Siileyman Demirel Universitesi Fen Edebiyat Fakiiltesi Fen Dergisi
Siileyman Demirel University Faculty of Arts and Sciences Journal of Science
2022, 17(2): 405-428
DOI: 10.29233/sdufeffd.1158636

Atif igin / For Citation: O. Kisi, C. Choudhury, “Rough Jo,w-statistical convergence of

double sequences in gradual normed linear spaces”, Siileyman Demirel Universitesi Fen
Edebiyat Fakiiltesi Fen Dergisi, 17(2), 405-428, 2022.

Arastirma Makalesi

Rough 7, ,,)-Statistical Convergence of Double Sequences in Gradual Normed
Linear Spaces

Omer KISi™, Chiranjib CHOUDHURY?

'Bartin University, Department of Mathematics, Béliim Bilgisi, 74100, Bartin, Turkey
2Department of Mathematics, Tripura University (A Central University), Suryamaninagar, 799022,
Agartala, India

*corresponding author e-mail: okisi@bartin.edu.tr

(Alinis / Received: 06.08.2022, Kabul / Accepted: 26.09.2022, Yayimlanma / Published: 25.11.2022)

Abstract: The aim of this paper is to we examine the notion of gradually rough 7, ,)-statistical
convergence of double sequences in gradual normed linear spaces (GNLS). In addition, we
define the concept of gradually rough 7, ,)-statistical limit set of double sequences and obtain
some algebraic and topological features of this set. Theorems are proved in the light of GNLS
theory approach. Results are obtained via different perspective and new examples are
established to justify the counterparts and indicate existence of introduced notions. We produce
significant results that present several fundamental properties of this notion. The results
established in this research work supplies an exhaustive foundation in GNLS and make a
significant contribution in the theoretical development of GNLS in literature. The original
aspect of this study is the first wholly up-to-date and thorough examination of the features and
implementations of new introduced notions in GNLS.
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Gradual Normlu Uzaylarda Cift Dizilerin Kaba 7, ,)-Istatistiksel Yakinsakhg

Oz: Bu makalenin amaci, gradual normlu lineer uzaylarda (GNLU) ift dizilerin kaba Jaw-
istatistiksel yakinsakligi kavramii incelemektir. Ayrica, cift dizilerinin gradual kaba J; -
istatistiksel limit kiimesi kavramini tamimlayacak, bu kiimenin bazi cebirsel ve topolojik
ozelliklerini elde edecegiz. Teoremler, GNLU teorisi yaklagimi 1s18inda ispatlanacaktir. Farkli
bakis acilariyla sonuglar elde edilecek ve karsitlari hakli ¢ikarmak ve tanitilan kavramlarin
varligim gostermek igin yeni Ornekler tretilecektir. Bu kavramlarin bazi temel 6zelliklerini
sunan Onemli sonucglar elde edilecektir. Bu arastirma calismasinda elde edilen sonuglar,
GNLU'da kapsamli bir temel saglayacak ve literatiirde GNLS'nin teorik gelisimine dnemli bir
katki saglayacaktir. Bu c¢alismanin 06zgiin yonii, GNLS'de tanimlanan yeni kavramlarin
6zelliklerinin ve uygulamalarinin tamamen giincel ve kapsamli ilk incelemesidir.
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1. Introduction

Fuzzy theory has made significant progress on the mathematical underpinnings of fuzzy
set (FS) theory, which was pioneered by Zadeh [35] in 1965. Zadeh [35] mentioned that
an FS assigns a membership value to each element of a given crisp universe set from
[0,1]. FSs cannot always overcome the absence of knowledge of membership degrees.
These days, it has extensive applications in various branches of engineering and science.
The concept "fuzzy number" is significant in the work of FS theory. Fuzzy numbers
were essentially the generalization of intervals, not numbers. Indeed fuzzy numbers do
not supply a couple of algebraic features of the classical numbers. So the concept "fuzzy
number” is debatable to many researchers due to its different behavior. In order to
overcome the confusion among the researchers, Fortin et. al. [15] put forward the
concept of gradual real numbers as elements of fuzzy intervals. Gradual real numbers
(GRNS) are primarily known by their respective assignment function whose domain is
the interval (0,1]. So, each real number can be thought of as a GRN with a constant
assignment function. The GRNs also supply all the algebraic features of the classical
real numbers and have been utilized in optimization and computation problems.

Sadeqi and Azari [28] were the first to examine the idea of GNLS. They worked various
properties from both the topological and algebraic points of view. Further development
in this direction has been taken place due to Choudhury and Debnath [3], Ettefagh et. al.
[10, 11] and many others. For an comprehensive study on GRNs, one may refer to [1, 7,
20, 34].

On the other hand, Fast [14] and Steinhaus [33] put forward the idea of statistical
convergence independently utilizing the idea of natural density [16]. Afterward, it was
further investigated from the sequence space point of view by Fridy [17], Salat [29] and
many mathematicians across the globe. Statistical convergence was extended to A-
statistical convergence by Mursaleen [25].

Statistical convergence of real sequences has been further extended to 7-convergence by
Kostyrko et al. [19]. Several studies on 7-convergence can be examined in [4, 5] and lot
of others. Savas and Das in [30] presented the idea of 74-statistical convergence which
is a generalisation of the conceptions of statistical convergence, A-statistical
convergence and J-convergence. Various investigations and applications of this notion
can be examined in [6, 13, 31].

Rough convergence was first given by Phu [27]. Rough convergence has been extended
to rough statistical convergence by Aytar [2]. More works can be found in [21, 22]. In
addition, the notion of rough statistical convergence was extended to rough J-
convergence by Pal et al. [26] utilizing ideals of N. More investigation and application
on this line can be found in [8, 9, 18, 23]. Recently, Malik et al. in [24] worked the
concept of rough J-statistical convergence in the line of Das et al. [6]. So instinctively
one can hope if the new notion of gradual 7*-statistical convergence can be introduced
in the theory of rough convergence. In this paper we do that. We mention that the
results and proof techniques presented in this paper are 7*-statistical analogues of those
in Phu's [27], Aytar's [2] and Ghosh and Malik [12] papers. Theorems are proved in the
light of GNLS theory approach. Results are obtained via different perspective and new
examples are produced to justify the counterparts and demonstrate existence of new
introduced notions.
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2. Material and Method

In this section, we give significant existing conceptions and results which are crucial for
our findings.

Definition 2.1. ([15]) A GRN 5§ is determined by an assignment function F;: (0,1] - R.
A GRN 5 s called to be non-negative provided that for each y € (0,1], Fs(y) = 0. The
set of all GRNs and non-negative GRNs are demonstrated by G(R) and G*(R),
respectively.

Definition 2.2. ([15]) Presume that = be any operation in R and presume ii,, i, € G(R)
with assignment functions F;, and Fy,, respectively. At that time, @, * i, € G(R) is
determined with the assignment function Fy .i;, denoted by Fy .y, (t) = Fg, * Fg,,
vt € (0,1]. Especially, the gradual addition i, +1, and the gradual scalar
multiplication pii(p € R) are given as follows:

Farpqz(1) = Fu () + F2 (1), VT € (0,1], 1)

and

Fpa(r) = pFy(),¥7 € (0,1]. )

Utilizing the gradual numbers, Sadeqi and Azeri [28] developed the GNLS and
determined the notion of gradual convergence as follows:

Definition 2.3. ([28]) Take Y as a real vector space. Afterwards, the function ||.[|:Y —
G*(R) is named to be a gradual norm (GN) on Y, provided that for each p € (0,1],
subsequent situations are correct for any w,v € Y:

(1) F oy, (0 = F(0) iffw = 0;

(ii)T”UW”g(T) = |O'|T||W||g(’l') for any o € R;

(0) F w416 (7) = Fuig (0 + Fipopg (0.
Here, (Y, I. llg) is named GNLS.

Example 2.1. ([28]) Take Y =R* and for w = (wy,w,,...,w,) € R%, y € (0,1],
determine ||. || as

n

Fiwilg () = eVZ|Wj| (3)

j=1
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Here, ||. |l is a GN on R%, also (R, |I. [lg) denotes a GNLS.

On the other hand, Ettefagh et al. [11] were the first who determined the gradual
boundedness of a sequence in a GNLS and investigated its relationship with gradual
convergence.

Definition 2.4. ([11]) Presume that (Y, l]. ||g) be a GNLS. In that time, a sequence (w,,)

in Y is named to be gradual bounded provided that for each = € (0,1], there isan M =
M(t) > 0 so that T”W”g(‘[) < M,Vu € N.

Definition 2.5. Take (w,) € (Y, [I.ll5). At that time, (w,) is named to be gradual
convergent to w, € Y, provided that for all T € (0,1] and k > 0, there is an N =
(NK(T)) € N such that Fy,,, (1) <K Vu,v=N.

-wollg

Definition 2.6. Take (w,) € (Y, l]. ||g). Then, (w,) is named to be gradual statistically
convergent to w, € Y, provided that for all T € (0,1] and k > 0,

1 2 [fu < 05 Pty (0> ] =0 @

Symbolically, w,, - WO(S(g)). The set S(G) indicates the set of all gradually statistical
convergent sequences.

Definition 2.7. ([32]) Let 2 = (4,,,) and n = (u,,) be two non-decreasing sequences of
positive real numbers, each tending to oo and so that 1,1 < A, + 1,4, = 1; ppyq1 <
Hn + Lu =1 Let ]m = [m _Am + Lm]: ]n = [n_/'ln + 1,Tl] and ]mn =]m X]n'
ForanysetQ € N XN

1
Ambin

800(@Q) =P = lim ——1{(p,4) € Jmn X Jui (0, ) € Q}] (5)

is named (A, u)-density of the set Q, provided the limit exists.

Throughout the paper, we indicate A,,,, = 4,,u,, the collection of such sequences A will
be showed by A,.
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3. Results

Definition 3.1. A double sequence w = (w,,,) is called to be gradually rough (4, u)-
statistically convergent (or shortly S{,L#)(g)-convergent) to wy €Y, provided that for

eachx > 0and t € (0,1],

1
lim — {(u, V) E]mn:T”Wuv_Wong( T)=>r+ K}| = 0. (6)

mn-0 Ay

In that case, we write S(; ,,(G) — limwy,, = w, OF Wy, > Wy (S{M) (g)). In addition,
we utilize S(; ,,(G) to indicate the collection of all gradually Sg, ,,(G)-convergent
sequencesinY.

Definition 3.2. A double sequence w = (w,,,) is called to be gradually rough J; ,)-
statistically convergent (or shortly Sﬂ&)u)(g)-convergent) to w, €Y, provided that for
eachx,» >0 and 7 € (0,1],

K = {(m,n) €N x N:ﬁ“(u, ¥) € Joun: Flwgowollg (T) = 7 + x}| > %} €1, ()

In that case, we write ST(; ,1(G) — limwy,, = wg OF wy,, > Wy (Sjaju)(g)).

Note 3.1. We examine that each gradually rough statistically convergent double
sequence is gradually rough 7,-statistically convergent and if lim infinl:> 0 then all

m,n—oo

gradually rough J,-statistically convergent double sequence is gradually rough J; ,)-
statistically convergent. Again if lim Amn — 1 then gradually rough 7, ,»-statistical

mn—oco mn

convergence means gradually rough J,-statistical convergence and if we fixed the ideal
Jrin ={A € N X N:Ais finite} then gradually rough J,-statistical convergence
becomes equivalent to rough statistical convergence. So we may say that gradually
rough statistical convergence is a particular case of gradually rough 7 ,-statistical
convergence.

Here r is named the roughness degree of the gradually rough 7 ,-statistical
convergence. When r = 0 we get the notion of gradually J; ,-statistical convergence.
However our fundamental interest is when r > 0. It could happen that a sequence w =
(wyy) is not gradually J, ,)-statistically convergent in the usual sense, but there is a
sequence s = (s,,), which is gradually J, ,)-statistically convergent and supplying the
condition Fy,,,—s,,Il;(7) < 7 for all u, v (or for all u, v whose ;,,,)-natural density is

zero). Then, w is gradually rough 7, ,-statistically convergent to the same limit.

It is clear that the gradually rough J, ,-statistical limit of a sequence is not unique. So
we contemplate the set of gradually rough J; ,)-statistical limits of a sequence w and
we utilize the notation 7, ,y — st — LIM}, (G) to indicate the set of all gradually rough
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I, -Statistical limits of a sequence w. The sequence w is gradually rough 7 -
statistical convergent when Jg; .,y — st — LIM},(G) # @.

We supply an example to demonstrate that there is a sequence which is neither
gradually rough statistically convergent nor gradually 7, ,)-statistically convergent but
is gradually rough 7, ,,)-statistically convergent.

Example 3.1. Assume 7, be a strongly admissible ideal in NxN, which includes at least
one infinite set. Select an infinite subset Q € 7,. We determine a sequence w = (wy,,) in
the following way:

Wy = uv,form =[] +1<u<mandn— [, +1<v<n(mn) ¢Q,

Wuv=uv,f0rm—[m]+1SuSmandn—[\/A—n]+1SvSn,(m,n) ®)
€eq

Wy, = (—1)%*?, otherwise.

Then, w neither gradually rough statistically convergent nor gradually 7., ,-statistically
convergent but

2, ifo<r<i,

T — st — LIMy, (§) = {[1 —rr—1], ifr=1. )

Theorem 3.1. Take w = (wy,) € (Y,|l.llg). Then, Jg .y — st —LIML(G) < 2r.
Especially when w,,,, = w, (S?&J#) (g)), then

I — st — LIMy,(G) = Br(wy), (10)

where B, (w,) = {a EY:Flla-wollg < r} and hence

diam (73, — st — LIM}, () ) = 2r. i~

Proof. Suppose diam (7(,1,”) — st — LIMCV(Q)) > 2r. Afterwards, there are a,f €
Jau — st = LIM;,(G) so that F—p,(T) < Fly, , —af > 27 Now, we take k& > 0 s0
Uuogv g

Fla-plg

that k < r. Let
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K = {(u; U) € ]mn:j:IIWuv—aHg( T) 2T+ K}

and

L= {(u, v) E]mn:T”Wuu—ﬁ”g( T)=>1r+ K}.
Then

Ll v) € Jp: (wv) €K ULY]

Amn

< Tl{(u: V) € Jmn: (U, v) € K}

+L|{(u, V) € Jyn: (W, v) € L},

Amn

and so according to the feature of 7,-convergence

1
I, — mljlngoo/.l— [{(w,v) € Jmn: (w,v) € KU L}

mn

1
<J,— lm ——{wv) € Jmn: (w,v) €K} +7,

mn

1
— lim —{(w,v) € Jmn: (w,v) € L} = 0.
m,n—>ooﬂ

mn

So,

1

{(m, n) € N x N: {(u,v) € Jypn: (u,v) EKUL}| = %} €7,

Amn

for each » > 0. Take

H = {(m,n) € N x N:ﬁl{(u,v) € Jmn: (W,v) EKUL} = %}

Obviously H € 7,, so take (my,ny) € (N x N) \ H. Afterwards,

{(u,v) € Jypn: (u,v) EKUL}| < %

Amono

So, we obtain

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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1 1
W) € wv) €KULY 21— =2, (19)

namely, {(u, v) € Jpn: (u, v) € K U L} is a nonempty set.

Take (ug,vg) € Jn Such that (uy,vy) € KU L. Then, (ug,vy) € K°NLE and so
Flwuguo=all, (D = Flwagog=all, <7+ A Fluyop)) (0 S Fluypo-p), <7+ K.

Hence, we acquire
.7:”(1_5”9(1') < T”Wuovo_“”g(‘[) + T”Wuovo_/g”g(r) <2(r+k)< T||a—/3’||g (20)
which is absurd. So, ;) — st — LIM{,(G) < 2r.

When w,,, = w, (SJ&I“)(Q)), then we continue as follows. Take x,» >0 and 7 €
(0,1]. Afterwards,

K = {(m,n) € N x N;ﬁ |{(u, 1) € Jonn: Flugyomwollg (T) = ;c}| > x} €7, (21

Then, for (m,n) & K we get

1
m |{(u: v) € ]mn:TIIWuv—Wo”g(T) = K}| <x (22)
namely,
1
. |{(u V) € Jmn' Flwgy-wolls (T) < K}| 21— (23)

For each a € B, (w,) we get
Fiwuw-allg (D) = Flwwollg (1) + Flwg—alig (7) < Fliwyy-wolg () + 7 (24)
Take
Ly = {(u, v) e]mn:T”Wuv—Wo”g(T) < KZ}. (25)

Then, for (u,v) € L,,, we get THWw_a“g( T) < r + k. S0, we obtain

412



L = {0 V) € Joun: Fiwnp-aly () <7+ K}, (26)

This gives
| Lmn | 1
— < E |{(u, V) E]mn:T”Ww_a”g( T)<r+ K}| (27)
ie.,
1
m |{(u, V) E]mn:j:llwuv—allg( T)<r+ K}| =>1—xn (28)
Thus, for all (u,v) € K,
1
— |{(u, V) € Joun: Fiwap—alc (T) =7 + K}| <1-—(1—»)=xn (29)
Amn §

and so we obtain
1
{(m,n) € N x N:/1— |{(u, V) E]mn:g:”Wup—a’”g(T) >r+ K}l > J—f} cK. (30)
mn
Since K € J,, then
1
{(m, n) € N x Niz— |{(u V) € Jonn: Flwy-allg (D) =7 + K}| > x} €7,.  (31)
mn

This denotes that a € J,,,) — st — LIMJ, (G). So, I3 ) — st — LIM}, (G) D By(wp).

Conversely, assume a € J ) — st — LIM},(G), f]-‘”a_WO”g(r) >r and k=
Flla-wolg (D=7

- . Now, we take
H, = {(u, V) € Jmn: Fllwyy-allg(T) Z 7+ K} (32)
and
Hy = {(W, 1) € Jin: Flurwols (7 = 1} (33)
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Then

1
7w v) € Jyn: (w,v) € Hy U Ho}
mn
1
<

< — W v) € Jyn: (u,v) € Hy}] (34)
1
+— |{(u, U) E]mn: (u’ U) € HZ}ll

Amn

and so according to the feature of J7,-convergence

1
I — lim — |{(w,v) € Jyn: (w,v) € H; U H,}]
mn-00 A,
1
<7,— lim — |{(u; V) € Jmn: (wv) € Hl}l +7, (35)
mn-o Ap,
1
— lim —[{(w,v) € Jiyn: (w,v) € Hy}| = 0.
mn-o Apn
Now, we let
1 1
H= {(m,n) € N x N:rl{(u, V) € Jyn: (W, v) € H; U Hy}| = E} (36)
mn

Obviously H € 7,, and we select (my, ny) € (N x N) \ H. Afterwards,

1
{(w,v) € Jmn: (W, v) € H U Hy}| < -. (37)
Amono 2
So, we obtain
1 1
{(w,v) € Jn: (W, v) € HHUH} 21 -5 =, (38)
Amgng 2 2

namely, {(u,v) € Jn: (u,v) € H; U H,} is a nonempty set. Take (ug, vg) € Jmn SUCh
that (ug, vy) € Hy U H,. Then, (uy,vo) € H,° N H,° and so Flwugrg—al|. <T +K and
G

T”Wuouo_WO”g < k. Hence, we acquire

Fra=wollg (D = Fllwygug-all, (D F Flwyguy-woll, (D) < 26 +7 < Fla-woly - (39)

which is absurd. Therefore, T”a_WO"g(T) <r,and so a € B.(w,). As a result, we get
I — st — LIMy,(G) = B, (wy).
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In the paper [27] Phu has already shown that for any subsequence w’ = (wy,, ) of a
sequence w = (wy,), LIMj, c LIM; ,. But this fact does not hold good in case of
gradually rough J; ., -statistical convergence. To support this we cite the following
Example 3.3. To confirm Example 3.3 we first establish a set whose gradually J; ,)-

natural density exists but natural density does not exists, as shown in the following
Example 3.2.

Example 3.2. Suppose A € A, such that lim Amn — 1. Assume J, be a nontrivial

mmn—oco mn
admissible ideal in N X N which contains at least one infinite subset of N X N. Let Q €
7, be an infinite subset of N x N. Now, we construct a set R € N x N as follows:

(m,n) ER,ifm—[m]+1 SuSmandn—[\/l—n]+1SvSn,(m,n)

i (40)
(mn) € R,ifr;—Q.[\/ﬂ] +1<u<mandn—[J/4]+1<v<n(mn) (41)

Then, for (m,n) € Q,
10 v) € Jnt W 0) €RY_ [VAma] o0 (42)

Amn Amn

Take » > 0. Then, there are m,,ny € N so that [—“j"m] < x for all m = mgy, n = n,.
Therefore,
fm,m) € N X N: 11,9) € ot (1, 0) € R 2 o)
m,n T U, V) € Jmn: (W, v >n (43)

cQui{(11),22),...,(my—1,n,—1)} € 79,.

Hence, d7. (Q) = 0.

Now if possible, assume d(Q) = 0. Then, for any x > 0 there is p € N so that

{l<susml<v<nv)€Ql [Jin]

> lasm,n — . (44)
mn Amn

Hence d(Q) # 0. Actually d(Q) does not exist; because, if d(Q) =7, 0<r <1;
d7. (Q) = r, which is absurd.

Example 3.3. Suppose 7, be a nontrivial admissible ideal in N x N which contains at
least one infinite subset of N x N. Select an infinite subset A = {j; <j, <:;s; <
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s, < -} whose gradually J, ,)-natural density is zero , on the other hand natural
density does not exist. We determine a sequence w = (w,,,,) in the following way:

uv, ifu =j,, v =s;forsomej,,s; €A

Wuw = { 0, if not. (45)

Then, for r >0, Jg,) — st — LIMJ,(G) = [-7,7], on the other hand J; ,) — st —
LM, (G) = @ where w' = {w;, 5, }.

Definition 3.3. Suppose w = (w,,) be a sequence in Y, then a subsequence w' =
{Wj,s,} of w is called to be gradually 7, -dense when 7, — lim %l{(jk,sl) €
m,n—oo Aimn

Jmnik, 1 € N}| = 1.

In the subsequent theorem we demonstrate that the gradually rough 7 ,»-statistical
analogue of Phu's result supplies for subsequences.

Theorem 3.2. If w has a gradually J, ,y-dense subsequence w’ = {w;,s,} then 7¢; ) —
st — LIML,(G) S Iz, — st — LIM?,(§).

Proof. Assume wy € J(; ) — st — LIM{,(G) and let « > 0 and 7 € (0,1] be given. Then

1
J, — lim — {(u, V) E]mn:Tllwuv—wOllg( T)=>r+ K}| = 0. (46)

mn-o Apn

But

|{(u, V) € Jmn: Flwyy-wollg(T) = 7 + K}l

_ [V

+ |{(u, V) E]mn::F”Wuv—Wollg(T) <r4+ K}| — A’jnn:ln].

(47)
= |{(u, V) e]mn:?llww,—wollg(f) <r-+ K}l
VA
= — |{(u, V) ejmn:?llww—w()llg( T)=>r+ K}| + %
mn
Then obviously
1
I, — mlllrilooﬁ {(u, V) € Jinn: Fliwyy-wollg (1) <7+ KZ}| =1. (48)

Since w' is J(; ,)-dense subsequence of w, we get
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J, — lim i|{(jk,sl) € Jmn: (k,1) ENXN}| = 1. (49)

mn—=0 Amn

. 1 .
Iy — mlgl}oom {(]k,sl) Ejm"'THijsl—Wo”g(T) <r+ K} = 1. (50)
But
E— v, S7) € ' F T1)<r+k
P {(]k D € Jinn ||ijSl_W0||g( ) } o1
<—NR(kDE F < <1
<7 {( ) € Jmn ”Wfker0||g(T) r+;c}
Therefore
1
I, — lim —|{(k, 1) € F < = 1. 52
2 m,}glloo A {( ) € Jmn ”ijsl_w()”g( ) <7+ K} (52)
Thus
Iy — ml#riloog {(k, D E]mn:.']:'”wijl_WO”g(T) >r+ K} = 0. (53)

Hence wy € I3, — st — LIM},/(G). As a result J¢; ) — st — LIM},(G) € 3 ) — St —
LIM? ().

Theorem 3.3. Take w = (wy,) € (Y, 1l llg) and r > 0. Then, gradually rough 7; ,)-
statistical limit set of the sequence w, namely, the set J,) — st — LIMJ,(G) is
gradually closed.

Proof. When J; ) — st — LIM}, () = @, then nothing to demonstrate.

Presume that J(; ,y — st — LIM},(G) # @. Now, contemplate a sequence s = (sy,,) in
Jaw — st — LIM,(G) with lim s, = s,. Take k,2 >0 and 7 € (0,1]. Afterwards,
U, v—00

there is an ix € N so that for all u, v > ix

2 2

(1) < g (54)

Flisuv-sollg
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Take ug, vy > ix. Then sy, € Ja,) — st — LIM}, (G). As a result, we get
2

1
K={(m,n) ENXN:A—

mn

K
{(u' U) € ]m‘n: T”Wuv—Sroo”g(T) =T+ E}’ = %}

€ 7.

Obviously, T = (N x N)\ K is nonempty, select (m,n) € T. We get

K
{(U, 17) € ]mTl: T“Wuv—suovollg(‘[) =T+ §}| <

/1mn
and so

K
2

{(u, V) E]mn:}"nwuv_suovong(r) <r+ }| >1—=xn

Amn

Put

K
Qmn = {(u: V) € Jmn: T”wuv—suovong(‘[) <r+ E}

and take (u, v) € Q,,,. Afterwards, we obtain

K K
P50l = Flun-suguglly @ F Flsugnosoll, @ <7 +3+5 =745,

2 2
and hence
@mC{W”)EMmTWWﬂmﬁD<r+@,
which gives
|Qmnl 1
1—x< A::: < m |{(u, 17) E]mn:THWuv—So”g(T) <r+ K}|
So

1
_|{(u, V) E]mn:THWW_SO”g(T) >r+ ;c}| <1-(1-x)==x

Amn

(55)

(56)

(57)

(58)

(59)

(59)

(60)

(61)
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and as a result we acquire

{(m, n) € N x N:ﬁ |{(u, V) € Jinn: Flisyy—sollg (T) 27 + K}| > %} cKeJ, (62

This denotes that s, € J; ) — st — LIM,(G). Hence, 7, — st — LIM,(G) is

gradually closed.

Theorem 3.4. The gradually rough Jg; ,»-statistical limit set 7., ,) — st — LIM, (§) of

the sequence w is a convex set.

Proof. Assume ay, a; € J(3,,) — st — LIM},(G) and let k > 0 and 7 € (0,1] be taken.

Take

Ly = {(u, V) € Jmn: Fllwyy-aollg(T) = 7 + K}

and

L, = {(u, V) € I T”Wuv_al”g(’[) =>r+ K}.

Then, according to the Theorem 3.1, for » > 0 and t € (0,1] we get

{(m, n) € N x N:LI{(u, V) € Jyn: (W, v) €E Ly UL} = h’} € J,.

Amn

Now, we select 0 < »#; < 1sothat 0 < 1 — x; < » and take

1
L ={(m,n) €ENXN:—

Amn

Let L € J,. For each (m,n) ¢ L, we obtain

L v) € Jt (W v) € Lo U LY < 1= 24

Amn

and hence

{(w,v) € Jipn: (W, v) E Lo UL} =1 — 741}.

(63)

(64)

(65)

(66)

(67)
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L W) € Jom (1) € Lo UL 21— (1 — 1) = s (68)

Amn

As a result, {(w,v) € Jun: (u,v) & Ly U Ly} is a nonempty set. Take (uo, vo) € LG N L
and0<A<1.

F ||wu0v0—[(1—/1)a0+/1a1]||g(T) =F ||(1—A)wuo,,0+lwu0,,o—[(1—/1)a0+la1]||g(T)
= (= DFwne-aoll, (D + 4wy, (T (69)
<A-ADr+r)+A(r+x) =1+«

T = {(U, V) € Jmn: Fllwyy-[a-Daotra]lg (T) Z T+ K}- (70)
Then obviously, L N L{ < T€. So for (m,n) & L, we get

1 1
H1 < /1_ {(w, V) € Jmn: (W, v) & Lo U Ly} < Tl{(u: V) € Jimn: (wv) € TH  (71)

mn mn
and hence
1
— {(W V) € Jon: (W V) ETH < 1 =21 < 1. (72)
Amn
Therefore,
1
L€ ¢ {(m, n) € N X N:z— H{(,0) € Jyy: (,v) €T < x}. (73)
mn

Since L¢ € F(J,), we obtain

{(m, n) € N x N:% 1w, v) € Jpn: (1) € T} < %} € F(7,) (74)
and so
{(m,n) €N X N:/,li 1w, v) € Jp: (w,v) €T} = %} €9, (75)

This finalizes the proof.
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Theorem 3.5. Take w = (wy,,) € (Y, |I. llg)- Then, wy, - wy (57&’”) (g)) if and only if
there is a sequence s = (s,,,,) so that s,,,, = wy (SJ(M) (g)) and Fu.,. (7) < r for

each (u,v) € N x N.

—Suvllg

Proof. Suppose s = (s,,,) be a sequence in Y such that s, = wy (Sﬂ(,w)(g)) and
Fliwyy-suplig (7) <7 for each (u,v) € N X N. At that time, for any x,» >0 and 7 €
(0,1]

Q = {(m, n) € N x N:ﬁ |{(u ¥) € Jon: Fllsug-wole (©) = zc}| > %} €7,. (76

Let (m,n) € Q. Then, we get

ﬁ {1, v) € Joun: Ftsywols (1) = K}| < (77)
i.e.,
1
m |{(u, V) E]mniTusw,—wong(T) < K}l >1—x (78)
Now, we presume
Bun = {(1,0) € Jonn: Flsymwollg (0 < K}- (79)

Afterwards, for (u,v) € B,,,,, we get

Fiwwr-wollg (0 = Fliwyy=sullg () + Flisy-wols (7 <7 + K, (80)
and so
an C {(u, U) € ]mn: THWuv_Wo”g(T) <r-+ K}. (81)
| B | 1
ﬂ'Tnn < — |{(u, ‘l]) € ]mn: T”Wuv_WOHQ(T) <r-+ K}| (82)
mn mn
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1
= P |{(u, v) E]mn:T”Wuv—Wo”g(T) <r+ K}| >1-—=xn (83)
mn

> ﬁ |{(u, V) € Jimn: Fllwyy-wollg () = 7 + K}| <1-(1-x) =nx (84)

So, we obtain
1
{(m,n) € N x N:A_ |{(u, V) E]mn:T”Ww_Wo”g(T) >r+ K}| > ){} cQ (85)
mn
and since Q € 7,, so
1
{(m, n) € N X N:z— {00, 9) € Joun P gt (0 2 7+ ]| 2 x} €7,  (86)
mn

Hence, w,,, = w, (57&#)(9)).

Conversely, presume that w,,,, = w, (57&#) (g)). Then, forall k, > 0and t € (0,1]

Q= {(m, n) € N x N:ﬁ |{(u, 1) € Joun: Flwgowolg (0 2 7+ x}| > x} €7, (87)

Let (m,n) € Q. Then, we get

1
r |{(U, U) € ]mn: T”Wuv—Wo”g (T) >r+ K}| < u (88)
mn
and so
1
P |{(“ V) € Jmn: Flwp-wollg (7) <7+ K}| >1-n (89)
Let
an = {(u; v) € ]mn: T”Wuv_w()”g('l—) <r-4+ Kj}_ (90)

Now, we determine a sequence s = (s,,,) as follows:
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Wy, lfT“Wuv—Wo”g(T) <r,

Suv = Wy + 7 ————— if not. (91)

Then

0, i Py -wollg (T <7

T||su,,—wollg(‘£) = {fpuww—wOIIg(T) —, if not. (92)

Take (u,v) € Bpy. Then, we obtain Fys,,—wl: () = 0, if Fjy,,—w,);(¥) <7 and
T”Suv—Wo”g(T) <k ifr< T”Wuu—Wo”g(T) <r+ k and so
an C {(u, 17) Ejmn:j:”Suv—Wo”g(T) < K}. (93)
This gives
|Brunl 1
1 < m |{(u, V) e]mTl'T”Suv—Wo”g(T) < K}| (94)
So, we get
1
y—. |{(u, V) € Jon: Flsugewolls (¥) < K}| >1—x (95)
1
= [{@ ) € Jn Flsymmgs @ Z e} <1 -0 =20 = 3, (96)
mn
and hence
1
{(m, n) € N x N:A_ |{(u, V) E]mn:}"”sw_wong(r) > K}| > %} c Q. (97)
mn
AsQ € 7,,s0
1
{(m, 1) € N X N:— [, 1) € Jonn: ooty @ 2 K] 2 %} €9, (98)
mn
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Hence, s, = wy (Sj(,w)(g)).

Definition 3.4. A double sequence w = (w,,) is called to be gradually 7 ,)-
statistically bounded if there is an T > 0 so that for any » > 0 the set

A= {(m, n) €N x N:ﬁ |{(u ¥) € Jn: Flwolle (1) = T}| > x} € 7,. (99)

Theorem 3.6. The sequence w = (wy,,) is gradually 7., ,»-statistically bounded iff there
isanr > 0 so that J; ,y — st — LIM{,(G) # 0.

Proof. Presume w = (w,,) be gradually J, ,)-statistically bounded sequence. Then,
there is an T > 0 so that for any » > 0 we acquire

1
{(m, m €N X Nio— |{(u ¥) € Jun: Pyl (1) = T}| > x} €9,. (100)
Take A = {(u, V): Fllwglls (1) 2 T}. Then

1
J, — lim —|{fu <m,v <n:(u,v) € A}| = 0. (101)

m,n—»oo mn

Let ' = sup {T”Wuv”g (1):(u,v) € AC}. Then the set J, ) — st — LIMJ;(G) contains
the origin. So, we obtain J; ,,) — st — LIMy,(G) # @ forr # .

Conversely, assume Iy ) — st — LIM},(G) # @ for some r > 0. Suppose wq € I3,y —
st — LIM},(G). Select k = [lwy]|. At that time, for all ¢ > 0,

1
{(m, n) € N x Ni=— [{(w, 1) € Jpun: Pl (@ 2 7+ 1J| 2 z} €7, (102)
Amn wwlg
Now, getting T = r + 2||w, ||, we get
1
{(m, n) € N x N:— |{(u, V) € Tt Fiiwon e (1) = T}| > %} €9,. (103)
Amn uvllg

Therefore, we obtain w is gradually 7, ,-statistically bounded.

Definition 3.5. A point 4 € Y is named to be a gradually 7, ,-statistical cluster point of
a sequence w = (w,,,) in Y provided that for any kx > 0
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dy, ({1, v) € Jn: Fluy-nis (1) < 1)) # 0, (104)

where

1
4, (@ =% = lim (V) € Jmni (w,) € Q)] (105)

mn

if it exists. The set of all gradually 7, ,)-statistical cluster points of w is indicated by

Ay (7(/1,;0 (Q))-

Theorem 3.7. For any arbitrary € A3, (7(,1,#)(9)) of a double sequence w = (wy,,)
we get Fy,-p);(7) < 7, for each wy € J(3,,) — st — LIM;, ().

Proof. Presume that there is a point g € AS, (7(,1_#)(9)) and wg € Jz) — St —

Fliwo-plg(®)—7

LIMCV(Q) so that T”Wo—ﬁ”g (t) >r. Letk = . Then,

(@) € Jm: Plugewolg @ = 7+ 16} 2 {(0,0) € Joun: P (1) <} (106)
As B € A3, (j(M) (g)) we get

dy, ({,v) € Jun: Fluy-pi (0 < k}) # 0. (107)

Hence, we get

ds, ({(u V) € Jimnt Fllwyy-wollg (T) = 7 + K}) #0 (108)

which contradicts that wy € I3 ) — st — LIMy, (). As aresult, ), g (1) < 7.

Theorem 3.8. Assume w = (w,;,) € (Y, [l ll)-
(i) 11 8 € A3, (74,0(6) ), then Iz ) — st — LIMJ, (G) = B, (B).

(ii) Jaw = st = LIML(G) = Npeps (5, ) Br(B) = {WO EY:AS, (7(a,u>(9)) c
Br(WO)}-
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Proof.

(i) Take B € AS, (7(,1,“)(9)). Then, according to Theorem 3.7, for all wy € 9,y —
st — LIMy,(9), Fw,-p); (1) < r and so the result follows.

(i) By (i) it is obvious that

Top-st-ump@c [ B®. (109)
peas,(Taw @)

For all g € AS, (7(,1,#)(9)) and y € nﬁeA@(y(M(g))Br(ﬁ) we get [ly — Bl < r. Then,
obviously

ﬂ B.(B) c {Wo EY:A;, (g(/l,u) (Q)) c Br(WO)}- (110)
Bers, (T @)

Now, assume y €& J(y,) — st — LIM{,(G). There is an x > 0 such that d;,(Q) # 0,
where

Q= {(u, V) E]mn:ﬂ-"uww_y”g(r) >r+ K}. (111)

This means the existence of gradually 7, ,-statistical cluster point g of a double
sequence w = (wy,,) with 7-“”3,_[,»”9(1) > r + k. This implies A3, (7(,1#)(@) ¢ B.(y)
and so

y & {wo € V143, (T4,0()) € B.(wo) | (112)

As a result

{wo € ¥:13, (30,0(9)) © B-Wo)} © Tz — st — LIML (). (113)

This finalizes the proof.

4. Conclusion and Comment

In this paper, considering rough convergence, ideal convergence and A-statistical
convergence we investigated new type of convergence in GNLS. Moreover, we
obtained some interesting results. This study’s findings are more generic and a natural
extension of the traditional convergence of GNLS.
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