties. 
Subjective Bayesians use elicited priors those especially gathered from an expert 
opinion or impressions from a similar area. (Gill, J., 2002, p.114). Indeed, this 
lassification done by Diaconis and Ylvisaker (1985) is not clear in practice both for thec

priors and for the approaches. Another classification is given by Gelman (2002); non-
informative, highly informative and moderately informative prior distributions, even his 
study’s main focus is other than making classification.

Actually, as a loosening factor for any grouping like mentioned above, it would be 
needed to express the degree of belief in the prior information of each parameter
separately. For this reason, there are methods which make possible to assign some
parameters as informative and some others as non-informative in the same prior
istribution. For categorical data, Demirhan and

m
o
in

Som characteristic of prior distribu
eali c prior distribution, the namer

d
represents the uncertainty on prediction in a realistic way. For this reason, realistic prior
improves forecast accuracy. Similarly, improper prior distribution also can be
considered as a class, (mentioned below under non-informative priors) it is again a 
characteristic of prior distributions, essentially concluding probability of the relevant
parameter is infinite. In the paper, prior distribution classes are referred considering
these principles. And a conventional classification done for prior distributions is 
adopted; non-informative and informative prior distributions. For this reason, the
ategorization reflects probable priors’ attitudes with general inc

classes’ diversities and to clarify the transition between them. However, their behaviors 
can change for some cases, these situations -when non-informative prior turns out to 
informative or informative prior turns out to non-informative- are enlightened in the 
related part of the paper.

ON-INFORMATIVE PRIOR DISTRIBUTIONS

subjectivity criticism of Bayesian view. Though, in general it should be said that none 
of the non-informative priors reflects the ignorance. And in some circumstances, its 
non-informative trait becomes informative. 
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With a different aspect Berger (1985, p. 406-409) noted, there seem alternatively two 
viewpoints to handle the problem; non-informative prior approach and invariance 
approach. He remarked that the studies on invariance suggest reasonable choice for the
non-informative prior, namely the right invariant Haar density, the right Haar measure,
gives the best invariant decision rule. Besides many relevant advantages of invariance,
non-informative prior approach is preferred most of the time.

ior, reference pri

3.1 Uniform Prior (Flat Priors) Distrib n

The priors that might be located under non-informative are flat (or uniform) priors, 
Jeffreys pr or, diffuse (vague, weak or locally uniform) prior, maximum
entropy prior, intrinsic prior and integral prior distributions.

utio s

In case of using uniform prior, the same probability values are assigned to the parameter
for a determined interval. While � � mcp 1���  and m���0 , at every point of 
determined interval, the probability density of the parameter is equal to “c”.

This is attributed as Bernoulli named “principle of insufficient reason”. If there is no 

enerally when the parameter lies within a specific interval, when it is able to be 
limited, and when it’s a proportion as its nature, this class of prior can be employed. It
can not be said that it ensures the situation of “Ignorance For ins nce, f we
arameter belongs to the interval [0 - m], as m goes to infinity, prior distribution 

es less informative. However in this situation, the probability of parameter

reason to believe that any one of these is more likely to be true than another, then we
should assign the same probability to all (Sivia, 1996, p.106-7, 120). 

G

”. ta i say the
p
becom � ��p
converges to zero. No value of �  will be increasingly probable.

On extended real line � ���� , , for all values of � , while � � cp �� , the uniform priors 
are improper. That means when the probability of pdf (probability density function) is 

tegrated, the result is infinite and violates the axiomin  of “probability sum equals to 1”, 

ily reduced from the posterior distribution after it’s integrated out.
dditionally, Gill (2002, p.121-3) pointed out some conjugate prior distributions

e limit.

whereas it equals to “1” in proper distributions. Improper priors have computational
difficulties. But it should be remarked here that the posterior distribution which is 
derived from this kind of priors doesn’t have to be improper.

Other drawback of uniform prior is not possessing invariance property. When the
parameter is transformed, the new prior distribution derived from it might not be
uniform. It might lose non-informative characteristic and might violate its equal 
probabilities feature. Uniform priors have strong sides as well, as the sample size
increases the effect of settling on uniform distributions becomes slight. Nuisance

arameters are easp
A
become the same with uniform priors in th
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3.2 Jeffreys Prior Distribution 

Jeffreys’s philosophical point of view leans on the concepts of “necessarianism” or 
objectivism. For his objectivist view he believes in the state of ignorance and based his
view on “principle of insufficient reason”. He thinks that there should be an explanation 
for an event being more or less probable if the probabilities are not assigned equal. It 
can be said that the idea of basing on a definite reason is the extension of 
necessarianism. Besides according to him, it’s not essential to represent the ignorance
with merely one prior distribution (Kass and Wasserman, 1996). 

With the motivation mentioned above, Jeffreys makes prior distribution equal to a
constant, whether parameter is restricted with a specific interval (  or� ���� , � ��,0 ) or 
not, which means the defined uniform prior distribution has the form improper. In his 
studies’ further step, he uses Fisher information matrix, supposing normal distribution;

� � � �
�
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Here to cover all possible results, with most general form, a location-shape density
function that involves location and shape parameters are determined as likelihood 
function. Information matrix derived from this kind of likelihood function is as in the 
following (Berger, 1985, p.88);
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Prior distribution is the square root of the determinant of this derived information
matrix: � � � �� �
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21��� Ide� . If the result stated above is expanded with some operations; 
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prior distribution reaches finally to the form above. When the likelihood function is a
pdf in which just has location parameter as � �� , the computed information matrix

es equal to a constant. Hence the prior distribution becomes equal to a constant,

The main argument of Jeffreys in preferring this kind of prior distribution is possessing 
invariance property against power transformation of the parameter, as Hartigan (1964) 
proposed;

becom
too.

� � � ���
�
��� �� ��
�
�

�
�
��

d
d

, � ��� h�  ( 4 )

While n�� � , the following equations and proportion are attained; ��� d.nd n 1�� ,

n

n d.nd
�

��
�
� 1�

� ,
�
�

�
� dd
�   . So, the invariance property for prior distribution is proved 

by considering variable transformation formula. By the way a model can be 
arameterized in terms of standard deviation, variance and precision parameters.

Jeffreys prior which is produced from Fisher information matrix, logarithm of 

Prior Distribution

Bernardo, J. M. (1979) nominated a prior distribution, “reference prior”. The term 

r distribution is still a convenient distribution. Actually 

p

In
posterior distribution yields the exponent -that involves the parameters- of the 
distribution. The multi-differential of it gives the marginal of parameters (and leave
parameter alone), then the expectation of this attained parameter’s function or value is 
taken. In geometrical aspect, taking the determinant of Fisher information matrix that 
involves all parameter information, gives the region (volume or hyper volume) that 
vectors of parameter span in the parameter space. By the way, regarding the existing
parameter information, in parameter space, the probability region of parameter is
determined.

3.3 Reference 

reference prior distribution mostly has been used in a narrow sense. For Box and Tiao 
(1992, p. 22-23) and most of others reference prior is convenient to use as a standard 
and it has the form dominated by the likelihood function. Besides if there is dominant

kelihood, the attained posterioli
the form in which the prior distribution dominates is also possible. So in case of
dominant prior, it can be said that the yielding form is informative. In this context, a
reference prior doesn’t have to be a non-informative prior distribution. 
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bles

Figure 1. Dominant rior

Berger (1985) and Bernardo (1979) have used “reference prior distribution” in general 
sense. With Bernardo’s words (1996), the reference prior is that which maximizes the 
missing information. According to the method that they developed reference prior for 
relevant parameter can be found by maximizing the Kullback-Leibler distance between 
prior and posterior distribution. 

� �The i.i.d. random varia nY...,,Y1�  are seen in the form of Kullback-Leibler
distance

nY1

� � � �� ����� ,yK n
n 1\ Where � �ny1\�� terior,. is pos � ���  is prior distribution. 

Accordingly, Kass and Wasserman (1996) provided, 

� � � �� � � �
� � � ����� d,yK nn

n
1

1\  ( 5 

Here the logarithm of the ratio of these two distributions is taken and multiplied with

� �
�

�
�

� ���
��

ylog 1\ )
�� �� y n\

posterior distribution. � � � �� �� ������ ,yKEK n
nn 1\� is the expected value of Kullback-

Leibler distance. The on; �
n Klim ��� �

K
purpose here is to maximize the expressi �

nK . But 
in general �  is infinite and to handle this problem firstly the prior distributions ( n

� � )
that will maximize a finite distance �

nK ined. Then limit value of the posterior
distributions calculated with this prior distributions are attained. As a result, the prior
distribution attained in this manner becomes a distribution that yields a posterior in limit

ith Bayes theorem. After some simplifications, this prior distribution (for a continuous
parameter space) turns into Jeffreys prior (Kass and Wasserman, 1996). Moreover, as 
Bernardo (1996) also noted, in one-p oblems, the reference prior reduces to 
Jaynes (1968)

are atta

w

arameter pr
maximum entropy prior if the parameter space has a finite number of 

oints, and it reduces to Jeffreys’ prior in the continuous regular case. 

re nuisance parameter.  More specifically, while
 is the parameter of interest and 

p

Refe nce prior is successful in handling
w �  is nuisance parameter, if it is differentiated as

� ��� ,w� , reference prior is well enough in making inference about � . When there is
not nuisance parameter and some specific conditions hold, reference prior becomes the 
same with Jeffreys prior. That means if there is “parameters of interest” and “nuisance 
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parameters” distinction, this method gives different results than Jeffreys’ (Kass and 
Wasserman, 1996).

As to computation of reference priors in practice, Bernardo (1996) expresses that
reference priors only depend on the model through its asymptotic behavior; essentially,
if the asymptotic of a model is known, than its associated reference priors may be easily 

und. Under regularity conditions for asymptotic normality, any reference prior may be 
obtained from a relatively simple algorithm in terms of Fisher’s matrix (Berger and
Bernardo, 1992). Though, for non-regular or complex models, the derivation of 
r ult mathematical problem.

ome other denominations seen in the literature of this kind of prior are “vague prior”,
“weak prior” or “locally uniform prior”. As is known, depending on a parameter’s
(  within Bayesian principle)
that determines the scale of this distribution changes. For instance, for location and

ape parameter respectively normal distribution and gamma distribution can be 

fo

eference priors may be a diffic

3.4 Diffuse Prior Distribution 

S

thinking as a random variable distribution, the parameter

sh
assumed. Based on the idea of large variances means uncertainty, such a large value
assigned for the shape parameter of this distribution that extending on considerably 
wide interval, makes the distribution almost flat as uniform prior and non-informative
prior constitutes (Raiffa and Schlaifer, 1968, p.63). 

� � � �2��� ,N~p , large values are assigned to 2� .
� � � ���� ,G~p , very small values are assigned to �  and � (as 0,001).

The strongest argument of diffuse prior distribution attained as above is being a proper 
distribution. Assuming diffuse prior distribution instead of m prior is assuring the 
advantage of easy calculation.

observations is small. Even d u prior l tio

o the new

belongs to physics discipline. It exists in statistics, since it has 
irect relationship to information theory and in a sense measures the amount of 

uncertainty inherent in the probability distribution (Berger, 1985, p.91). In other words 
it quantifies the uncertainty of bservations.

unifor

Diffuse prior distributions have also weakness. Let’s assume likelihood function with a 
broad peak, the situation of the posterior distribution is improper and number of 

iff se distribution used with a norma distribu n -
has a large variance- it doesn’t produce good solutions since the obtained posterior 
distribution becomes sensitive t prior distribution (Kass and Wasserman,
1996). Actually the situation of limited sample size is the mostly encountered problem 
in applications.

3.5 Maximum Entropy Prior Distribution 

ntropy is a term thatE
d

o
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Entropy prior introduced by E.T. Jaynes (1968) identifies relative level of uncertainty 
about prior distribution parameters’ distributions. Similarly uncertainty or precision that 
is supplied by different prior distribution are modeled and so it may be said that it is 

exible. But transformation result of paramfl eter doesn’t have invariant property. So its
pplication is limited (Gill, J., 2002, p.135-6). 

or a discrete parameter

a

� �� � �Hn.......,,, ���� 21� , when entropy is ;F

� � � � � ���� ii Plog.PH ��� ( 6 )

Here by taking logarithm of probability, with the intuition of information exponentially 
increases, makes the information monotonically increase. Negative sign represents
“ignorance” as a reverse of information. Two extreme situations can be identified with 
the equation above. One signifies entropy’s minimum (the situation of full information),
other signifies entropy’s maximum (the situation of ignorance).

In the first case, while � � 1�kP �  that is when the probability of the parameter having a 
particular value is “1”, and ki � , it’s stated as � � 0�iP � , means it is assigned “0” for 
the probability of this parameter having any other value. By the way full information is 
given about the parameter and so ignorance being “0”,

� � � � � � 0
1

��� � �

n

i ii PlogPH ��� ( 7 )

In the second case, if the prior distribution is specified as uniform prior, say � �
n

P i
1

��

is assigned; the entropy of this prior reaches its maximum.

� � � ��
�
�

�
�
��� nlog

n
log

n
H 11� ( 8 )

Entropy given above is identical with the non-informative prior distribution. As the

observed value of parameter increases ( ��n ), the value of � �
n

P i
1

��  decreases 

(Actually, ever more it turns to a situation that no value of parameter will be possible,
namely in limit � � 0�iP � . So it is a contradiction to reach an informative form.
However, defining �  as finite can make one avoid this contradiction). Also regarding
these two forms, entropy constitutes the restriction � � nlogH ��  for prior distribution 

gral Prior

ay on posterior distribution. Here in model 
tio pare models through their individual posterior 

istributions. Because different models have different unobservable parts. Instead, the 
erformance of model is evaluated by leaning on directly probability of data. Model 

selection as a common concern brings further considerations in assigning prior 

(Berger, J.O., 1985, p.91).

3.6 Intrinsic Prior – Inte

In B esian analysis, inference is based 
selec n case, it’s not satisfactory to com
d
p



TÜİK, İstatistik Araştırma Dergisi, Temmuz 2010
TurkStat, Journal of Statistical Research, July 2010

27

Oya EKİCİ

distribution. When needed to use non-informative structure, since the standard non-
informative priors are improper, prior evaluations give a ratio of constants, that is, again 
a constant. Within Bayesian principle, the Bayes Factor is multiplied with this arbitrary
constant. For the models 1M  and 2M , the posterior probabilities ratio;

� �
� �

� �
� �

� �
� �1

2

1

2

1

2

\
\

\
\

MP
MP

MyP
MyP

yMP
yMP

��

� �
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� �1

2
21

1

2

MP
MP

yB
y\MP
y\MP

�� ( 9 )

Bayes factor  is described as below, and where 21B 1�  and 2�  are the parameters of 
interest for the data y,

� �
� �

� � � �
� � � ��

���
11111

22222

1

2
21

\

\

����

����

dyf

dyf

ym
ym

B ( 10 )

and there say � �ym2  is the marginal density of y for 2M . Here 21B  equals to an
arbitrary constant in case an improper prior assignment. To deal with the problems

erger and PB e 996) introduced “intrinsic pr yes factor free of 

aginary training samples in a sense.

ricchi (1 ior”. It gives a Ba
arbitrary constants and tends to correspond to actual Bayes factor. There is no need to 
compute training samples�, on the contrary, the process with intrinsic priors’ implement

� �11 �� I  and � �22 �� I  denote in insic priors and trim
are handled by solving functional equations below (Cano et al, 2004, p.446-7);

� �� � � �� �
� �� �

� �
� �11122

1 �����
111221
����� NI

NM yBE �  and 12� IN�

� �� � � �
� �

� �� �
� �� �211

211

22

22
12

2

2 ���
���

��
��

� I

NI

N
NM yBE �� ( 11 )

where � ..,yy 1� inimal training sample, a ra tor of minimal size 
 such that

� � � ��y., is a m ndom vec
� �1� �� � 2 �� denotes the limit of the MLE , 21,i �� �� �m N0 ,�yi � �yˆ

2�

under at po1M int 1� , and � �21 �� the limit of � �yˆ
1� under m  at point odel 2M 2� . Here

the expectations above are taken with respect to � �� �11 \��yf  and � �� �22 \��yf . To sum
up, there is possib t solutions is not uniq  these equations in 
nested models, ho ano et al and Cano e 7) demonstrates, in 

are exactly not unique. Anot blem in non-nested 
odels is that intrinsic prior cannot deal with improper solutions while intrinsic priors 

il e
wever, as C

ity to g which ue from
(2004) t al (200

non-nested models solutions 
m

her pro

are well established for nested models. Prior construction for non-nested models are 
developed by Cano et al (2007) named integral priors. The integral equation systems
(Cano et al, 2007, p.60) offered to be solved is as below; 

� a sample constituted just by using a part of the data.
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� � � � � ��� y 21111
N dyymy\����  and

� � � � � ��� y

N my 12222 \���� dyy ( 12 )

here  and  are posterior distributions for the data y. They found 
that und integral priors are unique. Furthe

bject a of this paper.

some cases, it is inevitable to use information, for instance in the political science,
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4. INFORMATIVE PRIOR DISTRIBUTIONS
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classification; data-based and non-data-based. When the past data
study, it is termed as data prior. Even if it is not possible t
re  or theories can be regarded as alternative sources.

n is termed as non-data-based prior. In case of having T
specific parameter prior knowledge or a restriction for it, the analysis becomes easier. 
For this reason, the dangers seen during the modification of prior beliefs is vanished. 
Conversely, in some other cases the researcher can be under the situation that should be
eliciting the prior (distribution, parameter).  All these efforts are intentionally to impose
he prior information to the analysis.t

For some cases non-info
odeling prior distributiom

Y
parameters are assigned the same probability values for a given interval, Jeffreys prior 
obtained from information matrix and diffuse prior don’t give dissimilar results. Besides 
each of the three distributions are non-informative. They also produce similar results
with Classical approach. However, this is not so for non-stationary time series. In non-
stationary time series, even a non-informative prior employed, Bayesian and Classical 
pproaches produce different results. Sims (1988) and Zellnea

u
turns out to have informat
on-informative prior dn

a
choosing uniform prior implies making all values of this parameter equally likely and 
reflects ignorance actually despite of having slight weights but large values of the 
parameter (Maddala and Kim, 2002, p.266). So in time series context prior distribution 
preference is primary issue as well.
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4.1 Conjugate Prior Distributions 

Conjugate prior distributions can be determined on the bases of distribution structure of 
the likelihood function. The likelihood function is divided into its multiplications in 
terms of sufficient statistics, and this process named as “Neyman’s Factorization
Theorem” (Lindley, 1965, p.47, 50). Resulting sufficient statistics’ distributions become
a base to conjugate prior distribution that will be constituted.

Some of the reasons about determining a conjugate prior as a prior distribution are 
given by Raiffa and Schlaifer (1968, p.44) as follows; it should be easy to obtain the
posterior distribution from the determined prior distribution and likelihood function. 
Conjugate prior distribution should be rich. What’s meant by rich is existence of a 
distribution element that is useful in expressing researcher’s prior information and 
beliefs.

Beyond these reasons, from the perspective of proposed utility, it is always possible to 
get new sample information from the same space by preferring to use conjugate prior. 
By the way the prior information about allied parameter can be explored and obtained 
more consistent results (Yardımcı, 1992). Prior distribution that is chosen on the bases 
of sample distribution family has algebraic convenience to join with likelihood. 
Particularly, it’s easy to compute for the exponential distribution family since 
probability distributions that belong to an exponential family have natural conjugate
prior distributions (Gelman et, 1995, p.38). Furthermore conjugate prior distribution is a
proper pdf.

However, conjugate prior should be handled with care. Since this prior distribution is
evidence for very specific parametric prior knowledge (Gill, J., 2002, p.120). 

So it is critical which conjugate prior will be used with different likelihood functions 
(Raiffa and Schlaifer, 1968, p.53-4). The generated posterior distribution is required to 
have a known functional form. This can be exemplified in Table 2 below. 

Table 2. Conjugate prior distributions for likelihood functions and yielding posteriors 

Likelihood Prior Posterior
Binomial Beta Beta

Negative Binomial Beta Beta
Normal Normal Normal
Poisson Gamma Gamma

Exponential Gamma Gamma
Gamma Gamma Gamma

At this point there appear two definitions about conjugate priors; “natural conjugate
prior” and “conjugate prior”. When conjugate prior combines with likelihood, yielded 
posterior again has the same distribution class with conjugate prior. Alternatively, when
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natural conjugate prior combines with likelihood, yielded posterior has the same
distribution with natural conjugate prior distribution, and also has the same distribution 
with likelihood (Raiffa and Schlaifer, 1968, p.48-49). 

As an example for the factorization procedure of conjugate prior of � , suppose � ��\yP
is likelihood function in form of binomial distribution;

� � � � ynyyP ��� ��� 1\ for 10 ��� ,

Say, if y=a and n-y=b, sufficient statistics would be here a and b. Through the
factorization, conjugate prior distribution for � ��p  is (in Beta form);

� � � � 11 1 �� �� �� ���P for 10 ��� , (13)

with Bayesian principle, 

� � � � � � 11 11\ ��� ��� �� ����� .yP yny  (14)

yielding posterior density � yP \ ��  again reaches Beta distribution; 

� � � � 11 1\ ����� �� �� ��� ynyyP (15)

Naturally most of the distributions can be appointed as a prior; however they all do not
emerge as one of prior classes. Since having a special weight among the others, the two 
of distributions, Wishart and Dirichlet distributions, are regarded here as a class of prior 
distributions under conjugate priors.

4.1.1 Wishart Prior

Under the assumption of the unknown variance case, Wishart distribution can be 
assigned as prior. That is Wishart prior is the conjugate prior distribution for the inverse
covariance matrix under a multivariate normal distribution assumption for the parameter 
say in a linear model. Similarly, Inverse-Wishart prior is the conjugate prior distribution 
at this time for the multivariate normal covariance matrix.

4.1.2 Dirichlet Prior

Dirichlet distribution is a multivariate generalization of the beta distribution. So the
prior established with this distribution, called as Dirichlet prior, is the conjugate prior 
distribution for the parameters of the multinomial distribution.
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4.2 Subjective Prior Distributions

In Bayesian approach, objectivity-subjectivity debate begins with assessing of
probability and is earlier than prior distribution specification. De Finetti who supports 
subjectivity defines probability from different aspects. One is built on odds ratio, one
another is score rule based on punishment (Galavotti, 2001, p.161-3). Quantifying of 
uncertainty is complicated. So as in determination of probability, while subjectively 
determining prior distribution, also numerous methods that the study entails can be
employed.

ost of the time, since the process of data analysis typicallyM
subjective choices, there exist problem

 involves a host of 
s about being objective during these statistical 

nalysis (Berger, 2006). T e dis inction etween objective and subjective analysis in 
i

rior and maximum entropy prior are said to be 

the purpose of the paper far 

t Bayesian analysis
eeded where the prior parameters cannot be based on previous studies and data or 

where they don’t exist. The difficulties during elicitation process are quan ify
uncertainty and reflecting personal judgment to a parameter, an interval or a 
istribution. It’s obvious that the process bias and various methods can be employed in 

ought up.

hen

a h t b
Bayesian approach then appears with prior d stribution specification for parameters of 
statistical model. So this signs its key role again. If the phrase “objective Bayesian
analysis” corresponds too many investigators in this field, as a general agreement on 
bjectivity, Jeffrey’s prior, reference po

objective priors. In fact there are views standing out against objective Bayesian
analysis. One critique to objective Bayesian school done by Wasserman (2006) is that 
he interpreted “objective Bayesian inference” to mean “Bayesian methods that have 
good frequency properties” and refer to these methods as “Frequentist-Bayes”. But 
oing through the views on this debate here would takeg

afield.

Depending on the nature of subject, eliciting prior would be needed. Within the context
f statistical analysis, expert opinion provides the structure thao

n
t ing the

d
elicitation process for several empirical studies. But it is said to be the elicited prior
conceptually and practically is the closest prior to definition of subjective prior than the 
other informative prior classes. Here in this section some of the subjective prior
distributions are br

4.2.1 Histogram Approach

�W  represents an interval on real line, histogram method can be used for prior
ecification. In this method, �sp  is divided into intervals and subjective probabilities are 

ssigned to each interval. Then histogram plot that falls upon these probabilities is done.
nsity,

a
� ��pThis histogram provides prior probability de . There is no rule for the number

r width of interval. Moreover prior distribution can be in a challenging form for the 
udy. These are the weaknesses of the method. Another weakness of it is the

o
st
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probability of not having a tail of this constituted prior distribution. This means extreme 
values may not fall upon any quantity in prior distribution (Berger, 1985, p.77). 

4.2.2 Relative Likelihood Approach 

When  is a subset of a real line, this method is used.  Plotting is done on the basis of 
intuitively how many times one parameter value probable to another. Then prior 
distribution can be specified from this draft.  

More parameter values can be involved in more sensitive analysis during comparison. 
Produced prior distribution may not be a proper distribution. Consistency of the 
statement such as “parameter  has equal probability in having separate values 1  and 

3 ”(in the figure above as well) should be checked (Berger, 1985, p.78). 

4.2.3 Matching a Given Functional Form 

A functional form is defined depending on researcher’s opinion. Then the distribution 
that is the best fit to this functional form is chosen. For instance, a functional form as in 
Figure 3 brings the idea of Gamma distribution for prior distribution representation, and 
the researcher makes the assumption of Gamma distribution ,G . In this step, 
and  parameters of distribution of Gamma prior are subjectively specified. It has 
several ways. One way is calculating from the estimated prior moments. That is, mean 
and variance are computed from specified functions. Then,  and  values are 
achieved from the equalities; .Mean  and 2.Variance . Another way is 
dividing the prior distribution into its fractals (Berger, 1985, p.80-1). Researcher assigns 
the values to these divided fractiles leaning on his/her subjective beliefs. The probability 
areas are computed that fall upon these fractiles.

q1 q2 q3 q4 q5 q6

q

Likelihood

Figure 3. A Draft Plot for Relative Likelihood
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bu
as hyper parameters. For this reason, hierarchical prior distribution is called as 

yper prior distribution in some relevant texts. Formation of hierarchical prior 
istribution can be described here with an example (Gill, J., 2002, p.354-5).

W

4.3 Hierarchical Prior Distributions 

One way to handle the uncertainty on prior parameters’ values is to assign an additional
prior distri tion to these parameters. This additional prior distribution’s parameters are
known
h
d

hile iy  are observations, it’s assumed that these observations are Poisson distributed. 
In the distribution, the parameter is � . When there is a need to specify a prior for � ,
Gamma distribution can be selected since the Gamma distribution is the conjugate of 
Poisson and has a flexible parameter form as well. Gamma prior distribution is also 
defined by the two parameters �  and � . Gamma parameters �  and � (like in � ) are

stricted with positive real numre bers. For the parameters �  and �  assigning m
distribution is also reasonable. Hyper parameter values (A, B, C, D) for Gamma
distribution is set to begin the process. Reviewing of the process; 

 Ga ma

� �ii Poi~y � � � ���� ,G~i � � �B,AG~�  and � �D,CG~�

where iy  are conditionally independent, �  and � are assumed independent, too. 

ond mble the joint distribution multiplicatively using 
n of conditional probability. Then joint posterior

istribution is obtained (Gill, J., 2002, p.355). It can be defined as; 

Actually as Berger (1985, p.107-8) noted, this is just a gradually comprising process
that conveniently represents the prior.

If structural information and subjective prior information is available at the same time,
it will be easy to set them in stages like above. While the researcher’s assigning Gamma
distribution to reflect the structural information, he/she also adds the subjective prior
information by imposing hyper parameter values to them.

Bey this, it is possible to asse
Bayes’ law and the definitio
d

� � � � � � � � � �D,Cp.B,Ap.,p.yp,,,yp
n

i
iii \\\\

1

��������� �
�

,

archica
provement of MCMC

� ( 16 )

If distributions are defined for A B, C and D despite setting values for them, a stage
would be added to hierarchy. As Gill pointed out, there is no constraint about number of 
stages in defining hierarchical prior distribution. But in practice, more than two stages
are rarely useful.

It should be noted here that modeling with hier l prior distribution is started to be
mployed extensively by the im technique.e
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esota Prior Distributions

Minnesota prior" was introduced by Litterman (1986). This class of prior is one of the 
eneficial and commonly used informative prior in a Bayesian Vector autoregression

e
ries and has a symmetric form. To begin a brief description for Minnesota prior, a 
AR model considered;

4.4 Minn

"
b
(VAR) analysis. Minnesota prior assumes random walk process as in many of tim
se
V

tptptt uxA...xAAx ����� ��110  ( 17 )

tu  is white noise disturbances vector, 0A  is vector of intercept terms, pA,...,A1  are 
autoregressive matrices, tx  is vector of n variables included in VAR. Here tx  in which
the prior mean incorporated with is in the following;

ttt uxAx ��� �10 ( 18 )

setting diagonal elements of  as “1”, “0” to f ents, rior b
t model. Mean and variance

1AIn  rest of coef ici p elief is
imposed and settled on which variables desired in he
oefficient for prior distribution are represented as below; c

� � 11 �AE � � 2

2
2 iAVar
�

���  ( 19)1
j

ij �

Hereafter two hyper parameters �  and �  become to have key role in specification of 
Minnesota prior. �  is the tightness parameter of the prior distribution, and gives the 
measurement of the confidence in prior. That means smaller �  value is higher 
confidence level. onversely a gh v e of this parameter makes a VAR analysis 
Non-Bayesian.

C hi alu
�  is the cross lag term and takes the values between 0 and 1. When �

equals to “1”, this implies the lags of other variables have the same portance with
wn lags. Then again as 

 im  its 
�o  approaches to “0”, the model reaches to univariate

utoregression form.

.5 Power Prior Distributions 

a

4

The power prior is introduced by Ibrahim and Chen (2000). It is a useful general class 
of priors that can be used for arbitrary classes of regression models, including
generalized linear models, generalized linear mixed models semi-parametric survival 
models with censored data, frailty models, multivariate models, and non-linear models
(Ibrahim et al, 2003). But, this class is especially convenient to model selection issue. In 
constructing power prior, previously observed historical data would be needed. A
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general discussion of the power prior and process developed for it are sited in 
examining a regression model for simplicity. For the purpose X,y,nD  is the data 
collected for current analysis. Here n is the number of observation, y indicates the n x 1
vector of dependent variable and X indicates the n x p matrix of independent variables 
of the regression model. DL \  is likelihood function of this model. Let 

0000 X,y,nD  be the historical data from previous study and \0  be prior 
for  before historical data been observed. For a given 0a , power prior distribution of 

;

       00000 \\,\ 0 c.DLaD a        ( 20 )  

0c  is the hyper parameter for the initial prior. 0a  helps to signify the importance of the 
historical data, so for this intention 0a  is defined in the interval 10 0a . When 0a
equals to “1”, historical data become to have weight to the extent that it has on 
likelihood. In contrast when 0a  equals to “0” it makes the analysis free from the 
historical data and just done with a priori specification. For a full Bayesian analysis a 
prior specification is done for 0a  as well and with this addition joint power prior 
distribution gets to the form;   

           0000000 \\\\, 0 a.c.DLDa a        ( 21 )  

0 is hyper parameter vector. As Ibrahim and Chen (2000) suggest, the prior 00 \a
can be in form of Beta, truncated Gamma or Normal distribution. With this form of it, 
the power prior has numerous advantageous. Briefly it can be said that it’s flexible in 
weighting historical data, reflects the impact of historical data combining with the prior 
set up, and constitutes a proper prior. Once the power prior is constructed, then it is easy 
to generalize to the multiple forms. 

0000
1

0k00 \\\\,
0

0 c.a.DLDa k

L

k

a k      ( 22 )  

where 021 L,...,,k  and 0L  shows historical datasets, ka0  denotes powers for these 
historical datasets.

As a recent corroborative study done by Ibrahim et al (2003) provides a strong 
motivation for using the power prior in Bayesian inferences, since it indicates that it is 
an optimal class of informative priors in the sense that it successfully minimizes a 
convex sum of Kullback-Leibler (KL) divergences between two specific posterior 
densities, in which one density is based on no incorporation of historical data and the 
other density is based on pooling the historical and current data. 

4.6 g – Prior Distributions 

Zellner (1986) proposed a prior that reflects unit-information, named as g-prior. This 
class of prior provides prior covariance matrix for regression parameters. Here with g
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chosen correspondingly the prior variance is proportional to inverse of a design matrix 
for a data set and specified according to prior information can be imposed to analysis is 
defined by this g constant. For  and  (that is, for the coefficients of a regression 
model), a conjugate prior distribution is specified and resulting posterior distribution 
mean is the weighted mean with g. As explicit explanation for the distribution class, the 
prior is assumed as; 

\p.p,p         ( 23 )  

and the prior covariance matrix is assumed as, 

       1\ DDVar          ( 24 )  

where D is design matrix for the given data set. As regards conjugate normal prior 
represented, 

       10 DD.g,N~         ( 25 ) 

4.7 First-Difference Prior and Second-Difference Prior Distributions 

This class of prior distribution designed for GLMMs (Generalized Linear Mixed 
Models). In GLMMs two parts occur to reflect fixed and random effects of the linear 
model. In Bayesian analysis of GLMMs there is no need to define two separate 
matrices, instead, one matrix is defined as in GLM and these two effects are reflected by 
means of precision matrix in the prior. In other words, effects are modeled in the prior 
model. Here as an extension of this subject, there may be possible first-difference and 
second-difference prior. For first-difference prior which is also called “random walk 
prior”, if the categories are in a natural order, one can model the prior for parameters 
just as affected by previous category and a random term; 

            kkkk e,...,, 1121\        ( 26 ) 

If the categories are from 1 to i, i...,,k 2  and where 10~ ,Nek .

Hence if there is an order, the previous category is the most probable one, and this 
previous category is made to be added to the prior model. No distribution is assigned for 

1 , merely matrix structure is specified.  

Another prior model structure here is second-difference prior also called as “stochastic-
trend prior”. It is designed as parameter affected by two previous categories and a 
random term; 

kkkkk e,...,, 21121 2\  , where i...,,k 3       (27 )
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5. CONCLUDING REMARKS

The choice of the prior distribution for a model’s parameters appears as one of the
essential problem in implementing Bayesian estimation and it is distinguishing property 
f Bayesian approach. There are many priors have been proposed in the literature and 

searcher’s prior knowledge in Bayesian context. This paper renders a reassessment
f these prior distribution classes under the classification non-informative and 

that some key discussions on prior 
istributions as prior sensitivity, objectivity-subjectivity debate are left out of the paper. 

choices? To be objective does one 
ould use non-informative priors? Beyond all these discussions, the paper is mainly a 
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KAPSAMLI BİR İÇERİKLE ÖN DAGILıM 
TÜRLERİ 

ÖZET 

Bayesyen analiz/erin ÖZiJnÜ oluşturan Bayes Teoremi, analizlere ön bilgiyi 
dahil ederek istatistiksel siireci gerçekleştirmelaedir. Ön bilginin düzeyi, 
yapısı ve uygulama sınırları giizönlbuı alınınca, lizellilde bu alanda yeni 
çalışan araştırmacılar için en zorlayıcı kısmı "ön dağılım" olarak 
glirolebilir. Farklı alanlarda ihtiyaç doğrultusunda önerilen çeşitli ön 
dağılım türleri vardır. öte yandan lin dağılunlar üzerine jenerik bir bakışı 
yansıtan ve gözden geçirme niteliğinde çalışma literatürde mevcut değildir. 
Bu motivasyonla, çalışma lin dağılım türlerini kapsamlı bir içerikle ele 
almaktadır. Böylelilde araştırmacılara ön dağılım türlerinin tanıtımı ve 
bunlarla ilgili genel bir bakış kazandınnalc amaçlanmalctadır. 
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