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Abstract  

 

Exterior structures are susceptible to deformation, which can manifest as cracks on the surface.  

Deformations that occur on surfaces subjected to daily human use can exacerbate rapidly, potentially 

leading to irreversible structural damage. They have a potential to result in fatalities. Thus, continuous 

inspection of these deformations is of invaluable importance. In addition, the identification of the 

materials comprising the structures is essential to facilitate the implementation of appropriate 

precautionary measures. However, the inspections are hard to maintain with a solely human workforce. 

More advanced actions can be taken thanks to the developments in technology. Machine Learning 

methods could be used in this area where human workforce is ineffective. In this regard, an end-to-end 

Machine Learning approach was proposed in this study. The power of classical feature extraction 

methods and Artificial Neural Networks were combined to detect cracks and material of the surface 

simultaneously. The 2D Discrete Wavelet Transform and statistical properties gained from Gray Level 

Co-Occurrence Matrix were utilized in the feature extraction mechanism, and an ANN structure was 

designed. The findings of the study indicate that the proposed mechanism achieved an acceptable level 

of accuracy for recognizing the structural deformations, despite the challenges posed by the complexity 

of the problem. 
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1. Introduction 

Structures are susceptible to deformation (cracks) over an extended period of time and with frequent use 

[1,2]. The most common symptom of deformation is the appearance of cracks on the surface of the structure. 

A crack is a type of discontinuity that can form on the surface of a material, characterized by a break or 

separation along a portion of the surface, disrupting its uniformity and integrity [3]. The occurrence of surface 

cracks can have a considerable impact on the strength, stability, and aesthetic appearance of the material. In 

certain instances, surface cracks may also be indicative of deeper structural issues, requiring further 

investigation [4]. 

The structural deterioration tends to occur with greater frequency on exteriors such as walls, roads, and 

pavements. An example of the progression of surface degradation can be seen in the transformation of cracks 

on roads into holes over time [5]. The presence of holes on pavements presents a significant threat to public 

safety [6]. As such, it is essential to continuously monitor and promptly address these structural deficiencies to 

ensure the longevity and safety of the infrastructure. 

However, conducting ongoing monitoring is not practical due to the constraints of the available workforce 

[7]. But advancements in technology allow for the delegation of ongoing monitoring tasks to computers. The 

utilization of computer vision techniques has become increasingly prevalent in the pursuit of continuous 

surface defect detection.  

The established methodology for this task entails the extraction of salient features from an image, followed 

by an algorithm that categorizes the image as either exhibiting defects or being free from defects. The 

generation of features constitutes a component of the broader domain of image processing, encompassing 

various techniques including edge detection, extraction of color information, thresholding, and calculation of 

statistical characteristics such as energy and contrast etc. [8,9]. On the other hand, classification algorithms are 

situated within the domain of Artificial Intelligence (AI) and are commonly known as Machine Learning (ML) 

algorithms. The extracted features are input into an ML algorithm, which performs the classification.  

There exists a substantial body of research that employs these conventional methodologies. An end-to-end 

methodology for identifying cracks in asphalt surfaces can be found in [10]. The methodology was divided 

into several sections. Prior to the feature extraction, thresholding and noise elimination were employed to 

enhance the quality of the acquired image. In the feature extraction phase, the Hough Transform (HT) [11] was 

utilized to extract features from the image. Finally, Bagging, which is an ensemble ML method [12] and 

Support Vector Machines (SVM) [13] were used to classify the cracks.  

A study utilized Local Binary Pattern (LBP) [14] and Principal Component Analysis (PCA) [15] to identify 
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cracks on the pavements can be found in [16]. The extracted features were classified using SVM, resulting in 

a high rate of classification accuracy, as indicated by the authors. 

Statistical information extracted from a given image can serve as a significant feature for the purpose of 

classification, and such a study used these numerical values to detect the defect in pavements [17].  The authors 

used statistical properties that are calculated by constructing Gray-Level Co-Occurrence Matrix (GLCM) [18]. 

The implementation of this approach resulted in a substantial classification rate, estimated to be approximately 

88%. 

In addition to the conventional image processing (CIP) techniques, there has been a recent trend in the field 

towards the utilization of Convolutional Neural Networks (CNNs) as a means for image classification. CNNs 

can be classified as a sub class of Artificial Neural Networks (ANNs) and they offer a unique advantage as an 

end-to-end system, demonstrating exceptional performance in both feature extraction and classification due to 

its utilization of the backpropagation algorithm [19,20]. One of the key advantages of using CNNs in crack 

classification is the elimination of the manual feature extraction process. And these powerful networks have 

been widely utilized in the literature of crack detection [3, 21-24]. 

However, both CNNs and CIP techniques in this area have their own limitations that can be extended. The 

process of feature extraction in CNNs is automated and has the possibility to identify redundant features that 

may impede the efficiency of the training procedure. Also, it is noteworthy that there is currently no universally 

accepted method for the construction of these networks.  

On the other hand, CIP techniques that have been proposed in this field are limited by their singular 

approach. Nevertheless, there exist potent image processing methods that can be combined to achieve more 

robust feature from the image data. Furthermore, classical ML algorithms are also limited by their finite number 

of parameters and are therefore not well-suited for modifications. 

Therefore, a research inquiry emerges as to whether the capabilities of two sub-fields (CIP and ANN) of 

AI can be combined to produce competitive results in the area of crack detection.  

The current research focus in this domain primarily centers around the detection of cracks on surfaces. 
However, the exclusive monitoring of cracks may not be beneficial in overall. Classifying the type of surfaces 

is also a crucial factor in ensuring appropriate maintenance and emergency response measures. This raises a 

second research question as to whether it is feasible to detect both cracks and the surface material with high 

accuracy.  

This paper presents an end-to-end ML approach for detecting cracks and classifying the type of surface in 

question at the same time, in accordance with the mentioned research questions. The images of cracks on a 

surface tend to exhibit a distinctive linear orientation, which may be characterized as horizontal, vertical, or 

diagonal. These orientations were enhanced by using Discrete Wavelet Transform (DWT). GLCM features 

were utilized to extract statistical features from the enhanced images [17,25]. Finally, the obtained features 

were fed into an ANN structure to detect both cracks and surface material. The experimental evaluations were 

conducted using an image dataset produced by Utah State University, as it offers a diverse representation of 

various materials along with both cracked and non-cracked images. 

The rest of the paper is organized as follows: The details regarding the dataset utilized and the methodology 

employed comprehensively described in Section 2. Section 3 outlines the experimental setup, configurations, 

and metrics employed to evaluate the efficacy of the proposed method. The results of the experiments, along 

with their interpretation, are presented in Section 4.  Finally, the concluding remarks and suggestions for future 

work are presented in the last section of the paper. 

2. Materials and Methods 

This section briefly gives information to the reader about the dataset, the methods utilized, and the 

experimental setup in this paper. 

2.1. Dataset 

The present study utilized the SDNET2018 dataset to evaluate the efficacy of the proposed methodology. 

The dataset comprises three distinct surface types, namely, decks, walls, and pavements, each of which is 

categorized into two classes based on the presence or absence of cracks. The dataset consists of a total of 56,000 

images depicting cracked and non-cracked decks, walls, and pavements, each with a resolution of 256x256 

pixels. Total number of cracked images is 8484 and non-cracked images is 47607 [26,27]. Each image in the 

dataset is presented in RGB color format. Straightforward exemplary images from each class are given in 

Figure 1.  
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(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 1. Example Images From the SDNET2018. (a) Decks – Cracked (b) Pavements – Cracked (c) Walls – 

Cracked (d) Decks – Non Cracked (e) Pavements – Non Cracked (f) Walls – Non Cracked (Figure is in color 

in online version of paper) 

Upon examination of Figure 1, it becomes apparent that cracked and non-cracked images exhibit 

discernible patterns that differentiate them from one another. Nevertheless, the dataset includes images that 

exhibit considerable complexity and challenge even to human observers. Such examples are illustrated in 

Figure 2. 

 

   

(a)  (b)  (c)  

   
(d)  (e)  (f)  

Figure 2. Images with Considerable Complexity from the SDNET2018. (a) Decks – Cracked (b) Pavements – 

Cracked (c) Walls – Cracked (d) Decks – Non-Cracked (e) Pavements – Non-Cracked (f) Walls – Non-

Cracked (Figure is in color in online version of paper) 

Cracked and non-cracked images exhibit differences in their linear or non-linear orientation perspectives. 

Additionally, these orientations reveal themselves at different angles. As can be seen from the example images, 

these orientations exhibit strong pattern changes (edges) in the images. These pattern changes could be 

enhanced, in other words, a mechanism could be employed to present strong pattern changes in these images. 

Thus, DWT was employed to enrich those pattern changes. The next subsection describes the DWT briefly and 

presents an example image which DWT applied.  

 

2.2. 2D - Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) is a decomposition technique that enables the analysis of 1D and 

2D signals in different frequency components. 2D-DWT allows for inspection of any image in multi-resolution. 

The 2D-DWT provides low and high frequency information about an image at different decomposition levels. 

In general, 2D-DWT divides images into four different frequency bands and each of them reveals different 

information about a given image: 

1. LL – Low Frequency component of the image 
2. LH – Horizontal Edges Enhanced 

3. HL – Vertical Edges Enhanced 
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4. HH – Diagonal Edges Enhanced 

While 1-Level of decomposition provides information about 3 different orientations, one advantage of 2D 

DWT is that it enables n-Level decomposition by decomposing the LL part of the image at each level, thus 

providing more substantial information about the image. The 2D-DWT algorithm initiates by selecting a 

wavelet basis function for the image at hand. The selected wavelet function is then used to decompose the 

image into its component frequency sub-bands. Given the long-standing history of 2D-DWT, numerous 

wavelet functions have been proposed in the literature, each of which enhances the LH, HL, and HH sub-bands 

differently [28]. An example 4-Level decomposition of a crack deck surface image is given in Figure 3. 

 

 
Figure 3. 4-Level Decomposition of Cracked Deck Image (Wavelet Function is Bior1.5) 

As illustrated in Figure 3, an increase in the level of decomposition leads to a more evident exposition of 

crack characteristics. Each decomposition in 2D-DWT can be used as raw features. However, the feature vector 

size may become excessively large for a given image, as the feature vector expands with each level of 

decomposition, in proportion to the image's shape. Another drawback of using 2D-DWT's results directly is 

the presence of unnecessary pixel information, as not every pixel is an important feature. Therefore, more 

meaningful features that summarize the image information into a single number could be effective for both 

interpretability and computational burden. For this reason, GLCM was employed in this study. The 

effectiveness of GLCM has been demonstrated in the literature [17, 25]. The next subsection gives brief 

information about GLCM to the reader.  

 

2.3. Gray Level Co-Occurrence Matrix (GLCM) 

GLCM is a statistical method that calculates correlation between pixels in a grayscale image. It evaluates 

the correlation between the gray level values of two pixels at a specific distance and angle in an image. It was 

proposed by Haralick [18]. The GLCM performs its operation using three parameters: a grayscale image, a 

distance parameter that determines how many pixels will contribute to correlation, and an angle parameter for 

which the correlation will be sought. It is capable of capturing texture changes effectively and presents this 

information in a number of properties: Dissimilarity, Correlation, Homogeneity, Contrast, ASM and Energy. 

General working mechanism and formula of each property is given in Figure 4 and Table 1 respectively. 
 

 
Figure 4.Working Mechanism of GLCM. (a) Gray values of the image. (b) Constructed GLCM of the image. 
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Table 1. GLCM Properties and Its’ Respective Formulas. 

Properties Formula 

Dissimilarity ∑ (𝑃𝑖𝑗|𝑖 − 𝑗|)

𝑀−1

𝑖,𝑗=0

 

Correlation ∑ 𝑃𝑖𝑗 [
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

(𝜎𝑖
2)(𝜎𝑗

2)
]

𝑀−1

𝑖,𝑗=0

 

Homogeneity ∑
𝑃𝑖𝑗

1 + (𝑖 − 𝑗)2

𝑀−1

𝑖,𝑗=0

 

Contrast ∑ 𝑃𝑖𝑗 (𝑖 − 𝑗)2

𝑀−1

𝑖,𝑗=0

 

ASM ∑ ∑ 𝑃(𝑖, 𝑗)2

𝑀−1

𝑗=0

𝑀−1

𝑖=0

 

Energy √𝐴𝑆𝑀 

 

The present study employed 4-Level of 2D-DWT decomposition and for each level of decomposition 

properties which their equations are given in Table 1 were extracted for each image (LH, HL, HH). Pixels 

distance was selected as 5 and for angles of [0, π/2, π/3, π/4, π/6, 3π/4], the statistical features were extracted. 

Thus, rather than accepting whole decomposition as a feature, more discriminative and numerical features were 

extracted. These extracted features are suitable for a ML algorithm since they represent enough statistical 

information about both cracked and non-cracked images. 

However, the classical ML algorithms may not be sufficient for capturing the underlying function required 

to discriminate between cracked and non-cracked images. Moreover, since the primary objective of this study 

is to classify both the surface material and the presence of cracks, more advanced AI approaches may be better 

suited for the task at hand. For these reasons, an ANN structure was employed, as it offers a more flexible 

structure that can be modified to fit the needs of the problem. The following subsection provides an overview 

of the background knowledge necessary for understanding ANNs. 

 

2.4. Artificial Neural Networks (ANNs) 

An ANN is an AI method that can often effectively capture the underlying discriminative properties of a 

feature set and is commonly used for tasks such as classification. ANNs consist of multiple layers, each with a 

specific number of neurons. Each neuron has an activation function that is triggered when certain threshold 

value is reached. Each layer in the ANN is fully interconnected with the subsequent layer and is updated based 

on the computed error rate of the network's output. This process of error backpropagation enables the network 

to adjust its weights and biases in a manner that minimizes the overall loss or error of the model during training.  

Due to the aforementioned characteristics, ANNs have often been compared to the structure and function of 

the human brain, as they both involve the processing of complex information through the use of interconnected 

units. A simple ANN structure is given in Figure 5. 

 

 
Figure 5. An Example Artificial Neural Network Structure 

Figure 5 depicts the example architecture of an ANN with 8 input nodes and 6 output nodes, while the 
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intermediary layers are referred to as hidden layers and may have varying numbers of neurons. Each neuron 

has an activation function that ensures the non-linearity through the network. Because of their easily modifiable 

structure and performance in classification tasks, ANNs were chosen for this study. 

Each of the mentioned methods has its own set of parameters that must be determined prior to conducting 

the experiment. Thus, the next section defines the experimental settings for this study. Also, it presents the 

general overview of the proposed method.  
 

3. Experimental Settings and Overview of the Proposed Method 

The dataset used in this study is generally employed for classifying images as either cracked or non-cracked. 

However, in addition to the binary classification of surface cracks, determining the type of surface is also 

crucial for further analysis and emergency responses. To address this, the class labels in this study were 

modified to include not only cracked and non-cracked labels, but also information regarding the type of surface. 

To make labels suitable for the ANN outputs, they were modified using the Label Encoding. The encoded 

labels are given in Table 2. 

 

Table 2. Labels Modification 

Label Name Original Label Encoded Label 

Decks – Cracked 0 [1 0 0 0 0 0] 

Decks – Non - Cracked 1 [0 1 0 0 0 0] 

Pavements – Cracked 2 [0 0 1 0 0 0] 

Pavements – Non - Cracked 3 [0 0 0 1 0 0] 

Walls - Cracked 4 [0 0 0 0 1 0] 

Walls – Non – Cracked 5 [0 0 0 0 0 1] 

 

As mentioned earlier, the overall distribution of the dataset is imbalanced, with significantly more non-

cracked images than images with cracks. This data imbalance could potentially lead to poor results when 

training a model to classify crack images. To address the data imbalance, 2500 images were selected for each 

label to balance the number of samples in the dataset. The feature extraction process involved a 2D-DWT with 

a 4-Level decomposition using the Bior1.5 wavelet function. For each level of decomposition, the GLCM with 

parameters as specified in Section 2.3, was utilized to extract statistical properties of the resulting Wavelet 

coefficients. Finally, an ANN structure was constructed, with 432 inputs, 6 hidden layers, and 6 outputs. The 

activation function used for each hidden layer was the Hyperbolic Tangent (Tanh), while the output layer 

employed the SoftMax activation function to generate the probability of each label. The BinaryCrossentropy 

loss function and Adam optimizer were decided as hyperparameters. To prevent overfitting of the ANN, 

dropout and regularization techniques were employed on various layers. All features were normalized to ensure 

faster convergence of the ANN. Finally, the dataset was divided into train and test sets, with a ratio of 80% for 

training and 20% for testing. Parameters of the methods are detailed in Table 3. 

 

Table 3. Parameters of the Methods 

Method / Settings Parameter(s) 

Number of Images for Each Label 2500 

2D DWT 4 Level Decomposition. Bior1.5 Wavelet Function for each level. 

GLCM Distance of 5 Pixels. Angles of [0, π/2, π/3, π/4, π/6, 3π/4] 

ANN 

• Dropout 

• Regularization 

 

• Optimizer 

• Number of Epoch 

• Batch Size 

• Loss Function 

• Train and Test set Ratio 

6 Hidden Layers [512,256,128,256,64,32]  

After 4th and 6th layers and ratio of 0.2 and 0.3 respectively. 
First two layers have L1 and L2 regularization. The rest have L2 

regularization except the final layer.  

Adam Optimizer – Learning Rate of 10-5 

25 

8 

BinaryCrossentropy 

80% - 20% respectively 

  

 

3.1. Evaluation Metrics 

The classical evaluation metrics for a classification problem were employed. The proposed method was 

evaluated in terms of accuracy, precision, recall, and F1 score. Additionally, the Area Under Curve (AUC) 

metric was employed, which serves as an indicator of the model's capacity to differentiate between classes. 

Moreover, the results of the method were presented in the form of a confusion matrix. The formulas for each 

metric are provided in Table 4. 
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Table 4. Evaluation Metrics 

Metric Formula 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score 𝐹1 =
2

1
𝑅𝑒𝑐𝑎𝑙𝑙 +

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 

 

To clarify the abbreviations used in Table 4, we draw an analogy between surface types, specifically Wall, 

and two categories of inner classes: cracked and non-cracked. The abbreviation 'TP' stands for True Positive, 

which is the number of correct predictions made by the model. This means that the model predicts Wall-Crack 

and the sample is actually Wall-Crack. Similarly, 'TN' stands for True Negative, which is the number of 

negative predictions made by the model. In this case, the model predicts the sample as non-Wall and non-

cracked, and the sample is actually non-Wall and non-cracked. On the other hand, 'FP' and 'FN' are 

abbreviations for False Positive and False Negative, respectively. For False Positive, the model predicts Wall-

Crack when the sample is actually not Wall-Crack. Finally, False Negative represents the number of predictions 

where the model predicts the sample as non-Wall and non-cracked when the sample is actually Wall-Crack. 

 

4. Experimental Results 

We first inspect the results by examining the accuracy and loss metrics during training for both the train set 

and test set. The behavior of accuracy and loss metrics are given in Figure 6 side by side. 

 

  

(a) (b) 

Figure 6. Accuracies and Losses Per Epoch. (a) Accuracy (b) Loss (Figure is in color in online version of 

paper) 

Figure 6 (a) shows that the accuracy of both the train set and the test set (used as the validation set) 

exhibited high performance. Although heavy regularizations were employed, the constructed ANN model 

exhibited signs of overfitting at the end of the training phase. However, the same deductions cannot be made 

for Figure 6 (b), which shows the model's loss performance. Both the training and validation set losses tended 

to smoothly converge to a minimum. Final accuracy rates for both the train set and the validation set were 

given in Table 5. 

 

Table 5. Train and Test Set Performances of the Model 

Set Accuracy 

Train 92.19% 

Test 89.12% 

 

To gain a comprehensive understanding of the model, additional metrics as specified in Table 4 were 

assessed on both the train and test sets following the completion of the model's training process. The overall 

results in terms of metrics are given Table 6. 
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Table 6. The Overall Results for the Model 

Set Metric Result 

Train 

Precision 83.08% 

Recall 66.72% 

F1 Score 73.88% 

AUC 96.80% 

Test 

Precision 72.33% 

Recall 56.14% 

F1 Score 63.07% 

AUC 93.69% 

 

Upon examining the results provided in Table 6, it is evident that the model exhibits relatively better 

performance on the train set as compared to the test set. One of the apparent reasons for this could be attributed 

to the number of samples used during the training phase of the model. Increasing the amount of data available 

could be one solution to this overfitting problem. It is known that providing an ANN structure with a larger 

amount of data often results in improved performance. The model’s performance on precision was higher than 

other metrics which means that out of all the samples, 83% of them were classified correctly. The precision 

rate on the test set was 72.3%, which is a relatively good performance for such a challenging task. Finally, the 

model's performance was further evaluated using a confusion matrix, which is shown in Figure 7. 

 

 
Figure 7. Confusion Matrix for the Model (Figure is in color in online version of paper) 

Figure 7 highlights one of the primary factors that may have contributed to the relatively low performance 

of the model on the test set. Specifically, Figure 7 indicates that while the model is generally effective at 

localizing surface materials, its ability to discriminate between inner-class categories appears to be not optimal. 

To provide a specific illustration, the model demonstrates a proficient capability in distinguishing between 

Wall and Pavement classes. However, the model appears to face considerable difficulty in effectively 

discerning between the cracked and non-cracked variants of the Wall surface category. As shown in Figure 2, 

hard examples of the dataset are one possible reason of dispersed inner class results in Figure 7. Despite the 

identified limitations, the findings suggest that the model's overall performance was satisfactory for the 

intended application. 

To thoroughly assess the effectiveness of the proposed method, a quantitative analysis was conducted. This 

analysis involved a specific comparison of its performance against established methods documented in the 

existing literature, with a particular emphasis on CNNs. The comparison was based on the accuracy metric, as 

not all metrics presented in this paper were available in the literature within this context. Additionally, this 

comparison was limited to the SDNET 2018 dataset. 

The methods introduced by Slonski [29] provide a comprehensive understanding of the behavior of 

Convolutional Neural Networks (CNNs) in the context of classification, specifically when applied to the 

SDNET 2018 dataset. Slonski's approach involved employing CNNs for the purpose of classifying cracks 

within the SDNET 2018. The method presented in this paper not only accomplishes crack classification but 
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also extends its capability to discern the specific type of surface. Consequently, our proposed method 

demonstrates superior performance compared to the conventional binary crack classification achieved in [29]. 

Another strategy put forth by Chianese et al. [30] involves Transfer Learning. Their approach was utilization 

of three pre-established CNN architectures: AlexNet, Inception-V3, and ResNet-101According to the 

methodology presented in [30], our approach increased the performance. A tabulated representation of this 

comparative analysis is provided in Table 7. 

 

Table 7. Comparison with CNNs Approaches 

Method Accuracy 

Slonski,M. [29] – From Scratch 

CNN 

86.00% 

Slonski,M. [29] – Pretrained 

VGG16 – Data Augmentation 

88.00% 

Chianese, R. et al [30] - AlexNet 87.30% 

Chianese, R. et al [30] – Inception-

V3 

84.67% 

Chianese, R. et al [30] – ResNet-

101 

86.00% 

Proposed Method 89.12% 

 

5. Conclusion 

Structural deformation is a natural phenomenon that occurs in most structures over time. These 

deformations typically manifest in the exterior materials of structures, such as roads and buildings.  Persistent 

monitoring of structural degradation is of paramount importance in ensuring the safety and reliability of 

structures. Failure to regularly inspect and address such deformations can pose a serious threat to both the 

economy and, more importantly, human lives. Furthermore, merely detecting cracks may not be sufficient for 

taking appropriate actions, as the type of surface material can also significantly influence the structural 

degradation process. Nevertheless, conducting regular inspections of structures demands a significant number 

of human resources, which is often impractical to implement in real-world scenarios.  

Given this challenge, there is a need for more practical solutions to address the issue, including 

advancements in technology. In this regard, AI solutions are employed. The spectrum of AI methods, that can 

be categorized as ML algorithms, is vast and varies from classical ML algorithm to more advanced techniques 

such as CNNs. The classical ML algorithms work based on the features that are extracted from a given image. 

However, they may not produce acceptable performance since they are not flexible in modification. Also, they 

are bound by the quality of the extracted features. On the other hand, mechanisms that do not require human 

intervention, such as CNNs, are both computationally expensive and may produce ineffective features. 

For these challenges in mind, the present study proposed an end-to-end ML approach for classifying the 

cracks and non-cracked images and material of the surface parallel. For the feature extraction part, 2D-DWT 

was utilized, as it is known that DWT enhances the frequency changes in an image. For the ML part, an ANN 

structure was employed since it provides a more flexible mechanism and allows us to control all aspects of it. 

The study could be enhanced in several ways. One possible enhancement could be using different Wavelet 

functions to assess to performance of the model more. Another proper improvement is to be adding color 

feature to enhance the approach, since the color of each surface differs. 

Different from the other studies in the literature, the current work classifies both cracked and non-cracked 

images and surface material at the same time. The results suggested that the proposed mechanism achieved an 

acceptable level of accuracy, although the task at hand is difficult. 
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Nomenclature  

Abbreviations 

AI Artificial Intelligence 

ANN Artificial Neural Networks 

CIP Conventional Image Processing 

CNN Convolutional Neural Networks  

DWT Discrete Wavelet Transforms 

GLCM Gray Level Co-Occurence Matrix 

NSGA Hough Transform 

HT Hyperbolic Tangent 
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LBP Local Binary Pattern 

ML Machine Learning 

PCA Principal Component Analysis 

SVM Support Vector Machines 
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	1. Introduction
	Structures are susceptible to deformation (cracks) over an extended period of time and with frequent use [1,2]. The most common symptom of deformation is the appearance of cracks on the surface of the structure. A crack is a type of discontinuity that...
	The structural deterioration tends to occur with greater frequency on exteriors such as walls, roads, and pavements. An example of the progression of surface degradation can be seen in the transformation of cracks on roads into holes over time [5]. Th...
	However, conducting ongoing monitoring is not practical due to the constraints of the available workforce [7]. But advancements in technology allow for the delegation of ongoing monitoring tasks to computers. The utilization of computer vision techniq...
	The established methodology for this task entails the extraction of salient features from an image, followed by an algorithm that categorizes the image as either exhibiting defects or being free from defects. The generation of features constitutes a c...
	There exists a substantial body of research that employs these conventional methodologies. An end-to-end methodology for identifying cracks in asphalt surfaces can be found in [10]. The methodology was divided into several sections. Prior to the featu...
	A study utilized Local Binary Pattern (LBP) [14] and Principal Component Analysis (PCA) [15] to identify cracks on the pavements can be found in [16]. The extracted features were classified using SVM, resulting in a high rate of classification accurac...
	Statistical information extracted from a given image can serve as a significant feature for the purpose of classification, and such a study used these numerical values to detect the defect in pavements [17].  The authors used statistical properties th...
	In addition to the conventional image processing (CIP) techniques, there has been a recent trend in the field towards the utilization of Convolutional Neural Networks (CNNs) as a means for image classification. CNNs can be classified as a sub class of...
	However, both CNNs and CIP techniques in this area have their own limitations that can be extended. The process of feature extraction in CNNs is automated and has the possibility to identify redundant features that may impede the efficiency of the tra...
	On the other hand, CIP techniques that have been proposed in this field are limited by their singular approach. Nevertheless, there exist potent image processing methods that can be combined to achieve more robust feature from the image data. Furtherm...
	Therefore, a research inquiry emerges as to whether the capabilities of two sub-fields (CIP and ANN) of AI can be combined to produce competitive results in the area of crack detection.
	The current research focus in this domain primarily centers around the detection of cracks on surfaces. However, the exclusive monitoring of cracks may not be beneficial in overall. Classifying the type of surfaces is also a crucial factor in ensuring...
	This paper presents an end-to-end ML approach for detecting cracks and classifying the type of surface in question at the same time, in accordance with the mentioned research questions. The images of cracks on a surface tend to exhibit a distinctive l...
	The rest of the paper is organized as follows: The details regarding the dataset utilized and the methodology employed comprehensively described in Section 2. Section 3 outlines the experimental setup, configurations, and metrics employed to evaluate ...
	2. Materials and Methods
	This section briefly gives information to the reader about the dataset, the methods utilized, and the experimental setup in this paper.
	2.1. Dataset
	2.2. 2D - Discrete Wavelet Transform
	The Discrete Wavelet Transform (DWT) is a decomposition technique that enables the analysis of 1D and 2D signals in different frequency components. 2D-DWT allows for inspection of any image in multi-resolution. The 2D-DWT provides low and high frequen...
	1. LL – Low Frequency component of the image
	2. LH – Horizontal Edges Enhanced
	3. HL – Vertical Edges Enhanced
	4. HH – Diagonal Edges Enhanced
	While 1-Level of decomposition provides information about 3 different orientations, one advantage of 2D DWT is that it enables n-Level decomposition by decomposing the LL part of the image at each level, thus providing more substantial information abo...
	The present study employed 4-Level of 2D-DWT decomposition and for each level of decomposition properties which their equations are given in Table 1 were extracted for each image (LH, HL, HH). Pixels distance was selected as 5 and for angles of [0, π/...
	However, the classical ML algorithms may not be sufficient for capturing the underlying function required to discriminate between cracked and non-cracked images. Moreover, since the primary objective of this study is to classify both the surface mater...
	2.4. Artificial Neural Networks (ANNs)
	The dataset used in this study is generally employed for classifying images as either cracked or non-cracked. However, in addition to the binary classification of surface cracks, determining the type of surface is also crucial for further analysis and...
	As mentioned earlier, the overall distribution of the dataset is imbalanced, with significantly more non-cracked images than images with cracks. This data imbalance could potentially lead to poor results when training a model to classify crack images....
	4. Experimental Results
	We first inspect the results by examining the accuracy and loss metrics during training for both the train set and test set. The behavior of accuracy and loss metrics are given in Figure 6 side by side.
	Figure 6 (a) shows that the accuracy of both the train set and the test set (used as the validation set) exhibited high performance. Although heavy regularizations were employed, the constructed ANN model exhibited signs of overfitting at the end of t...
	To gain a comprehensive understanding of the model, additional metrics as specified in Table 4 were assessed on both the train and test sets following the completion of the model's training process. The overall results in terms of metrics are given Ta...
	Upon examining the results provided in Table 6, it is evident that the model exhibits relatively better performance on the train set as compared to the test set. One of the apparent reasons for this could be attributed to the number of samples used du...
	Figure 7 highlights one of the primary factors that may have contributed to the relatively low performance of the model on the test set. Specifically, Figure 7 indicates that while the model is generally effective at localizing surface materials, its ...
	To thoroughly assess the effectiveness of the proposed method, a quantitative analysis was conducted. This analysis involved a specific comparison of its performance against established methods documented in the existing literature, with a particular ...
	The methods introduced by Slonski [29] provide a comprehensive understanding of the behavior of Convolutional Neural Networks (CNNs) in the context of classification, specifically when applied to the SDNET 2018 dataset. Slonski's approach involved emp...
	5. Conclusion
	Structural deformation is a natural phenomenon that occurs in most structures over time. These deformations typically manifest in the exterior materials of structures, such as roads and buildings.  Persistent monitoring of structural degradation is of...
	Given this challenge, there is a need for more practical solutions to address the issue, including advancements in technology. In this regard, AI solutions are employed. The spectrum of AI methods, that can be categorized as ML algorithms, is vast and...
	For these challenges in mind, the present study proposed an end-to-end ML approach for classifying the cracks and non-cracked images and material of the surface parallel. For the feature extraction part, 2D-DWT was utilized, as it is known that DWT en...
	The study could be enhanced in several ways. One possible enhancement could be using different Wavelet functions to assess to performance of the model more. Another proper improvement is to be adding color feature to enhance the approach, since the co...
	Different from the other studies in the literature, the current work classifies both cracked and non-cracked images and surface material at the same time. The results suggested that the proposed mechanism achieved an acceptable level of accuracy, alth...
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