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Abstract
In the present paper four theorems connecting Stieltjes transform and Hankel transform are established. The
theorems are general in nature. Four integral formulae involving special functions are obtained with the help of
these theorems. Otherwise it is very difficult to evaluate such type of integrals. Other several integrals may be
evaluated with the help of these theorems.
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1. Introduction
Several authors have made significant contributions for the development of integral transforms through a series of papers.
Among other eminent authors, Bhonsle [1, 2], Sharma [5] Gupta and Agrawal [6], Goyal and Vasishta [7], Goyal and Jain
[8], Saxena [14], Srivastava [15, 16, 18], Srivastava and Vyas [17], Srivastava and Tuan [19], Srivastava and Yürekli [20] and
Yakubovich and Martins [21] have studied and explored Laplace, Meijer, Stieltjes, H− function, Kontorovitch-Lebdev and
Hankel transforms at large in the form of generalizations, convolution and interconnecting theorems.
Bhonsle [1, 2], Sharma [5], Saxena [14], Srivastava [15, 16], Srivastava and Vyas [17] have obtained integral formulae involving
Legendre functions of the first kind, Bessel functions of the first kind and modified Bessel functions of the second kind.
In the present paper we have obtained four integral formulae involving Bessel functions of the first kind and second kind,
modified Bessel functions of the first kind and second kind, Struve’s functions and Anger functions.
Now, we define the Stieltjes transform and Hankel transform.

Definition 1.1. The Stieltjes transform [4, 8, 19] of a function f (x) ∈ L(0,∞) is defined in the following manner.

G( f ; y) =
∫

∞

0
(x+ y)−1 f (x)dx,

where y is a complex variable.

Definition 1.2. The Hankel transform [4, 5, 16] of order v of a function f (x) ∈ L(0,∞) is defined in the following manner.

hv( f ; ζ ) =
∫

∞

0
(ζ x)1/2 Jv(ζ x) f (x)dx, ζ > 0,
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where Jv(z) stands for the Bessel function of the first kind ([3], Page 4, Equation (2)).

2. Main Theorems
In this section we establish four theorems connecting Stieltjes transform and Hankel transform.

Theorem 2.1. If ζ > 0, −1 <Re(v)< 1/2 and |arg y|< π , then

G{xv+1/2 f (x); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.1)

where

K(y, ζ ) = 2v
π
−1/2

ζ
−v−1/2

Γ(v+1/2)+ζ
1/2 2−1

π yv+1sec(vπ) [Y−v(ζ y)−H−v(ζ y)],

where Y−v(z) and H−v(z) stand for the Bessel function of the second kind ([3], Page 4, Equation (4)) and Struve’s function ([3],
Page 38, Equation (55)) respectively.

Proof. We have by the Hankel inversion theorem [13] that

f (x) =
∫

∞

0
(ζ x)1/2 hv( f ; ζ )Jv(ζ x)dζ . (2.2)

Hence

G{xv+1/2 f (x); y}=
∫

∞

0
ζ

1/2 hv( f ; ζ ) G{xv+1 Jv(ζ x); y}dζ . (2.3)

The change of order of integration is justified because ζ > 0, −1 <Re(v)< 1/2 and Jv(ζ x) is a bounded function for both the
variables for Landau’s bounds [9] (see also [10]) i.e

|Jv(x)| ≤ bLv−1/3, bL := 21/3 sup
x∈R+

(Ai(x)) (2.4)

and

|Jv(x)| ≤ cL|x|−1/3, cL := sup
x∈R+

(J0(x)), (2.5)

where Ai(x) stands for the familiar Airy function.
Now, using the following result ([4], Page 224, Equation (4)) in (2.3)

G{xv+1 Jv(ax); y}= 2v
π
−1/2a−v−1

Γ(v+1/2)+2−1
π yv+1sec(vπ)[Y−v(ay)−H−v(ay)], (2.6)

provided that a > 0, −1 <Re(v)< 1/2 and |arg y|< π we arrive at the desired result (2.1), where ζ > 0, −1 <Re(v)< 1/2
and |arg y|< π .

Theorem 2.2. If ζ > 0, Re(v)>−1 and |arg y|< π , then

G{x−1/2 f (x); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.7)

where

K(y, ζ ) = ζ
1/2

π cosec(vπ) [Jv(ζ y)− Jv(ζ y)],

where Jv(z) and Jv(z) stand for the Anger’s function ([3], Page 35, Equation (33)) and Bessel function of the first kind ([3],
Page 4, Equation (2)) respectively.

Proof. Again, by (2.2) we have that

G{x−1/2 f (x); y}=
∫

∞

0
ζ

1/2 hv( f ; ζ ) G{Jv(ζ x); y}dζ . (2.8)

The change of order of integration is justified because ζ > 0, Re(v) > −1 and Jv(ζ x) is a bounded function for both the
variables for Landau’s bounds [9, 10] (see (2.4) and (2.5)).
Now, using the following result ([4], Page 224, Eq. (2)) in (2.8)

G{Jv(ax); y}= π cosec(vπ) [Jv(ay)− Jv(ay)],

provided that a > 0, Re(v) > −1 and |arg y| < π we arrive at the desired result (2.7), where ζ > 0, Re(v) > −1 and
|arg y|< π .
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Theorem 2.3. If 0 < a < ζ , −1 <Re(v)< 3/2 and |arg y|< π , then

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.9)

where

K(y, ζ ) = 2 ζ
1/2 yv/2−1/2 sinh(ay1/2) Kv(ζ y1/2),

where Kv(z) stands for the modified Bessel function of the second kind or Basset’s function ([3], Page 5, Equation (13)).

Proof. Again, by (2.2) we have that

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
ζ

1/2 hv( f ; ζ ) G{xv/2−1/2 sin(ax1/2) Jv(ζ x1/2); y}dζ . (2.10)

The change of order of integration is justified because 0 < a < ζ , −1 <Re(v)< 3/2 and Jv(ζ x) is a bounded function for both
the variables for Landau’s bounds [9, 10] (see (2.4) and (2.5)).
Now, using the following result ([4], Page 226, Equation (18)) in (2.10)

G{xv/2−1/2 sin(ax1/2) Jv(bx1/2); y}= 2 yv/2−1/2 sinh(ay1/2)Kv(by1/2), (2.11)

provided that 0 < a < b,−1 <Re(v)< 3/2 and |arg y|< π we arrive at the desired result (2.9), where 0 < a < ζ ,−1 <Re(v)<
3/2 and |arg y|< π .

Theorem 2.4. If 0 < ζ < a, Re(v)>−1/2 and |arg y|< π , then

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
K(y, ζ ) hv( f ; ζ )dζ , (2.12)

where

K(y, ζ ) = ζ
1/2

πy−v/2 exp(−ay1/2) Iv(ζ y1/2),

where Iv(z) stands for the modified Bessel function of the first kind ([3], Page 5, Equation (12)).

Proof. Again, by (2.2) we have that

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}=
∫

∞

0
ζ

1/2 hv( f ; ζ ) G{x−v/2 sin(ax1/2) Jv(ζ x1/2); y}dζ . (2.13)

The change of order of integration is justified because 0 < ζ < a, Re(v)>−1/2 and Jv(ζ x) is a bounded function for both the
variables for Landau’s bounds [9, 10] (see (2.4) and (2.5)).
Now, using the following result ([4], Page 226, Equation (19)) in (2.13)

G{x−v/2 sin(ax1/2) Jv(bx1/2); y}= π y−v/2 exp(−ay1/2) Iv(by1/2), (2.14)

provided that 0 < b < a, Re(v)>−1/2 and |arg y|< π we arrive at the desired result (2.12), where 0 < ζ < a, Re(v)>−1/2
and |arg y|< π .

3. Applications
In this section we make applications of our theorems to obtain integral formulae.

Example 3.1. Let f (x) = xµ−v+1/2Jµ(ax), [a > 0, Re(v)> Re(µ)>−1]. Then

G{xv+1/2 f (x); y}= G{xµ+1 Jµ(ax); y}. (3.1)

Using the result (2.6) in (3.1), we get

G{xv+1/2 f (x); y}= 2µ
π
−1/2 a−µ−1

Γ(µ +1/2)+2−1
π yµ+1sec(µπ) [Y−µ(ay)−H−µ(ay)], (3.2)
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where a > 0, −1 <Re(µ)< 1/2 and |arg y|< π .
Now, we have

hv( f ; ζ ) = hv{xµ−v+1/2 Jµ(ax); ζ}. (3.3)

Using the following result ([4], Page 48, Equation (8)) in (3.3)

hv{xµ−v+1/2 Jµ(ax); y}= 2µ−v+1aµ

Γ(v−µ)yv−1/2 (y
2−a2)v−µ−1, (3.4)

provided that Re(v)>Re(µ)>−1 and 0 < a < y < ∞ we get

hv( f ; ζ ) =
2µ−v+1aµ

Γ(v−µ)ζ v−1/2 (ζ
2−a2)v−µ−1, (3.5)

where Re(v)>Re(µ)>−1 and 0 < a < ζ < ∞.
Now, using the results (3.2) and (3.5) in (2.1), we get∫

∞

a
[2v

π
−1/2

ζ
−v−1/2

Γ(v+1/2)+ζ
1/2 2−1

π sec(vπ) yv+1{Y−v(ζ y)−H−v(ζ y)}] ζ
1/2−v(ζ 2−a2)v−µ−1dζ

= 2v−1
π
−1/2 a−2µ−1

Γ(v−µ)+π yµ+1 2v−µ−2a−µ
Γ(v−µ) sec(µπ)

[
Y−µ(ay)−H−µ(ay)

]
,

(3.6)

where a > 0, Re(v)>Re(µ)>−1, Re(v−µ)> 0 and |arg y|< π .

Example 3.2. Let f (x) = xv+1/2, [0 < x < 1, Re(v)>−1]. Then

G{x−1/2 f (x); y}= G{xv; y}. (3.7)

Using the following result ([4], Page 216, Equation (5)) in (3.7)

G{xv; y}=−π yv cosec(πv),

where −1 <Re(v)< 0 and |arg y|< π , we get

G{x−1/2 f (x); y}=−π yv cosec(πv), (3.8)

where −1 <Re(v)< 0 and |arg y|< π .
Now, we have

hv( f ; ζ ) = hv{xv+1/2; ζ}. (3.9)

Using the following result ([4], Page 22, Equation (6)) in (3.9)

hv{xv+1/2; y}= y−1/2 Jv+1(y),

where 0 < x < 1, Re(v)>−1 and y > 0, we get

hv( f ; ζ ) = ζ
−1/2 Jv+1(ζ ), (3.10)

where 0 < x < 1, Re(v)>−1 and ζ > 0.
Now, using the results (3.8) and (3.10) in (2.7), we get∫

∞

0
[Jv(ζ y)− Jv(ζ y)]Jv+1(ζ )dζ =−yv, (3.11)

where −1 <Re(v) and |arg y|< π .

Example 3.3. Let f (x) = xµ−v+1/2Jµ(bx), [b > 0, Re(v)> Re(µ)>−1]. Then

f (x1/2) = xµ/2−v/2+1/4Jµ(bx1/2)
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and

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}= G{xµ/2−1/2 sin(ax1/2) Jµ(bx1/2); y}. (3.12)

Using the result (2.11) in (3.12), we get

G{xv/2−3/4 sin(ax1/2) f (x1/2); y}= 2 yµ/2−1/2 sinh(ay1/2) Kµ(by1/2), (3.13)

where 0 < a < b, −1 <Re(µ)< 3/2 and |arg y|< π .
Now, we have

hv( f ; ζ ) = hv{xµ−v+1/2 Jµ(bx); ζ}. (3.14)

Using the result (3.4) in (3.14), we get

hv( f ; ζ ) =
2µ−v+1bµ

Γ(v−µ)ζ v−1/2 (ζ
2−b2)v−µ−1, (3.15)

where Re(v)>Re(µ)>−1 and 0 < b < ζ < ∞.
Now, using the results (3.13) and (3.15) in (2.9), we get∫

∞

b
ζ

1−v(ζ 2−b2)v−µ−1Kv(ζ y1/2)dζ = 2v−µ−1b−µ yµ/2−v/2
Γ(v−µ)Kµ(by1/2), (3.16)

where Re(v)> Re(µ)>−1, Re(v−µ)> 0 and |arg y|< π .

Example 3.4. Let f (x) = xv−µ+1/2Jµ(bx), [b > 0,−1 < Re(v)< Re(µ)]. Then

f (x1/2) = xv/2−µ/2+1/4Jµ(bx1/2)

and

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}= G{x−µ/2 sin(ax1/2) Jµ(bx1/2); y}. (3.17)

Using the result (2.14) in (3.17), we get

G{x−v/2−1/4 sin(ax1/2) f (x1/2); y}= π y−µ/2 exp(−ay1/2) Iµ(by1/2), (3.18)

where 0 < b < a, Re(µ)>−1/2 and |arg y|< π .
Now, we have

hv( f ; ζ ) = hv{xv−µ+1/2 Jµ(bx); ζ}. (3.19)

Using the following result ([4], Page 48, Equation (7)) in (3.19)

hv{xv−µ+1/2 Jµ(ax); y}= 2v−µ+1 yv+1/2

Γ(µ− v) aµ
(a2− y2)µ−v−1,

provided that a > 0, −1 <Re(v)<Re(µ) and 0 < y < a we get

hv( f ; ζ ) =
2v−µ+1ζ v+1/2

Γ(µ− v) bµ
(b2−ζ

2)µ−v−1, (3.20)

where b > 0, −1 <Re(v)<Re(µ) and 0 < ζ < b.
Now, using the results (3.18) and (3.20) in (2.12), we get∫ b

0
ζ

v+1(b2−ζ
2)µ−v−1Iv(ζ y1/2)dζ = 2µ−v−1bµ y−µ/2+v/2

Γ(µ− v)Iµ(by1/2), (3.21)

where b > 0,−1 < Re(v)< Re(µ), Re(µ− v)> 0 and |arg y|< π .
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4. Conclusion
Four integral formulae (3.6), (3.11), (3.16) and (3.21) involving special functions have been obtained with the help of the
theorems established in this paper. Several other integral formulae extending the results given in [11, 12] may be obtained with
the help of the theorems established in this paper and Stieltjes transforms available in [4].
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