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STATISTICAL STRUCTURES AND KILLING VECTOR FIELDS

ON TANGENT BUNDLES WITH RESPECT TO TWO

DIFFERENT METRICS

Murat ALTUNBAŞ

Department of Mathematics, Erzincan Binali Yıldırım University, Erzincan, TÜRKİYE

Abstract. Let (M, g) be a Riemannian manifold and TM be its tangent

bundle. The purpose of this paper is to study statistical structures on TM

with respect to the metrics Gf
1 = cg + v(fg) and Gf

2 = sgf + hg, where f

is a smooth function on M, cg is the complete lift of g, v(fg) is the vertical

lift of fg, sgf is a metric obtained by rescaling the Sasaki metric by a smooth

function f and hg is the horizontal lift of g. Moreover, we give some results

about Killing vector fields on TM with respect to these metrics.

1. Introduction

Let (M, g) be a Riemannian manifold and TM be its tangent bundle. In [1],
Abbassi and Sarih defined a general ”g−natural” metric on TM . Some well-known
examples of the g−natural metric are the Sasaki metric ( [6], [14]), the Cheeger-
Gromoll metric ( [13], [15]), Cheeger-Gromoll type metrics ( [4], [7]) and the Kaluza-
Klein metric [2]. However, some other metrics can be defined on the tangent bundle
which are not subclasses of this g−natural metric. As first example, in [9], Gezer

and Ozkan defined a metric Gf
1 = cg + v(fg), where cg is the complete lift of the

metric and v(fg) is the vertical lift of fg and f is a smooth function on M. As

second example, in [8], Gezer et al. introduced a metric Gf
2 = sgf +

hg, where sgf
is a metric which is obtained by rescaling the Sasaki metric with a smooth function
f on M and hg is the horizontal lift of g. These lifts will be explained later and we
will deal with these two metrics in this paper.
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Statistical manifolds were introduced by Amari [3] in view of information geom-
etry, and they were applied by Lauritzen [10]. These manifolds have a crucial role
in statistics as the statistical model often forms a geometrical manifold.

Although curvature related properties of tangent bundles are widely studied,
investigating statistical structures on tangent bundles is a relatively new topic.
These structures were examined with respect to various Riemannian metrics such
as the Sasaki metric [5], the Cheeger-Gromoll metric and a g−natural metric which
consists of three classic lifts of the metric g [12], the twisted Sasaki metric and the
gradient Sasaki metric [11].

In this paper, we study the statistical and Codazzi structures on TM using the
horizontal and complete lifts of a linear connection on M when TM is endowed

with the metrics Gf
1 and Gf

2 , respectively. We also investigate the Killing vector
fields on TM with respect to such metrics.

2. Preliminaries

Let M be an n−dimensional Riemannian manifold and ∇ be a linear connection
on M . The tangent bundle TM of the manifold M is a 2n−dimensional smooth
manifold and it is defined by the disjoint union of the tangent spaces at each point
of M. If {U, xi} is a local coordinate system in M, then {π−1(U), xi, ui, i = 1, ..., n}
is a local coordinate system in TM, where π is the natural projection defined by
π : TM → M and (ui) is the local coordinate system in each tangent space in U
with respect to the basis { ∂

∂xi }. We have a direct sum decomposition

TTM = V TM ⊕HTM

for the tangent bundle of TM, where the vertical subspace V TM is spanned by
{ ∂
∂ui := ( ∂

∂xi )
v} and the horizontal subspace HTM is spanned by { δ

δxi := ( ∂
∂xi )

h =
∂

∂xi −umΓj
mi

∂
∂uj }. Here Γj

mi denote the Christoffel symbols of ∇. The vertical, hori-

zontal and the complete lifts of a vector fieldX = Xi ∂
∂xi are defined by, respectively

Xv = Xi ∂

∂ui
, Xh = Xi ∂

∂xi
− ysΓm

siX
i ∂

∂um
, Xc = Xi ∂

∂xi
+ ys

∂Xi

∂xs

∂

∂ui
,

where we used Einstein the summation.
The Lie brackets of the vertical lift and the horizontal lift of vector fields satisfy

the following relations:

[Xh, Y h] = [X,Y ]h−(R(X,Y )u)v, [Xh, Y v] = (∇XY )v−(T (X,Y ))v, [Xv, Y v] = 0,

where R is the curvature tensor field and T is the torsion tensor field of the linear
connection ∇, [16].

For a Riemannian metric g on a smooth manifold M , the complete lift cg, the
vertical lift vg and the horizontal lift hg of g are given by

cg(Xh, Y h) = cg(Xv, Y v) = 0, cg(Xh, Y v) = cg(Xv, Y h) = g(X,Y ),

vg(Xh, Y h) = g(X,Y ), vg(Xv, Y v) = vg(Xh, Y v) = vg(Xv, Y h) = 0.
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hg(Xh, Y h) = 0, hg(Xv, Y v) = 0, hg(Xh, Y v) = hg(Xv, Y h) = g(X,Y ).

The horizontal lift connection
h

∇ and the complete lift connection
c

∇ are respec-
tively given by, [16]

h

∇XhY h = (∇XY )h,
h

∇XhY v = (∇XY )v,
h

∇XvY h =
h

∇XvY v = 0,
c

∇XhY h = (∇XY )h + (R(u,X)Y )v,
c

∇XvY h =
c

∇XvY v = 0,
c

∇XhY v = (∇XY )v,
c

∇XcY c = (∇XY )c,
c

∇XcY v =
c

∇XvY c = (∇XY )v.

Remark 1. The connection ∇ is a flat and torsionless linear connection if and

only if
h

∇(
c

∇) is a torsionless linear connection, [16].

In the sequel, we shall denote ∂
∂xi ,

δ
δxi and ∂

∂ui as ∂i, δi and ∂ı̄, for shortness.

The metric Gf
1 on TM is defined by

Gf
1 (X

h, Y h) = fg(X,Y ), Gf
1 (X

h, Y v) = Gf
1 (X

v, Y h) = g(X,Y ), Gf
1 (X

v, Y v) = 0,
(1)

where f is a strictly positive function on M , [9].
From Theorem 3.1 in [9], we can easily rewrite the Levi-Civita connection of the

metric Gf
1 in invariant form.

Lemma 1. Let (M, g) be a Riemannian manifold on (TM,Gf
1 ) be its tangent bundle

with the metric Gf
1 defined by (1). The Levi-Civita connection ∇f

1 of the metric Gf
1

satisfies the following relations

∇f
1XhY

h = (∇XY )h + (R(u,X)Y +Af (X,Y ))v,

∇f
1XhY

v = (∇XY )v, ∇f
1XvY

h = ∇f
1XvY

v = 0,

where X,Y are vector fields on M , ∇ is the Levi-Civita connection of g, R is the
Riemannian curvature of ∇ and Af (X,Y ) = 1

2 (X(f)Y +Y (f)X−g(X,Y )◦ (df)∗).

The metric Gf
2 on TM is defined by

Gf
2 (X

h, Y h) = fg(X,Y ), Gf
2 (X

h, Y v) = Gf
2 (X

v, Y h) = g(X,Y ), Gf
2 (X

v, Y v) = g(X,Y ),
(2)

where f is a strictly positive function on M , [8].

From [9], we rewrite the Levi-Civita connection of the metric Gf
2 in invariant

form as follows.

Lemma 2. Let (M, g) be a Riemannian manifold on (TM,Gf
2 ) be its tangent bundle

with the metric Gf
2 defined by (2). The Levi-Civita connection ∇f

2 of the metric Gf
2

satisfies the following relations

∇f
2XhY

h = (∇XY +
1

2(f − 1)
(R(u,X)Y +R(u, Y )X) +

1

f − 1
Af (X,Y ))h
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−(
1

f − 1
Af (X,Y ) +

1

2
R(X,Y )u+

1

2(f − 1)
(R(u,X)Y +R(u, Y )X))v,

∇f
2XhY

v = (
1

2(f − 1)
R(u, Y )X)h + (∇XY − 1

2(f − 1)
R(u,X)Y )v,

∇f
2XvY

h = (
1

2(f − 1)
R(u,X)Y )h − (

1

2(f − 1)
R(u,X)Y )v,

∇f
2XvY

v = 0,

where X,Y are vector fields on M , ∇ is the Levi-Civita connection of g, R is the
Riemannian curvature of ∇ and Af (X,Y ) = 1

2 (X(f)Y +Y (f)X−g(X,Y )◦ (df)∗).

Definition 1. Let (M, g) be a Riemannian manifold and let ∇ be a linear connec-
tion on M. The pair (g,∇) is called a Codazzi couple if the Codazzi equation are
valid:

(∇Xg)(Y,Z) = (∇Zg)(X,Y ),

for all vector fields X,Y, Z on M. The triplet (M, g,∇) is said to be a Codazzi
manifold and ∇ is called a Codazzi connection. Moreover, when ∇ is torsionless,
(M, g,∇) is a statistical manifold.

3. Killing Vector Fields and Statistical Structures on (TM,Gf
1 )

Definition 2. Let (M, g) be a Riemannian manifold and ∇ be a linear connection
on M. A vector field X is called conformal (respectively, Killing) if LXg = 2ρg
(respectively, LXg = 0), where ρ is a smooth function on M.

Using this definition, we have

LXvGf
1 (Y

v, Zv) = 0,

LXvGf
1 (Y

h, Zv) = 0,

LXvGf
1 (Y

h, Zh) = g(∇Y X,Z) + g(Y,∇ZX)− g(T (Y,X), Z)− g(T (Z,X), Y )

and

LXhGf
1 (Y

v, Zv) = 0,

LXhGf
1 (Y

h, Zv) = g(∇Y X,Z) + g(T (X,Y ), Z) + g(Y, T (X,Z)),

LXhGf
1 (Y

h, Zh) = X(f)g(Y,Z) + f(LXg)(Y,Z) + g(R(X,Y )u, Z) + g(R(X,Z)u, Y ).

So, we have the following proposition.

Proposition 1. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold

(M, g). Then the following statements are true:
(i) If ∇ is a torsionless linear connection on M, then the vector field Xv is

Killing if and only if X is a parallel vector field on (M, g).
(ii) If ∇ is a torsionless linear connection on M, then the vector field Xh is

Killing if and only if X is a ∇−parallel vector field, X is a conformal vector field
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such that (LXg)(Y,Z) = −X(f)
f g(Y, Z) and R(X,Y )Z = 0 for all the vector fields

Y,Z on M.
(iii) If ∇ is a torsionless linear connection, f is a constant function and X is

a parallel vector field on M, then the vector field Xh is Killing if and only if the
vector field X is Killing on (M, g) and R(X,Y )Z = 0 for all the vector fields Y, Z
on M.

(iv) If ∇ is a flat connection, X is a ∇−parallel vector field and f is a constant
function on (M, g), then the vector field Xh is Killing if and only if the vector field
X is Killing on (M, g).

Proof. The truthfulness of the assertions are clear from the definition of the Killing
vector fields. □

Now, we obtain the components of
h

∇Gf
1 . We have

(
h

∇δiG
f
1 )(δj , δk) = ∂i(f)gjk + f(∇∂i

g)(∂j , ∂k), (3)

(
h

∇δjG
f
1 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i),

(
h

∇δkG
f
1 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j),

(
h

∇∂ı̄G
f
1 )(∂j̄ , ∂k̄) = 0, (

h

∇∂ı̄G
f
1 )(∂j̄ , δk) = (

h

∇∂j̄
Gf

1 )(δk, ∂ı̄) = (
h

∇δkG
f
1 )(∂ı̄, ∂j̄) = 0,

(
h

∇δiG
f
1 )(δj , ∂k̄) = (∇∂i

g)(∂j , ∂k), (
h

∇δjG
f
1 )(∂k̄, δi) = (∇∂j

g)(∂k, ∂i), (
h

∇∂k̄
Gf

1 )(δi, δj) = 0.
(4)

So, we can express the following theorem.

Theorem 1. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold (M, g)

and ∇ be a linear connection. Then the following statements are true:

(i) If (TM,Gf
1 ,

h

∇) is a Codazzi manifold, then f is a constant function on M
and ∇ is a metric connection.

(ii) If (TM,Gf
1 ,

h

∇) is a statistical manifold, then ∇ is flat, f is a constant func-
tion on M and ∇ is the Levi-Civita connection of g. In this case, the connections
h

∇ and ∇f
1 coincide.

(iii) If ∇ is the Levi-Civita connection of g and f is a constant function on

M, then
h

∇ is compatible with the metric Gf
1 . In particular, if ∇ is flat, then the

connections
h

∇ and ∇f
1 coincide.

Proof. (i) From (3) and (4) we see that if (TM,Gf
1 ,

h

∇) is a Codazzi manifold, then
f is a constant function on M and ∇ is a metric connection.
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(ii) If (TM,Gf
1 ,

h

∇) is a statistical manifold, then
h

∇ is torsionless. From Remark

1, we see that ∇ is flat. It follows from (i) and the definition of the connections
h

∇
and ∇f

1 .
(iii) It is clear from the definition of the Levi-Civita connection and the connec-

tions
h

∇ and ∇f
1 .

□

Now, we repeat this process for (TM,Gf
1 ,

c

∇). By direct calculations we have

(
c

∇δiG
f
1 )(δj , δk) = ∂i(f)gjk + f(∇∂i

g)(∂j , ∂k)− usRt
sijgkt − usRt

sikgjt, (5)

(
c

∇δjG
f
1 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i)− usRt
sjkgit − usRt

sjigtk,

(
c

∇δkG
f
1 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j)− usRt
skigjt − usRt

skjgti,

(
c

∇∂ı̄
Gf

1 )(∂j̄ , ∂k̄) = 0, (
c

∇∂ı̄
Gf

1 )(∂j̄ , δk) = (
c

∇∂j̄
Gf

1 )(δk, ∂ı̄) = (
c

∇δkG
f
1 )(∂ı̄, ∂j̄) = 0,

(
c

∇δiG
f
1 )(δj , ∂k̄) = (∇∂ig)(∂j , ∂k), (

c

∇δjG
f
1 )(∂k̄, δi) = (∇∂jg)(∂k, ∂i), (

c

∇∂k̄
Gf

1 )(δi, δj) = 0.
(6)

Thus, we give the following theorem.

Theorem 2. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇ be a torsionless linear connection. Then the following statements are true:

i) If (TM,Gf
1 ,

c

∇) is a Codazzi (respectively statistical) manifold, then ∇ is flat,

f is a constant function on M . Furthermore,
c

∇ is a metric connection (respectively,
c

∇ becomes the Levi-Civita connection of Gf
1 ).

ii) If (TM,Gf
1 ,

c

∇) is a statistical manifold and f is a constant function on M ,

then ∇ is the Levi-Civita connection of g and
c

∇ becomes the Levi-Civita connection

of Gf
1 .

(iii) If ∇ is the Levi-Civita connection of g, f is a constant function on M and

∇ is a flat connection, then the connections
c

∇ and ∇f
1 coincide.

Proof. (i) If (TM,Gf
1 ,

c

∇) is a Codazzi manifold, then from (6) we obtain that ∇
is a metric connection. Differentiating (5)1 with respect to um gives us Rt

mijgkt +

Rt
mikgjt = 0. Similarly, by differentiating (5)2 and (5)3 with respect to um, we

obtain Rt
mjkgit + Rt

mjigtk = 0 and Rt
mkigjt + Rt

mkjgti = 0, respectively. So, ∇

is a flat connection. We also occur that f is a constant function on M. If
c

∇ is

torsionless, it becomes the Levi-Civita connection of Gf
1 .

(ii) We get immediately from Remark 1, the definition of the Levi-Civita con-

nection and the complete lift connection
c

∇.
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(iii) Definitions of the connections
c

∇ and ∇f
1 give the results. □

Now, we assume that (TM,Gs,∇f
1 ) is a statistical manifold. The metric Gs is

called the Sasaki metric and it is defined by

Gs(X
h, Y h) = g(X,Y ), Gs(X

h, Y v) = Gs(X
v, Y h) = 0, Gs(X

v, Y v) = g(X,Y ),

for all vector fields X,Y, Z on M. Using Lemma 1, we get

(∇f
1δi

Gs)(δj , δk) = (∇f
1δj

Gs)(δk, δi) = (∇f
1δk

Gs)(δi, δj) = 0, (7)

(∇f
1∂ı̄

Gs)(∂j̄ , ∂k̄) = 0, (∇f
1∂ı̄

Gs)(∂j̄ , δk) = (∇f
1∂j̄

Gs)(δk, ∂ı̄) = (∇f
1δk

Gs)(∂ı̄, ∂j̄) = 0,

(∇f
1δi

Gs)(δj , ∂k̄) = −usRm
sijgmk +

1

2
gmk(fiδ

m
j + fjδ

m
i − gijf

m
. ),

(∇f
1δj

Gs)(∂k̄, δi) = −usRm
sjigmk +

1

2
gmk(fjδ

m
i + fiδ

m
j − gjif

m
. ),

(∇f
1∂k̄

Gs)(δi, δj) = 0,

where, fi = ∂if and fm
. =gmhfh. So, we have the following theorem.

Theorem 3. Let (TM,Gf
1 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇f
1 is the Levi-Civita connection of the metric Gf

1 . If (TM,Gs,∇f
1 ) is a

statistical manifold, then ∇ is flat and f is a constant function on M.

Proof. If (TM,Gs,∇f
1 ) is a statistical manifold, by differentiating (7)3 and (7)4 with

respect to ut, we occurRm
tijgmk = Rm

tjigmk = 0.Moreover, we see that f is a constant
function on M. □

4. Killing Vector Fields and Statistical Structures on (TM,Gf
2 )

In this final section, we follow the same line in the previous section for the metric

Gf
2 . The proofs of the results will be similar.

From Definition 2, we have

LXvGf
2 (Y

v, Zv) = 0,

LXvGf
2 (Y

h, Zv) = g(∇Y X,Z)− g(T (Y,X), Z),

LXvGf
2 (Y

h, Zh) = g(∇Y X,Z)− g(T (Y,X), Z) + g(∇ZX,Y )− g(T (Z,X), Y )

and

LXhGf
2 (Y

v, Zv) = (∇Xg)(Y, Z) + g(T (X,Y ), Z) + g(Y, T (X,Z)),

LXhGf
2 (Y

h, Zv) = g(∇Y X,Z) + g(R(X,Y )u, Z) + g(T (X,Y ), Z) + g(Y, T (X,Z)),

LXhGf
2 (Y

h, Zh) = X(f)g(Y,Z) + f(LXg)(Y,Z) + g(R(X,Y )u, Z) + g(R(X,Z)u, Y ).

It is clear that if ∇ is a torsionless linear connection, then the vector field Xv is
Killing if and only if ∇X = 0. On the other hand, if ∇ is the Levi-Civita connection
of g, then Xh is a Killing vector field if and only if X is ∇−parallel, X is Killing,
the function f is constant and ∇ is flat. More precisely, we have
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Proposition 2. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold

(M, g). Then the following statements are true:
(i) If ∇ is a torsionless linear connection on M, then the vector field Xv is

Killing if and only if X is a parallel vector field.
(ii) If ∇ is a torsionless linear connection, f is a constant function and X is

a ∇−parallel vector field on M, then the vector field Xh is Killing if and only
if X is Killing vector field on M, ∇ is the Levi-Civita connection of (M, g) and
R(X,Y )Z = 0 for all the vector fields Y,Z on M.

(iii) If ∇ is the flat Levi-Civita connection, X is a ∇−parallel vector field and
f is a constant function on (M, g), then the vector field Xh is Killing if and only
if the vector field X is Killing on (M, g).

Here, we compute the components of
h

∇Gf
2 . We obtain

(
h

∇δiG
f
2 )(δj , δk) = ∂i(f)gjk + f(∇∂i

g)(∂j , ∂k),

(
h

∇δjG
f
2 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i),

(
h

∇δkG
f
2 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j),

(
h

∇∂ı̄G
f
2 )(∂j̄ , ∂k̄) = 0, (

h

∇∂ı̄G
f
2 )(∂j̄ , δk) = (

h

∇∂j̄
Gf

2 )(δk, ∂ı̄) = 0,

(
h

∇δkG
f
2 )(∂ı̄, ∂j̄) = (∇∂k

g)(∂i, ∂j),

(
h

∇δiG
f
2 )(δj , ∂k̄) = (∇∂i

g)(∂j , ∂k), (
h

∇δjG
f
2 )(∂k̄, δi) = (∇∂j

g)(∂k, ∂i),

(
h

∇∂k̄
Gf

2 )(δi, δj) = 0.

From the above equations, we deduce that if (TM,Gf
2 ,

h

∇) is a Codazzi manifold,
then f is a constant function on M and ∇ is a metric connection. So, we can write
the following theorem.

Theorem 4. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold (M, g)

and ∇ be a linear connection. Then the following statements are true:

(i) If (TM,Gf
2 ,

h

∇) is a Codazzi manifold, then f is a constant function on M
and ∇ is a metric connection.

(ii) If (TM,Gf
2 ,

h

∇) is a statistical manifold, then ∇ is flat, f is a constant func-
tion on M and ∇ is the Levi-Civita connection of g. In this case, the connections
h

∇ and ∇f
2 coincide.
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(iii) If ∇ is the Levi-Civita connection of g and f is a constant function on

M, then
h

∇ is compatible with the metric Gf
2 . In particular, if ∇ is flat, then the

connections
h

∇ and ∇f
2 coincide.

Now, we follow this process for (TM,Gf
2 ,

c

∇). By direct calculations we have

(
c

∇δiG
f
2 )(δj , δk) = ∂i(f)gjk + f(∇∂ig)(∂j , ∂k)− usRt

sijgkt − usRt
sikgjt, (8)

(
c

∇δjG
f
2 )(δk, δi) = ∂j(f)gki + f(∇∂j

g)(∂k, ∂i)− usRt
sjkgit − usRt

sjigtk,

(
c

∇δkG
f
2 )(δi, δj) = ∂k(f)gij + f(∇∂k

g)(∂i, ∂j)− usRt
skigjt − usRt

skjgti,

(
c

∇∂ı̄G
f
2 )(∂j̄ , ∂k̄) = 0, (

c

∇∂ı̄G
f
2 )(∂j̄ , δk) = (

c

∇∂j̄
Gf

2 )(δk, ∂ı̄) = (
c

∇δkG
f
2 )(∂ı̄, ∂j̄) = 0,

(
c

∇δiG
f
2 )(δj , ∂k̄) = (∇∂ig)(∂j , ∂k) + usRt

sijgkt, (9)

(
c

∇δjG
f
2 )(∂k̄, δi) = (∇∂j

g)(∂k, ∂i) + usRt
sjigkt,

(
c

∇∂k̄
Gf

2 )(δi, δj) = (∇∂k
g)(∂i, ∂j).

If (TM,Gf
2 ,

c

∇) is a Codazzi manifold, then from (9) we obtain that ∇ is a flat
metric connection. We also deduce that from (8)1 f is a constant function on M.
Thus, we have the following theorem.

Theorem 5. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇ be a torsionless linear connection. Then the following statements are true:

i) If (TM,Gf
2 ,

c

∇) is a Codazzi (respectively statistical) manifold, then ∇ is flat,

f is a constant function on M . Furthermore,
c

∇ is a metric connection (respectively,
c

∇ becomes the Levi-Civita connection of Gf
2 ).

ii) If (TM,Gf
2 ,

c

∇) is a statistical manifold and f is a constant function on M ,

then ∇ is the Levi-Civita connection of g and
c

∇ becomes the Levi-Civita connection

of Gf
2 .

(iii) If ∇ is the Levi-Civita connection of g, f is a constant function on M and

∇ is a flat connection, then the connections
c

∇ and ∇f
2 coincide.

Now, we assume that (TM,Gs,∇f
2 ) is a statistical manifold. Using Lemma 2

(∇f
2δi

Gs)(δj , δk) = − 1

2(f − 1)
(usRm

sij + usRm
sji + fiδ

m
j + fjδ

m
i − fm

. gij)gmk

− 1

2(f − 1)
(usRm

sik + usRm
ski + fiδ

m
k + fkδ

m
i − fm

. gik)gmj

(∇f
2∂ı̄

Gs)(∂j̄ , ∂k̄) = 0, (10)
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(∇f
2∂ı̄

Gs)(∂j̄ , δk) =
1

2(f − 1)
usRm

sikgmj ,

(∇f
2δk

Gs)(∂ı̄, ∂j̄) =
1

2(f − 1)
(usRm

skigmj + usRm
skjgmi),

(∇f
2δi

Gs)(δj , ∂k̄) = [
1

2(f − 1)
(usRm

sij + usRm
sji + fiδ

m
j + fjδ

m
i − fm

. gij)

+
1

2
usRm

ijs]gkm − 1

2(f − 1)
usRm

skigjm,

(∇f
2∂k̄

Gs)(δi, δj) = − 1

2(f − 1)
(usRm

skigmj + usRm
skjgmi),

where fi = ∂if and fm
. =gmhfh. If (TM,Gs,∇f

2 ) is a statistical manifold, by
differentiating (10)3 with respect to ut we occur Rm

tikgmj = 0 (other equations
which have curvature components of ∇ is similar). Moreover, we see that f is a
constant function on M. So, we have the theorem below.

Theorem 6. Let (TM,Gf
2 ) be the tangent bundle of a Riemannian manifold (M, g)

and let ∇f
2 is the Levi-Civita connection of the metric Gf

2 . If (TM,Gs,∇f
2 ) is a

statistical manifold, then ∇ is flat and f is a constant function on M.
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