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A DIFFERENT VIEWPOINT ABOUT THE WEAK
CONVERGENCE VIA IDEALS AND A™ SEQUENCES

HAFIZE GUMUS AND MIKAIL ET

ABSTRACT. In this study, we use generalized difference sequences A™zx =
(A™z) = (A™ ey —A™ 1z, 1) to obtain more general results about weak
convergence and we investigate the concept of A™Z—weak convergence where
m € N. We also define weak A™Z—limit points and weak A™Z—cluster points.

1. INTRODUCTION

In this part, we give a short literature data about our basic concepts difference
sequences, Z—convergence and weak convergence. Difference sequences have defined
in 1981 by Kizmaz [19] and he has defined I (A), ¢(A) and ¢o(A) spaces where
ls, c and ¢y are bounded, convergent and null sequence spaces, respectively. He
obtained some relations between these spaces for example c¢o(A) C ¢(A) C lo(A).

Following these definitions, Et [9], Et and Colak [10], Et and Basarir [11], Et
and Nuray [12], Giimiig and Nuray [17], Aydin and Bagar [1], Bagarir [2], Bektag
et. al. [3], Et and Esi [13], Savag [25], Dems [7], Diindar and Cakan [8], Nabiev et.
al. [22] and many others searched various properties of this concept. Et and Colak
[10] generalized Kizmaz’s results for A™ sequences such that,

co(A™) = {xz=(xg): A"z € ¢p}
c(A™) = {z=(z): A"z €c}
loo(A™) = {z=(z): Az €ls}

where m € N and A™z = (A™xy) = (A" oy, — A™ 1z, q) that is A™ay =

S (=1)" (T)karv' They proved that these spaces are Banach spaces with the norm
v=0

m
s =D lzil + A™2] -

i=1
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Now, lets talk about the concept of Z—convergence shortly and give some basic
definitons.

The idea of Z—convergence for single sequences was introduced by Kostyrko,
Salat and Wilezyniski [21]. We can say that the concept is a generalization of
statistical convergence which is based on the structure of the ideal Z of subsets
of the set of natural numbers. Z—convergence of real sequences coincides with the
ordinary convergence if Z is the ideal of all finite subsets of N and with the statistical
convergence if Z is the ideal of subsets of N of natural density zero. Nowadays, it
has become one of the most active areas of research in classical analysis. Savag and
Das defined generalized statistical convergence via ideals [26].

We first need to recall the definitions of some other notions.

Definition 1.1. [21] A non-empty set Z C 2 is called an ideal on N if;

(1) B € T whenever B C A for some A € T (closed unders subsets).

(15) AU B € T whenever A, B € T (closed under unions).

An ideal is called proper if N ¢ 7 and is called admissible if it is proper and
contains all finite subsets.

Many concepts mentioned in this exposition are more frequently defined using
limit along a filter. Filter is a dual notion of ideal.

Definition 1.2. [21] A non-empty set F C 2" is called a filter on N if;

(1) B € F whenever B D A for some A € F (closed unders supersets).
(#6) AN B € F whenever A, B € F (closed under intersections).

Proposition 1.1. {N\A: A € T} is a filter if and only if T is an ideal.

Remark 1.1. Generally we will use ideals in our proofs but if the notion is more
familiar for filters, we will use the notion of filter.

Definition 1.3. [21] Let Z C 2" be a proper ideal on N. The real sequence z = (z)

is said to be Z—convergent to x € R provided that for each ¢ > 0,
Ale)={keN:|zy —z| >c} €T.

There are lots of examples about Z—convergence in Kostyrko, Salat and Wilezyriski’s

paper. We just want to give some well known examples.

Example 1.1. If 7 = Z;={A C N: A is finite} then [y —convergence gives the usual
convergence.

Example 1.2. f7Z =75 ={A C N:§(A ) = 0} then l;—convergence gives the sta-
tistical convergence.

Et and Nuray [12] have introduced the A™—statistical convergence in their study
and the set of all A™—statistical convergent sequences was denoted by S(A™). Fol-
lowing this study, Glimiis and Nuray [17] have extended A™ —statistical convergence
to A™—ideal convergence.

Definition 1.4. [17] Let Z C 2N be a proper ideal on N. The real sequence x = ()
is said to be A™—ideal convergent to x € R provided that for each £ > 0,

{keN:|A"g, —z| > e} € T.
The set of all A™—ideal convergent sequences is denoted by cz(A™).

Example 1.3. If Z = Z; then cz,(A™) = c(A™).
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Example 1.4. 7 = Z; then cz,(A™) = S(A™).
Now, we need to recall some definitions about weak convergence.

Definition 1.5. [4] Let B be a Banach space, (x) be a B—valued sequence and
x € B. The sequence (xy) is weakly convergent to x provided that for any f in the
continuous dual B* of B,

liin flzr —2) =0.

In this case we write W — lim x;, = x.

Let B be a Banach space, (z)) be a B—valued sequence and x € B. The sequence
(zx) is weakly C;—convergent to = provided that for any f in the continuous dual
B* of B,

R
h’gnﬁ Zf(xk —1z)=0.
k=1
In 2000, Connor et al. [5], have introduced a new concept of weak statistical con-
vergence and have characterized Banach spaces with seperable duals via statistical
convergence. Bhardwaj and Bala studied about weak statistical convergence [4].
Pehlivan and Karaev [24] have also used the idea of weak statistical convergence in
strengthening a result of Gokhberg and Klein on compact operators.
Following Connor et al. we define weak statistical convergence as follows:

Definition 1.6. [5] Let B be a Banach space, (x)) be a B—valued sequence and
x € B. The sequence (xj) is weakly statistically convergent to x provided that
for any f in the continuous dual B* of B the sequence (f(xzx — x)) is statistically
convergent to x i.e.

lim%|{k§n: f (2 — )| = €} = 0.

In this case we write W — st — limxy, = .

In 2011, Nuray [23] has defined the weak Z—convergence as follows and has
defined the set of all weak Z—convergent sequences by WZ.

Definition 1.7. [23] Let B be a Banach space, (zj) be a B—valued sequence and
x € B. The sequence (xy) is weak ZT—convergent to = provided that for any f in
the continuous dual B* of B the sequence (f(zy — x)) is weak Z—convergent to x
that is,

{keN:|f(xp —x)| >} €.

Taking the above examples, if 7 = 7 then we have the usual weak convergence
and if I = Iy then weak Iy—convergence gives the usual weak convergence. After
the definition of weak Z—convergence Giimiis has defined the weak Z—statistical
convergence [18].

2. WEAK A™7Z—CONVERGENCE

In this section, we define weak A™Z—convergence and we give some inclusion
theorems. In our all subsequent definitions, let B be a Banach space, (A™zy) be a
B—valued sequence, x € B and Z be an admissible ideal.
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Definition 2.1. The sequence (xy) is weak A™—convergent to z provided that for
any f in the continuous dual B* of B,

1il£n f(A™zy, —x) = 0.
The set of all weak A™—convergent sequences is denoted by We(A™).
Definition 2.2. The sequence (xy) is weak A™—statistically convergent to x pro-
vided that for any f in the continuous dual B* of B and every € > 0,
nén% (k< n:|f(A™2p —2)| > e} = 0.
The set of all weak A™ —statistically convergent sequences is denoted by W.S(A™).

Definition 2.3. The sequence (zy) is weak A™Z—convergent to x provided that
for any f in the continuous dual B* of B and every € > 0,

{keN:|f(A"xp —x)| >} €T.

In this case we write z — z(Wez(A™)). The set of all weak A™Z—convergent
sequences is denoted by Wez(A™).

Example 2.1. Wez, (A™) = We(A™).
Example 2.2. Weg, (A™) = WS(A™).

After the above definitions, lets give a main theorem which explains the relation
between weak A™—convergence and weak A™Z—convergence.

Theorem 2.1. Let (xy) is weak A™—convergent to x. Then, (xy) is weak A™Z— con-

vergent to x.

Proof. Let (xy) is weak A™—convergent to x. It means f(A™zxy) is convergent
to f(x) for all f € B*. Then, f(A™xy) is Z—convergent to f(x) that is, (z3) €
WCI(Am). O

We give the following example to show that the inverse of this theorem is not
generally true.

1, n is square

Example 2.3. Let (f(A™ay)) = { 0. otherwise

Then, (z1) € Wez, (A™) but (zx) ¢ We(A™).
Before the following theorem, reader should be warned at this point that, from

the A™zy = > (=1)"(7")@p4o formula, we can easily prove that A™(zy + yi) =
v=0
A™ () + A™(x) and A™(Axy) = AA™(xg).
Theorem 2.2. Let T be an admissible ideal, (A™xy) and (A™yy) be B—uvalued
sequences and x,y € B.
(1) z = x(Wez(A™)) and yp — y(Wez(A™)) then g +yr — z+y(Wez(A™)).
(1) xx = c(Weg(A™)) and A € R then Azy — Az(Wez(A™)).

Proof. (i) Assume that z; — z(Wez(A™)) and yr, — y(Wez(A™)). Lets define
the sets A; and As such that,

Alz{keN:If(Amxk*x)Kg}
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and

AQ:{kEN:|f(Amyk—y)\<g}.

It is obvious that A; and Ag are in F(Z). If we remember the properties of the
filter, A1 N Ay € F(Z) and A; N Ay # @. Since f € B*, for all k € A1 N As,

SO @t ) = @+ = SO —2) + SO~ )
F(Aa, )| + (A7~ )

5+

9

I AIA

It proves (7).
(7) Let z, — x(Wez(A™)) and A € R. Using the same technique, for all k¥ € A;
and every € > 0

(AT (Az) = Az)[ = [fAA™ (zy, — )]
= PIf(A™zg — )]
< [A 5.

As e > 0 is arbitrary, it follows that {k € N: |f(A™(Azy) — Az)| < n} € F(Z) for
any 1 > 0. Then, we have the proof. [

Remark 2.1. Since A™(xk.yr) # A™(x).A™(xy), we can not say that xp.yx —
z.y(Wez(A™)) when xp, — z(Wez(A™)) and yr — y(Wezg(A™)).

Definition 2.4. Let Z is an admissible ideal in N. If,
{k+1:ke A} e

for any A € Z, then 7 is said to be translation invariant ideal.

Example 2.4. 75 is a translation invariant ideal.

Corollary 2.1. If T is translation invariant and (z)) € Wez(A™) then (zp41) €
WCI(Am).

Proposition 2.1. Suppose that I is an admissible translation invariant ideal and
m € N. Then,

We, (A™™ 1) C We, (A™).

Proof. Suppose that x € Wez(A™1) and it means (Am_lxk) € Wez. Since 7 is
translation invariant we have (Am_lka) € Wez. From the definition of difference
sequences we can write

(Aml’k) = (Am71$k - Am71Ik+1) .
Then we obtain (A™xy) € Weg ie. x € Weg(A™). O

Theorem 2.3. Let Z be a proper ideal in N. If there is a weak A™Z—convergent
sequence y such that,

{keN: f(A™zy) # f(A™yp) €T

then x is also weak A™Z—convergent.
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Proof. Assume that {k € N: f(A™xy) # f(A™yg)} € T and y is weak A"™Z—conver-

gent to x. For each € > 0,

{keN:|f(AMzp —x)[ > e} C {keN: f(A™zy) # f(A™yr)}
U {keN:|f(A™yp —x)| > €}

As the right hand side of inclusion is in ideal, we have that
{keN:|f(A™z, —x)| > e} € L.
O

Definition 2.5. Let Z be a proper ideal in N. For each € > 0 there is a number
no(e) such that {k € N: |f(A™ap — A™x,, )| > e} € T then, z is called by weak
A™T—Cauchy sequence.

Theorem 2.4. [fz is weak A™T—convergent sequence then, x is weak A™Z— Cauchy
sequence.

Proof. Suppose that = is weak A"™Z—convergent and ¢ > 0. Then,
A= {k eN:|f(A"zy — z)| < %} € F(I).
Lets choose ng € A. In this case, |f(A™x), —z)| < 5. We can write,
[f(AMzp — AT, )| < [f(A™a — 2)| + [f (A" 20, — )|
< §+5=e.
Then we have the proof. ([

3. WEAK A™Z*—CONVERGENCE

In this part, we define weak A™Z*—convergence and we will investigate the
inclusion with weak A™Z—convergence.

Definition 3.1. Let B be a Banach space, (A™xy) be B—valued sequence and
x € B. The sequence (xy) is weak A™Z* —convergent to z if and only if for any f in
the continuous dual B* of B, there exists aset M = {n; <mns < ... <ng < ..} CN,
M € F(Z) such that limy, f(A™z,, —x) = 0. Wez«(A™) denotes the set of all weak
A™T*—convergent sequences.

Theorem 3.1. Let T be an admissible ideal. If (xy) is weak A™ZI*—convergent to
x then (xy) is weak A™I— convergent to x.

Proof. By assumption there is a set D € Z such that
M=N\D={n; <ng <..<ngp<..}

and we have

lilgn f(A"zy,, —2)=0
Let € > 0. From the definition of limit, there exists kg € N such that |f(A™xz,, — z)| <
¢ for each k > kg. Since 7 is admissible,

{keN:|f(AMxy, —xz)| >} CDU{n <ng <..<mng e
d

To say that the inverse of the theorem satisfies, we need to remind the concept
of (AP) property.
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Definition 3.2. An admissible ideal 7 is said to satisfy the condition (AP) if for
every countable family of mutually disjoint sets {A;, As, ...} belonging to Z there
exists a countable family of sets {B1, Bs, ...} such that A;AB; is a finite set for

j€Nand B = B; el

Jj=1

Theorem 3.2. Let Z be an admissible ideal. If T has property (AP), then we say
that if (x) is weak A™ZI—convergent to x then (zy) is weak A™ZI*—convergent to
x.

Proof. Suppose that Z satisfies condition (AP) and (zx) € Wez(A™). Then for
every e >0, {k e N: |f(A™zy —x)| > e} € Z. Put

Ay ={keN:|f(A™z, —x)| > 1}
and

Ak:{keN: <|f(Amxk—m)<1}

1

k k—

for k > 2, k € N. Obviously A;NB; = @ for i # j. By condition (AP), there exists a
sequence of sets (By,)ren such that A;AB; are finite sets for j € Nand B = |J B; €

j=1
Z. Tt is sufficient to prove that for M = N\B we have klim f(A™zy, —x) = 0. Let
—00
keM
1n > 0 and choose n € N such that n}rl < n. Then,
n+1
[he N [f(Ama - 2)] =} < | 4.
j=1
Since A;AB; (j =1,2,...,n+ 1) are finite sets there exists ko € N such that
n+1 n+1
(3.1) UBin{keN:k>k}=|JAn{keN:k>ko}.
j=1 j=1

n+1
U A,. But then,
j=1

lf(A™zy — 2)| < 1%1—1 < 1; so we have the proof. O

n+1
If k> ko and k ¢ B, then k ¢ |J B; and by (3.1), k ¢
j=1

4. WEAK A™Z—LiMIiT PoiINTs AND WEAK A™Z—CLUSTER POINTS

The notion of limit is one of the central notions in mathematical analysis. It
was generalized by mathematicians in various ways. After identification statistical
convergence by Fast [14], the question was how to define the statistical limit points
and statistical cluster points. Fridy [15] answered this question and he defined
these concepts. Later, these concepts were also identified for ideals. Demirci [6]
and Koystro et. al. [20] studied about I—convergence and extremal T—limit points.
Talo and Dndar [27] investigated these concepts for fuzzy numbers. Nuray [23]
combined these concepts with weak convergence and he defined weak Z—limit points
and weak Z—cluster points.

Definition 4.1. Let B be a Banach space, (A™zxy) be a B—valued sequence and
A € B. Let f in the continuous dual B* of B. A is said to be a weak A™Z—limit
point of (z)) provided that there exists a set M = {n; <ng <..<np < ..} CN
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such that M ¢ 7 and liin f(A™z,, —x) = 0. The set of all weak A™Z—limit points
denoted by WA™Z(A,).

1, if k is square

Example 4.1. Let Z =Z;5 and (f(A™xy)) = { 0 otherwise
Then WA™Z(A,) ={0}.

Definition 4.2. Let B be a Banach space, (A™xy) be a B—valued sequence and
~v € B. Let f in the continuous dual B* of B. + is said to be a weak A™Z—cluster
point of (xy) if and only if for each € > 0 we have

{keN:|f(A™zy — )| <e} ¢ T
The set of all weak A™Z—cluster points denoted by WA™Z(T,).

Proposition 4.1. If © is a weak A™I— cluster point of (x1), then there is an ideal
T such that (zy) is weak A™Z—convergent to x.

Theorem 4.1. Let T be an admissible ideal. Then for each sequence (A™xy) € B
we have WA™I(A,) CWA™ZI(T,).
Proof. Assume that A\ € WA™Z(A,). Then, there exists a set
M={n<na<..<ny<..}¢ZT
such that
lilgn f(A"z,, —x)=0.
From the definition of usual convergence, for each € > 0 there exists kg € N such
that for k > ko we have |f(A™z,, — \)| < €. Hence,
{EeN:|f(AMzr — N)| <e} D M\ {n1 <n2 < ..<ng}

and

{keN:|f(A"xr — N)| <e} ¢ T.
It means that A € WA™Z(T,,). O
Proposition 4.2. If the sequence (xy) is A™Z—convergent to A. Then,

WA™L(Ay)=WA™IZ(T,) ={\}.

The inverse of this proposition is not generally true.

Example 4.2. Let (f(A™zy)) = (1+(=1)F). Then, WA™Z(A,)=WA™I(T,) = {0}
but (zx) is not A™Z—convergent to 0.
Proposition 4.3. Let (A™xy) and (A™yy) sequences satisfies
{keN: (AMz) = (A™yr)} ¢ .

Then,

WATI(Ay)=WA™I(Ay) and WA™L(T,)=WA™Z(T,).
Proof. Suppose that {k € N: (A™zy) = (A™yi)} ¢ Z and A € WA™Z(A,). There
is a set M such that,

lim A"z, =X and M ={n; <na <..<np<..}¢7T.

k—o0
From our assumption, this set defines a sequence such that

lim Amy'rnl =\
=00
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So A € WA™Z(A,). Using the same techniques we obtain WA™Z(A,) C WA™I(A,).
Now, we will prove the same property for cluster points. Let v € WA™Z(T,)
then {k € N: |f(A™zy, — )| < e} ¢ Z. Hence,

{keN:[f(A"y —7)[ <e} 2 {keN:(A"zy) = (A"yx)}
N {keN:|f(A™z, —7)| <e}

Since the right hand does not belong to Z, we have {k € N : |f(A™y, — )| <e} ¢ T
and it means v € WA™ZI(T'y). Using the same techniques we obtain WA™Z(T",) C
WAML(T,). O
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