http://communications.science.ankara.edu.tr

Commun.Fac.Sci.Univ.Ank.Ser. A1 Math. Stat. Volume 72, Number 3, Pages 815–825 (2023) DOI:10.31801/cfsuasmas.1160135 ISSN 1303-5991 E-ISSN 2618-6470

Research Article; Received: August 10, 2022; Accepted: May 23, 2023

STATISTICAL STRUCTURES AND KILLING VECTOR FIELDS ON TANGENT BUNDLES WITH RESPECT TO TWO DIFFERENT METRICS

Murat ALTUNBAS

Department of Mathematics, Erzincan Binali Yıldırım University, Erzincan, TÜRKİYE

ABSTRACT. Let (M,g) be a Riemannian manifold and TM be its tangent bundle. The purpose of this paper is to study statistical structures on TMwith respect to the metrics $G_1^f = {}^cg + {}^v(fg)$ and $G_2^f = {}^sg_f + {}^hg$, where fis a smooth function on M, cg is the complete lift of g, ${}^v(fg)$ is the vertical lift of fg, sg_f is a metric obtained by rescaling the Sasaki metric by a smooth function f and hg is the horizontal lift of g. Moreover, we give some results about Killing vector fields on TM with respect to these metrics.

1. INTRODUCTION

Let (M, g) be a Riemannian manifold and TM be its tangent bundle. In [1], Abbassi and Sarih defined a general "g-natural" metric on TM. Some well-known examples of the g-natural metric are the Sasaki metric ([6], [14]), the Cheeger-Gromoll metric ([13], [15]), Cheeger-Gromoll type metrics ([4], [7]) and the Kaluza-Klein metric [2]. However, some other metrics can be defined on the tangent bundle which are not subclasses of this g-natural metric. As first example, in [9], Gezer and Ozkan defined a metric $G_1^f = {}^cg + {}^v(fg)$, where cg is the complete lift of the metric and ${}^v(fg)$ is the vertical lift of fg and f is a smooth function on M. As second example, in [8], Gezer *et al.* introduced a metric $G_2^f = {}^sg_f + {}^hg$, where sg_f is a metric which is obtained by rescaling the Sasaki metric with a smooth function f on M and hg is the horizontal lift of g. These lifts will be explained later and we will deal with these two metrics in this paper.

©2023 Ankara University Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

²⁰²⁰ Mathematics Subject Classification. 53B20, 53C05.

Keywords. Statistical manifold, Riemannian metric, tangent bundle.

maltunbas@erzincan.edu.tr; 00000-0002-0371-9913.

Statistical manifolds were introduced by Amari [3] in view of information geometry, and they were applied by Lauritzen [10]. These manifolds have a crucial role in statistics as the statistical model often forms a geometrical manifold.

Although curvature related properties of tangent bundles are widely studied, investigating statistical structures on tangent bundles is a relatively new topic. These structures were examined with respect to various Riemannian metrics such as the Sasaki metric [5], the Cheeger-Gromoll metric and a g-natural metric which consists of three classic lifts of the metric g [12], the twisted Sasaki metric and the gradient Sasaki metric [11].

In this paper, we study the statistical and Codazzi structures on TM using the horizontal and complete lifts of a linear connection on M when TM is endowed with the metrics G_1^f and G_2^f , respectively. We also investigate the Killing vector fields on TM with respect to such metrics.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold and ∇ be a linear connection on M. The tangent bundle TM of the manifold M is a 2n-dimensional smooth manifold and it is defined by the disjoint union of the tangent spaces at each point of M. If $\{U, x^i\}$ is a local coordinate system in M, then $\{\pi^{-1}(U), x^i, u^i, i = 1, ..., n\}$ is a local coordinate system in TM, where π is the natural projection defined by $\pi: TM \to M$ and (u^i) is the local coordinate system in each tangent space in Uwith respect to the basis $\{\frac{\partial}{\partial x^i}\}$. We have a direct sum decomposition

$TTM = VTM \oplus HTM$

for the tangent bundle of TM, where the vertical subspace VTM is spanned by $\{\frac{\partial}{\partial u^i} := (\frac{\partial}{\partial x^i})^v\}$ and the horizontal subspace HTM is spanned by $\{\frac{\delta}{\delta x^i} := (\frac{\partial}{\partial x^i})^h = \frac{\partial}{\partial x^i} - u^m \Gamma^j_{mi} \frac{\partial}{\partial u^j}\}$. Here Γ^j_{mi} denote the Christoffel symbols of ∇ . The vertical, horizontal and the complete lifts of a vector field $X = X^i \frac{\partial}{\partial x^i}$ are defined by, respectively

$$X^{v} = X^{i} \frac{\partial}{\partial u^{i}}, \ X^{h} = X^{i} \frac{\partial}{\partial x^{i}} - y^{s} \Gamma^{m}_{si} X^{i} \frac{\partial}{\partial u^{m}}, \ X^{c} = X^{i} \frac{\partial}{\partial x^{i}} + y^{s} \frac{\partial X^{i}}{\partial x^{s}} \frac{\partial}{\partial u^{i}},$$

where we used Einstein the summation.

The Lie brackets of the vertical lift and the horizontal lift of vector fields satisfy the following relations:

$$[X^h, Y^h] = [X, Y]^h - (R(X, Y)u)^v, [X^h, Y^v] = (\nabla_X Y)^v - (T(X, Y))^v, [X^v, Y^v] = 0,$$

where *R* is the curvature tensor field and *T* is the torsion tensor field of the linear connection ∇ , [16].

For a Riemannian metric g on a smooth manifold M, the complete lift ${}^{c}g$, the vertical lift ${}^{v}g$ and the horizontal lift ${}^{h}g$ of g are given by

$${}^{c}g(X^{h}, Y^{h}) = {}^{c}g(X^{v}, Y^{v}) = 0, \ {}^{c}g(X^{h}, Y^{v}) = {}^{c}g(X^{v}, Y^{h}) = g(X, Y),$$

$${}^{v}g(X^{h}, Y^{h}) = g(X, Y), \ {}^{v}g(X^{v}, Y^{v}) = {}^{v}g(X^{h}, Y^{v}) = {}^{v}g(X^{v}, Y^{h}) = 0.$$

$${}^{h}g(X^{h}, Y^{h}) = 0, \; {}^{h}g(X^{v}, Y^{v}) = 0, \; {}^{h}g(X^{h}, Y^{v}) = \; {}^{h}g(X^{v}, Y^{h}) = g(X, Y).$$

The horizontal lift connection $\stackrel{\sim}{\nabla}$ and the complete lift connection $\stackrel{\sim}{\nabla}$ are respectively given by, [16]

$$\begin{split} \stackrel{h}{\nabla}_{X^{h}}Y^{h} &= (\nabla_{X}Y)^{h}, \ \stackrel{h}{\nabla}_{X^{h}}Y^{v} = (\nabla_{X}Y)^{v}, \ \stackrel{h}{\nabla}_{X^{v}}Y^{h} = \stackrel{h}{\nabla}_{X^{v}}Y^{v} = 0, \\ \stackrel{c}{\nabla}_{X^{h}}Y^{h} &= (\nabla_{X}Y)^{h} + (R(u,X)Y)^{v}, \ \stackrel{c}{\nabla}_{X^{v}}Y^{h} = \stackrel{c}{\nabla}_{X^{v}}Y^{v} = 0, \\ \stackrel{c}{\nabla}_{X^{h}}Y^{v} &= (\nabla_{X}Y)^{v}, \ \stackrel{c}{\nabla}_{X^{c}}Y^{c} = (\nabla_{X}Y)^{c}, \ \stackrel{c}{\nabla}_{X^{c}}Y^{v} = \stackrel{c}{\nabla}_{X^{v}}Y^{c} = (\nabla_{X}Y)^{v}. \end{split}$$

Remark 1. The connection ∇ is a flat and torsionless linear connection if and only if $\stackrel{h}{\nabla}(\stackrel{c}{\nabla})$ is a torsionless linear connection, [16].

In the sequel, we shall denote $\frac{\partial}{\partial x^i}$, $\frac{\delta}{\delta x^i}$ and $\frac{\partial}{\partial u^i}$ as ∂_i , δ_i and $\partial_{\overline{i}}$, for shortness. The metric G_1^f on TM is defined by

$$G_1^f(X^h, Y^h) = fg(X, Y), \ G_1^f(X^h, Y^v) = G_1^f(X^v, Y^h) = g(X, Y), \ G_1^f(X^v, Y^v) = 0,$$
(1)

where f is a strictly positive function on M, [9].

From Theorem 3.1 in [9], we can easily rewrite the Levi-Civita connection of the metric G_1^f in invariant form.

Lemma 1. Let (M, g) be a Riemannian manifold on (TM, G_1^f) be its tangent bundle with the metric G_1^f defined by (1). The Levi-Civita connection ∇_1^f of the metric G_1^f satisfies the following relations

$$\begin{split} \nabla^{f}_{1X^{h}}Y^{h} &= (\nabla_{X}Y)^{h} + (R(u,X)Y + A_{f}(X,Y))^{v}, \\ \nabla^{f}_{1X^{h}}Y^{v} &= (\nabla_{X}Y)^{v}, \ \nabla^{f}_{1X^{v}}Y^{h} = \nabla^{f}_{1X^{v}}Y^{v} = 0, \end{split}$$

where X, Y are vector fields on M, ∇ is the Levi-Civita connection of g, R is the Riemannian curvature of ∇ and $A_f(X,Y) = \frac{1}{2}(X(f)Y + Y(f)X - g(X,Y) \circ (df)^*)$.

The metric G_2^f on TM is defined by

$$G_2^f(X^h, Y^h) = fg(X, Y), \ G_2^f(X^h, Y^v) = G_2^f(X^v, Y^h) = g(X, Y), \ G_2^f(X^v, Y^v) = g(X, Y)$$
(2)

where f is a strictly positive function on M, [8].

From [9], we rewrite the Levi-Civita connection of the metric G_2^f in invariant form as follows.

Lemma 2. Let (M, g) be a Riemannian manifold on (TM, G_2^f) be its tangent bundle with the metric G_2^f defined by (2). The Levi-Civita connection ∇_2^f of the metric G_2^f satisfies the following relations

$$\nabla^{f}_{2X^{h}}Y^{h} = (\nabla_{X}Y + \frac{1}{2(f-1)}(R(u,X)Y + R(u,Y)X) + \frac{1}{f-1}A_{f}(X,Y))^{h}$$

$$\begin{split} &-(\frac{1}{f-1}A_f(X,Y)+\frac{1}{2}R(X,Y)u+\frac{1}{2(f-1)}(R(u,X)Y+R(u,Y)X))^v\\ \nabla^f_{2X^h}Y^v &= (\frac{1}{2(f-1)}R(u,Y)X)^h+(\nabla_XY-\frac{1}{2(f-1)}R(u,X)Y)^v,\\ \nabla^f_{2X^v}Y^h &= (\frac{1}{2(f-1)}R(u,X)Y)^h-(\frac{1}{2(f-1)}R(u,X)Y)^v,\\ \nabla^f_{2X^v}Y^v &= 0, \end{split}$$

where X, Y are vector fields on M, ∇ is the Levi-Civita connection of g, R is the Riemannian curvature of ∇ and $A_f(X,Y) = \frac{1}{2}(X(f)Y + Y(f)X - g(X,Y) \circ (df)^*)$.

Definition 1. Let (M, g) be a Riemannian manifold and let ∇ be a linear connection on M. The pair (g, ∇) is called a Codazzi couple if the Codazzi equation are valid:

$$(\nabla_X g)(Y, Z) = (\nabla_Z g)(X, Y),$$

for all vector fields X, Y, Z on M. The triplet (M, g, ∇) is said to be a Codazzi manifold and ∇ is called a Codazzi connection. Moreover, when ∇ is torsionless, (M, g, ∇) is a statistical manifold.

3. KILLING VECTOR FIELDS AND STATISTICAL STRUCTURES ON (TM, G_1^f)

Definition 2. Let (M,g) be a Riemannian manifold and ∇ be a linear connection on M. A vector field X is called conformal (respectively, Killing) if $L_Xg = 2\rho g$ (respectively, $L_Xg = 0$), where ρ is a smooth function on M.

Using this definition, we have

$$\begin{aligned} L_{X^{v}}G_{1}^{f}(Y^{v}, Z^{v}) &= 0, \\ L_{X^{v}}G_{1}^{f}(Y^{h}, Z^{v}) &= 0, \\ L_{X^{v}}G_{1}^{f}(Y^{h}, Z^{h}) &= g(\nabla_{Y}X, Z) + g(Y, \nabla_{Z}X) - g(T(Y, X), Z) - g(T(Z, X), Y) \\ \text{and} \\ L_{X^{h}}G_{1}^{f}(Y^{v}, Z^{v}) &= 0, \end{aligned}$$

 $L_{X^{h}}G_{1}^{f}(Y^{h}, Z^{v}) = g(\nabla_{Y}X, Z) + g(T(X, Y), Z) + g(Y, T(X, Z)),$ $L_{X^{h}}G_{1}^{f}(Y^{h}, Z^{h}) = X(f)g(Y, Z) + f(L_{X}g)(Y, Z) + g(R(X, Y)u, Z) + g(R(X, Z)u, Y).$

So, we have the following proposition.

Proposition 1. Let (TM, G_1^f) be the tangent bundle of a Riemannian manifold (M, g). Then the following statements are true:

(i) If ∇ is a torsionless linear connection on M, then the vector field X^v is Killing if and only if X is a parallel vector field on (M, g).

(ii) If ∇ is a torsionless linear connection on M, then the vector field X^h is Killing if and only if X is a ∇ -parallel vector field, X is a conformal vector field

such that $(L_X g)(Y, Z) = -\frac{X(f)}{f}g(Y, Z)$ and R(X, Y)Z = 0 for all the vector fields Y, Z on M.

(iii) If ∇ is a torsionless linear connection, f is a constant function and X is a parallel vector field on M, then the vector field X^h is Killing if and only if the vector field X is Killing on (M,g) and R(X,Y)Z = 0 for all the vector fields Y, Zon M.

(iv) If ∇ is a flat connection, X is a ∇ -parallel vector field and f is a constant function on (M, g), then the vector field X^h is Killing if and only if the vector field X is Killing on (M, g).

Proof. The truthfulness of the assertions are clear from the definition of the Killing vector fields. \Box

Now, we obtain the components of $\stackrel{h}{\nabla} G_1^f$. We have

$$(\stackrel{h}{\nabla}_{\partial_{\bar{\imath}}}G_{1}^{f})(\partial_{\bar{j}},\partial_{\bar{k}}) = 0, \ (\stackrel{h}{\nabla}_{\partial_{\bar{\imath}}}G_{1}^{f})(\partial_{\bar{j}},\delta_{k}) = (\stackrel{h}{\nabla}_{\partial_{\bar{\jmath}}}G_{1}^{f})(\delta_{k},\partial_{\bar{\imath}}) = (\stackrel{h}{\nabla}_{\delta_{k}}G_{1}^{f})(\partial_{\bar{\imath}},\partial_{\bar{j}}) = 0,$$

$$(\stackrel{h}{\nabla}_{\delta_{i}}G_{1}^{f})(\delta_{j},\partial_{\bar{k}}) = (\nabla_{\partial_{i}}g)(\partial_{j},\partial_{k}), \ (\stackrel{h}{\nabla}_{\delta_{j}}G_{1}^{f})(\partial_{\bar{k}},\delta_{i}) = (\nabla_{\partial_{j}}g)(\partial_{k},\partial_{i}), \ (\stackrel{h}{\nabla}_{\partial_{\bar{k}}}G_{1}^{f})(\delta_{i},\delta_{j}) = 0.$$

$$(4)$$

So, we can express the following theorem.

Theorem 1. Let (TM, G_1^f) be the tangent bundle of a Riemannian manifold (M, g) and ∇ be a linear connection. Then the following statements are true:

(i) If $(TM, G_1^f, \stackrel{h}{\nabla})$ is a Codazzi manifold, then f is a constant function on M and ∇ is a metric connection.

(ii) If $(TM, G_1^f, \stackrel{h}{\nabla})$ is a statistical manifold, then ∇ is flat, f is a constant function on M and ∇ is the Levi-Civita connection of g. In this case, the connections $\stackrel{h}{\nabla}$ and ∇_1^f coincide.

 $\stackrel{h}{\nabla} and \nabla_{1}^{f} coincide.$ (iii) If ∇ is the Levi-Civita connection of g and f is a constant function on M, then $\stackrel{h}{\nabla}$ is compatible with the metric G_{1}^{f} . In particular, if ∇ is flat, then the connections $\stackrel{h}{\nabla}$ and ∇_{1}^{f} coincide.

Proof. (i) From (3) and (4) we see that if (TM, G_1^f, ∇) is a Codazzi manifold, then f is a constant function on M and ∇ is a metric connection.

(ii) If $(TM, G_1^f, \stackrel{h}{\nabla})$ is a statistical manifold, then $\stackrel{h}{\nabla}$ is torsionless. From Remark 1, we see that ∇ is flat. It follows from (i) and the definition of the connections $\stackrel{h}{\nabla}$ and ∇_1^f .

(iii) It is clear from the definition of the Levi-Civita connection and the connections $\stackrel{h}{\nabla}$ and ∇_1^f .

Now, we repeat this process for $(TM, G_1^f, \stackrel{c}{\nabla})$. By direct calculations we have

$$(\overset{c}{\nabla}_{\delta_{i}}G_{1}^{f})(\delta_{j},\delta_{k}) = \partial_{i}(f)g_{jk} + f(\nabla_{\partial_{i}}g)(\partial_{j},\partial_{k}) - u^{s}R_{sij}^{t}g_{kt} - u^{s}R_{sik}^{t}g_{jt},$$
(5)

$$(\overset{c}{\nabla}_{\delta_{j}}G_{1}^{f})(\delta_{k},\delta_{i}) = \partial_{j}(f)g_{ki} + f(\nabla_{\partial_{j}}g)(\partial_{k},\partial_{i}) - u^{s}R_{sjk}^{t}g_{it} - u^{s}R_{sji}^{t}g_{tk},$$
($\overset{c}{\nabla}_{\delta_{k}}G_{1}^{f})(\delta_{i},\delta_{j}) = \partial_{k}(f)g_{ij} + f(\nabla_{\partial_{k}}g)(\partial_{i},\partial_{j}) - u^{s}R_{ski}^{t}g_{jt} - u^{s}R_{skj}^{t}g_{ti},$ ($\overset{c}{\nabla}_{\partial_{i}}G_{1}^{f})(\partial_{\bar{j}},\partial_{\bar{k}}) = 0,$ ($\overset{c}{\nabla}_{\partial_{i}}G_{1}^{f})(\partial_{\bar{j}},\delta_{k}) = (\overset{c}{\nabla}_{\partial_{j}}G_{1}^{f})(\delta_{k},\partial_{\bar{i}}) = (\overset{c}{\nabla}_{\delta_{k}}G_{1}^{f})(\partial_{\bar{i}},\partial_{\bar{j}}) = 0,$ ($\overset{c}{\nabla}_{\delta_{i}}G_{1}^{f})(\partial_{j},\partial_{\bar{k}}) = (\nabla_{\partial_{i}}g)(\partial_{j},\partial_{k}),$ ($\overset{c}{\nabla}_{\delta_{j}}G_{1}^{f})(\partial_{\bar{k}},\delta_{i}) = (\nabla_{\partial_{j}}g)(\partial_{k},\partial_{i}),$ ($\overset{c}{\nabla}_{\partial_{\bar{k}}}G_{1}^{f})(\delta_{i},\delta_{j}) = 0.$ (6)

Thus, we give the following theorem.

Theorem 2. Let (TM, G_1^f) be the tangent bundle of a Riemannian manifold (M, g) and let ∇ be a torsionless linear connection. Then the following statements are true:

i) If $(TM, G_1^f, \stackrel{\circ}{\nabla})$ is a Codazzi (respectively statistical) manifold, then ∇ is flat, f is a constant function on M. Furthermore, $\stackrel{\circ}{\nabla}$ is a metric connection (respectively, $\stackrel{\circ}{\nabla}$ becomes the Levi-Civita connection of G_1^f).

ii) If $(TM, G_1^f, \stackrel{c}{\nabla})$ is a statistical manifold and f is a constant function on M, then ∇ is the Levi-Civita connection of g and $\stackrel{c}{\nabla}$ becomes the Levi-Civita connection of G_1^f .

(*iii*) If ∇ is the Levi-Civita connection of g, f is a constant function on M and ∇ is a flat connection, then the connections $\stackrel{c}{\nabla}$ and ∇_1^f coincide.

Proof. (i) If (TM, G_1^f, ∇) is a Codazzi manifold, then from (6) we obtain that ∇ is a metric connection. Differentiating (5)₁ with respect to u^m gives us $R_{mij}^t g_{kt} + R_{mik}^t g_{jt} = 0$. Similarly, by differentiating (5)₂ and (5)₃ with respect to u^m , we obtain $R_{mjk}^t g_{it} + R_{mji}^t g_{tk} = 0$ and $R_{mki}^t g_{jt} + R_{mkj}^t g_{ti} = 0$, respectively. So, ∇ is a flat connection. We also occur that f is a constant function on M. If ∇ is torsionless, it becomes the Levi-Civita connection of G_1^f .

(ii) We get immediately from Remark 1, the definition of the Levi-Civita connection and the complete lift connection $\stackrel{c}{\nabla}$.

(iii) Definitions of the connections
$$\stackrel{c}{\nabla}$$
 and ∇_1^f give the results.

Now, we assume that (TM, G_s, ∇_1^f) is a statistical manifold. The metric G_s is called the Sasaki metric and it is defined by

$$G_s(X^h, Y^h) = g(X, Y), \ G_s(X^h, Y^v) = G_s(X^v, Y^h) = 0, \ G_s(X^v, Y^v) = g(X, Y),$$

for all vector fields X, Y, Z on M. Using Lemma 1, we get

$$\begin{aligned} (\nabla^{f}_{1\delta_{i}}G_{s})(\delta_{j},\delta_{k}) &= (\nabla^{f}_{1\delta_{j}}G_{s})(\delta_{k},\delta_{i}) = (\nabla^{f}_{1\delta_{k}}G_{s})(\delta_{i},\delta_{j}) = 0, \end{aligned} \tag{7} \\ (\nabla^{f}_{1\delta_{\bar{\imath}}}G_{s})(\partial_{\bar{j}},\partial_{\bar{k}}) &= 0, (\nabla^{f}_{1\partial_{\bar{\imath}}}G_{s})(\partial_{\bar{j}},\delta_{k}) = (\nabla^{f}_{1\partial_{\bar{\jmath}}}G_{s})(\delta_{k},\partial_{\bar{\imath}}) = (\nabla^{f}_{1\delta_{k}}G_{s})(\partial_{\bar{\imath}},\partial_{\bar{j}}) = 0, \end{aligned} \\ (\nabla^{f}_{1\delta_{i}}G_{s})(\delta_{j},\partial_{\bar{k}}) &= -u^{s}R^{m}_{sij}g_{mk} + \frac{1}{2}g_{mk}(f_{i}\delta^{m}_{j} + f_{j}\delta^{m}_{i} - g_{ij}f^{m}_{.}), \end{aligned} \\ (\nabla^{f}_{1\delta_{j}}G_{s})(\partial_{\bar{k}},\delta_{i}) &= -u^{s}R^{m}_{sji}g_{mk} + \frac{1}{2}g_{mk}(f_{j}\delta^{m}_{i} + f_{i}\delta^{m}_{j} - g_{ji}f^{m}_{.}), \end{aligned} \\ (\nabla^{f}_{1\delta_{j}}G_{s})(\delta_{i},\delta_{j}) &= 0, \end{aligned}$$

where, $f_i = \partial_i f$ and $f_i^m = g^{mh} f_h$. So, we have the following theorem.

Theorem 3. Let (TM, G_1^f) be the tangent bundle of a Riemannian manifold (M, g)and let ∇_1^f is the Levi-Civita connection of the metric G_1^f . If (TM, G_s, ∇_1^f) is a statistical manifold, then ∇ is flat and f is a constant function on M.

Proof. If (TM, G_s, ∇_1^f) is a statistical manifold, by differentiating $(7)_3$ and $(7)_4$ with respect to u^t , we occur $R_{tij}^m g_{mk} = R_{tji}^m g_{mk} = 0$. Moreover, we see that f is a constant function on M.

4. KILLING VECTOR FIELDS AND STATISTICAL STRUCTURES ON (TM, G_2^f)

In this final section, we follow the same line in the previous section for the metric G_2^f . The proofs of the results will be similar. From Definition 2, we have

$$L_{X^{v}}G_{2}^{f}(Y^{v}, Z^{v}) = 0,$$

$$L_{X^{v}}G_{2}^{f}(Y^{h}, Z^{v}) = g(\nabla_{Y}X, Z) - g(T(Y, X), Z),$$

$$L_{X^{v}}G_{2}^{f}(Y^{h}, Z^{h}) = g(\nabla_{Y}X, Z) - g(T(Y, X), Z) + g(\nabla_{Z}X, Y) - g(T(Z, X), Y)$$

and

$$\begin{split} L_{X^{h}}G_{2}^{f}(Y^{v},Z^{v}) &= (\nabla_{X}g)(Y,Z) + g(T(X,Y),Z) + g(Y,T(X,Z)), \\ L_{X^{h}}G_{2}^{f}(Y^{h},Z^{v}) &= g(\nabla_{Y}X,Z) + g(R(X,Y)u,Z) + g(T(X,Y),Z) + g(Y,T(X,Z)), \\ L_{X^{h}}G_{2}^{f}(Y^{h},Z^{h}) &= X(f)g(Y,Z) + f(L_{X}g)(Y,Z) + g(R(X,Y)u,Z) + g(R(X,Z)u,Y) \\ \end{split}$$

It is clear that if ∇ is a torsionless linear connection, then the vector field X^v is Killing if and only if $\nabla X = 0$. On the other hand, if ∇ is the Levi-Civita connection of g, then X^h is a Killing vector field if and only if X is ∇ -parallel, X is Killing, the function f is constant and ∇ is flat. More precisely, we have **Proposition 2.** Let (TM, G_2^f) be the tangent bundle of a Riemannian manifold (M, g). Then the following statements are true:

(i) If ∇ is a torsionless linear connection on M, then the vector field X^v is Killing if and only if X is a parallel vector field.

(ii) If ∇ is a torsionless linear connection, f is a constant function and X is a ∇ -parallel vector field on M, then the vector field X^h is Killing if and only if X is Killing vector field on M, ∇ is the Levi-Civita connection of (M, g) and R(X, Y)Z = 0 for all the vector fields Y, Z on M.

(iii) If ∇ is the flat Levi-Civita connection, X is a ∇ -parallel vector field and f is a constant function on (M, g), then the vector field X^h is Killing if and only if the vector field X is Killing on (M, g).

Here, we compute the components of $\nabla^h G_2^f$. We obtain

$$\begin{aligned} &(\overset{h}{\nabla}_{\delta_i}G_2^f)(\delta_j,\delta_k) &= \partial_i(f)g_{jk} + f(\nabla_{\partial_i}g)(\partial_j,\partial_k), \\ &(\overset{h}{\nabla}_{\delta_j}G_2^f)(\delta_k,\delta_i) &= \partial_j(f)g_{ki} + f(\nabla_{\partial_j}g)(\partial_k,\partial_i), \\ &(\overset{h}{\nabla}_{\delta_k}G_2^f)(\delta_i,\delta_j) &= \partial_k(f)g_{ij} + f(\nabla_{\partial_k}g)(\partial_i,\partial_j), \end{aligned}$$

$$\begin{pmatrix} h \\ (\nabla_{\partial_{\bar{i}}} G_2^f)(\partial_{\bar{j}}, \partial_{\bar{k}}) &= 0, \ (\nabla_{\partial_{\bar{i}}} G_2^f)(\partial_{\bar{j}}, \delta_k) = \ (\nabla_{\partial_{\bar{j}}} G_2^f)(\delta_k, \partial_{\bar{i}}) = 0, \\ (\nabla_{\delta_k} G_2^f)(\partial_{\bar{i}}, \partial_{\bar{j}}) &= (\nabla_{\partial_k} g)(\partial_i, \partial_j),$$

$$\begin{pmatrix} {}^{h} \nabla_{\delta_{i}} G_{2}^{f})(\delta_{j}, \partial_{\bar{k}}) &= (\nabla_{\partial_{i}}g)(\partial_{j}, \partial_{k}), \ (\stackrel{h}{\nabla}_{\delta_{j}} G_{2}^{f})(\partial_{\bar{k}}, \delta_{i}) = (\nabla_{\partial_{j}}g)(\partial_{k}, \partial_{i}), \\ (\stackrel{h}{\nabla}_{\partial_{\bar{k}}} G_{2}^{f})(\delta_{i}, \delta_{j}) &= 0.$$

From the above equations, we deduce that if (TM, G_2^f, ∇) is a Codazzi manifold, then f is a constant function on M and ∇ is a metric connection. So, we can write the following theorem.

Theorem 4. Let (TM, G_2^f) be the tangent bundle of a Riemannian manifold (M, g)and ∇ be a linear connection. Then the following statements are true:

(i) If $(TM, G_2^f, \stackrel{h}{\nabla})$ is a Codazzi manifold, then f is a constant function on M and ∇ is a metric connection.

(ii) If $(TM, G_2^f, \stackrel{h}{\nabla})$ is a statistical manifold, then ∇ is flat, f is a constant function on M and ∇ is the Levi-Civita connection of g. In this case, the connections $\stackrel{h}{\nabla}$ and ∇_2^f coincide.

(iii) If ∇ is the Levi-Civita connection of g and f is a constant function on M, then $\stackrel{h}{\nabla}$ is compatible with the metric G_2^f . In particular, if ∇ is flat, then the connections $\stackrel{h}{\nabla}$ and ∇_2^f coincide.

Now, we follow this process for (TM, G_2^f, ∇) . By direct calculations we have

$$\begin{aligned} (\bar{\nabla}_{\delta_i}G_2^f)(\delta_j,\delta_k) &= \partial_i(f)g_{jk} + f(\nabla_{\partial_i}g)(\partial_j,\partial_k) - u^s R^t_{sij}g_{kt} - u^s R^t_{sik}g_{jt}, \quad (8) \\ (\bar{\nabla}_{\delta_j}G_2^f)(\delta_k,\delta_i) &= \partial_j(f)g_{ki} + f(\nabla_{\partial_j}g)(\partial_k,\partial_i) - u^s R^t_{sjk}g_{it} - u^s R^t_{sji}g_{tk}, \\ (\bar{\nabla}_{\delta_k}G_2^f)(\delta_i,\delta_j) &= \partial_k(f)g_{ij} + f(\nabla_{\partial_k}g)(\partial_i,\partial_j) - u^s R^t_{ski}g_{jt} - u^s R^t_{skj}g_{ti}, \\ (\bar{\nabla}_{\partial_i}G_2^f)(\partial_{\bar{j}},\partial_{\bar{k}}) = 0, \quad (\bar{\nabla}_{\partial_i}G_2^f)(\partial_{\bar{j}},\delta_k) = (\bar{\nabla}_{\partial_j}G_2^f)(\delta_k,\partial_{\bar{i}}) = (\bar{\nabla}_{\delta_k}G_2^f)(\partial_{\bar{i}},\partial_{\bar{j}}) = 0, \\ (\bar{\nabla}_{\delta_i}G_2^f)(\delta_j,\partial_{\bar{k}}) &= (\nabla_{\partial_i}g)(\partial_j,\partial_k) + u^s R^t_{sij}g_{kt}, \quad (9) \\ (\bar{\nabla}_{\delta_j}G_2^f)(\partial_{\bar{k}},\delta_i) &= (\nabla_{\partial_j}g)(\partial_k,\partial_i) + u^s R^t_{sji}g_{kt}, \\ (\bar{\nabla}_{\partial_{\bar{k}}}G_2^f)(\delta_i,\delta_j) &= (\nabla_{\partial_k}g)(\partial_i,\partial_j). \end{aligned}$$

If (TM, G_2^f, ∇) is a Codazzi manifold, then from (9) we obtain that ∇ is a flat metric connection. We also deduce that from $(8)_1 f$ is a constant function on M. Thus, we have the following theorem.

Theorem 5. Let (TM, G_2^f) be the tangent bundle of a Riemannian manifold (M, g) and let ∇ be a torsionless linear connection. Then the following statements are true:

i) If $(TM, G_2^f, \stackrel{c}{\nabla})$ is a Codazzi (respectively statistical) manifold, then ∇ is flat, f is a constant function on M. Furthermore, $\stackrel{c}{\nabla}$ is a metric connection (respectively, $\stackrel{c}{\nabla}$ becomes the Levi-Civita connection of G_2^f).

ii) If $(TM, G_2^f, \stackrel{c}{\nabla})$ is a statistical manifold and f is a constant function on M, then ∇ is the Levi-Civita connection of g and $\stackrel{c}{\nabla}$ becomes the Levi-Civita connection of G_2^f .

(iii) If ∇ is the Levi-Civita connection of g, f is a constant function on M and ∇ is a flat connection, then the connections $\stackrel{c}{\nabla}$ and ∇_2^f coincide.

Now, we assume that (TM, G_s, ∇_2^f) is a statistical manifold. Using Lemma 2

$$(\nabla_{2\delta_{i}}^{f}G_{s})(\delta_{j},\delta_{k}) = -\frac{1}{2(f-1)}(u^{s}R_{sij}^{m} + u^{s}R_{sji}^{m} + f_{i}\delta_{j}^{m} + f_{j}\delta_{i}^{m} - f_{.}^{m}g_{ij})g_{mk} -\frac{1}{2(f-1)}(u^{s}R_{sik}^{m} + u^{s}R_{ski}^{m} + f_{i}\delta_{k}^{m} + f_{k}\delta_{i}^{m} - f_{.}^{m}g_{ik})g_{mj} (\nabla_{2\partial_{\bar{i}}}^{f}G_{s})(\partial_{\bar{j}},\partial_{\bar{k}}) = 0,$$

$$(10)$$

$$\begin{split} (\nabla^{f}_{2\partial_{\bar{i}}}G_{s})(\partial_{\bar{j}},\delta_{k}) &= \frac{1}{2(f-1)}u^{s}R^{m}_{sik}g_{mj}, \\ (\nabla^{f}_{2\delta_{k}}G_{s})(\partial_{\bar{i}},\partial_{\bar{j}}) &= \frac{1}{2(f-1)}(u^{s}R^{m}_{ski}g_{mj} + u^{s}R^{m}_{skj}g_{mi}), \\ (\nabla^{f}_{2\delta_{\bar{i}}}G_{s})(\delta_{j},\partial_{\bar{k}}) &= [\frac{1}{2(f-1)}(u^{s}R^{m}_{sij} + u^{s}R^{m}_{sji} + f_{i}\delta^{m}_{j} + f_{j}\delta^{m}_{i} - f^{m}_{.}g_{ij}) \\ &\quad + \frac{1}{2}u^{s}R^{m}_{ijs}]g_{km} - \frac{1}{2(f-1)}u^{s}R^{m}_{ski}g_{jm}, \\ (\nabla^{f}_{2\partial_{\bar{k}}}G_{s})(\delta_{i},\delta_{j}) &= -\frac{1}{2(f-1)}(u^{s}R^{m}_{ski}g_{mj} + u^{s}R^{m}_{skj}g_{mi}), \end{split}$$

where $f_i = \partial_i f$ and $f_{\cdot}^m = g^{mh} f_h$. If (TM, G_s, ∇_2^f) is a statistical manifold, by differentiating $(10)_3$ with respect to u^t we occur $R_{tik}^m g_{mj} = 0$ (other equations which have curvature components of ∇ is similar). Moreover, we see that f is a constant function on M. So, we have the theorem below.

Theorem 6. Let (TM, G_2^f) be the tangent bundle of a Riemannian manifold (M, g)and let ∇_2^f is the Levi-Civita connection of the metric G_2^f . If (TM, G_s, ∇_2^f) is a statistical manifold, then ∇ is flat and f is a constant function on M.

Declaration of Competing Interests The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements The author would like to thank the referees for their valuable suggestions and comments.

References

- Abbassi, M. T. K., Sarih, M., On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), 41 (2005), 71-92.
- [2] Altunbaş, M, Gezer, A., Bilen, L., Remarks about the Kaluza-Klein metric on tangent bundle, Int. J. Geom. Met. Mod. Phys., 16(3) (2019), 1950040. https://doi.org/10.1142/S0219887819500403
- [3] Amari, S., Differential geometric methods in statistics- Lect. Notes in Stats., Springer, New York, 1985.
- [4] Anastasiei, M., Locally conformal Kaehler structures on tangent bundle of a space form, Libertas Math., 19 (1999), 71-76.
- Balan, V., Peyghan, E., Sharahi, E., Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric, *Hacettepe J. Math. Stat.*, 49(1) (2020), 120-135. https://doi.org/10.15672/HJMS.2019.667
- [6] Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88. https://doi.org/10.1515/crll.1962.210.73
- [7] Gezer, A., Altunbaş, M., Some notes concerning Riemannian metrics of Cheeger Gromoll type, J. Math. Anal. App., 396(1) (2012), 119-132. https://doi.org/10.1016/j.jmaa.2012.06.011

- [8] Gezer, A., Bilen, L., Karaman, Ç., Altunbaş, M., Curvature properties of Riemannian metrics of the forms Sgf +Hg on the tangent bundle over a Riemannian manifold (M,g), Int. Elec. J. Geo., 8(2) (2015), 181-194. https://doi.org/10.36890/iejg.592306
- Gezer, A., Ozkan, M., Notes on the tangent bundle with deformed complete lift metric, Turkish J. Math., 38 (2014), 1038-1049. https://doi.org/10.3906/mat-1402-30
- [10] Lauritzen, S., Statistical manifolds. In Differential geometry in statistical inference, IMS lecture notes monograph series (10), Institute of Mathematical Statistics, Hyward, CA, USA, 96-163, 1987.
- [11] Peyghan, E., Seifipour, D., Blaga, A., On the geometry of lift metrics and lift connections on the tangent bundle, *Turkish J. Math.*, 46(6) (2022), 2335-2352. https://doi.org/10.55730/1300-0098.3272
- [12] Peyghan, E., Seifipour, D., Gezer, A., Statistical structures on tangent bundles and Lie groups. *Hacettepe J. Math. Stat.*, 50 (2021), 1140-1154. https://doi.org/10.15672/hujms.645070
- Salimov, A., Kazimova, S., Geodesics of the Cheeger-Gromoll metric, Turkish J. Math., 33(1) (2009), 99-105. https://doi.org/10.3906/mat-0804-24
- [14] Sasaki, S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J., 10 (1958), 338-358. https://doi.org/10.2748/tmj/1178244668
- [15] Sekizawa, M., Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math. 14(2) (1991), 407-417. https://doi.org/10.3836/tjm/1270130381
- [16] Yano, K., Ishihara, S., Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1973.