
  

 

 

AKÜ FEMÜBİD 23 (2023) 055101 (1122-1141) AKU J. Sci. Eng. 23 (2023) 055101 (1122-1141) 
  DOI: 10.35414/akufemubid.1263731 

Araştırma Makalesi / Research Article 
Chaotic Snake Optimizer 
 
Gülnur YILDIZDAN1  

1 Kulu Vocational School, Selcuk University, Konya, Turkey 
 
Corresponding author e-posta: gavsar@selcuk.edu.tr     ORCID ID: https://orcid.org/0000-0001-6252-9012 

Geliş Tarihi: 11.03.2023 Kabul Tarihi: 18.09.2023 

 

Keywords 

Chaotic maps; 
Continuous 

optimization; Snake 

optimizer; 

Metaheuristic 

algorithms 

Abstract 

Metaheuristic algorithms provide approximate or optimal solutions for optimization problems in a 

reasonable time. With this feature, metaheuristic algorithms have become an impressive research area 

for solving difficult optimization problems. Snake Optimizer is a population-based metaheuristic 

algorithm inspired by the mating behavior of snakes. In this study, different chaotic maps were 

integrated into the parameters of the algorithm instead of random number sequences to improve the 

performance of Snake Optimizer, and Snake Optimizer variants using four different chaotic mappings 

were proposed. The performances of these proposed variants for eight different chaotic maps were 

examined on classical and CEC2019 test functions. The results revealed that the proposed algorithms 

contribute to the improvement of Snake Optimizer performance. In the comparison with the literature, 

the proposed Chaotic Snake Optimizer algorithm found the best mean values in many functions and 

took second place among the algorithms. As a result of the tests, Chaotic Snake Optimizer has been 

shown to be a promising, successful, and preferable algorithm. 
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Öz 

Metasezgisel algoritmalar, optimizasyon problemlerine makul bir sürede yaklaşık veya optimal 

çözümler sunar. Bu özelliği ile metasezgisel algoritmalar zor optimizasyon problemlerini çözmek için 

etkileyici bir araştırma alanı haline gelmiştir. Yılan Optimize Edici, yılanların çiftleşme davranışlarından 

esinlenen popülasyon tabanlı bir metasezgisel algoritmadır. Bu çalışmada, Yılan Optimize Edicinin 

performansını iyileştirmek için rastgele sayı dizileri yerine algoritmanın parametrelerine farklı kaotik 

haritalar entegre edilmiş ve dört farklı kaotik haritalama kullanılarak Yılan Optimize Edici varyantları 

önerilmiştir. Önerilen bu varyantların sekiz farklı kaotik harita için performansları klasik ve CEC2019 test 

fonksiyonları üzerinde incelenmiştir. Sonuçlar, önerilen algoritmaların Yılan Optimize Edici 

performansının iyileştirilmesine katkıda bulunduğunu ortaya koydu. Literatür ile karşılaştırıldığında 

önerilen Kaotik Optimize Edici algoritması birçok fonksiyonda en iyi ortalama değerleri bulmuş ve 

algoritmalar arasında ikinci sırada yer almıştır. Yapılan testler sonucunda, Kaotik Yılan Optimize Edicinin 

gelecek vadeden, başarılı ve tercih edilebilir bir algoritma olduğu görülmüştür. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

The term metaheuristic algorithm refers to higher-

level heuristics that can be used to solve many 

different types of optimization problems. 

Optimization problems solved by metaheuristic 

algorithms have a wide variety, from single to multi-

objective, from continuous to discrete, and from 

constrained to unconstrained (Dokeroglu et al. 

2019). Most of these problems are NP-hard 

problems, which are a group of optimization 

problems that cannot be solved in polynomial time 

(Daliri et al. 2022). Solving these problems is often 

complex and not easy. Metaheuristic algorithms 

provide approximate or optimal solutions with 

reasonable execution times for these 
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problems. With this feature, metaheuristics have 

become an impressive field of research that is 

improving day by day in solving NP-hard problems. 

Since the first metaheuristic algorithm was 

proposed, great progress has been made, and many 

new algorithms continue to be proposed every day. 

There are five main categories of meta-heuristic 

algorithms that are derived from natural sources. 

These categories include evolution-based, swarm-

based, physics/chemistry-based, human-based, and 

others. Swarm-based algorithms have modeled the 

self-organization observed in swarm behavior 

among social creatures in nature (Wang et al. 2022). 

The Snake Optimizer algorithm, one of the recently 

proposed metaheuristic algorithms, is a swarm-

based algorithm inspired by the mating behavior of 

snakes. The algorithm has attracted attention since 

the day it was proposed and has been used on 

different problems. Klimov et al. (2020) used the 

Snake Optimizer to optimize the frequencies at 

which quantum logic gates are applied in 

superconducting qubits. (Li et al.2022) proposed a 

new method with optimized variable mode 

decomposition with snake optimization and a 

double-threshold correlation coefficient to 

eliminate ship-radiated noise. (Rawa 2022) used a 

hybridization of snake optimizer and sine-cosine 

algorithms for the transmission expansion planning 

problem. (El-Saleh et al. 2023) introduced a Binary 

Snake Optimizer-based feature selection approach 

to improve the performance of intrusion detection 

systems. (Dai et al. 2022) developed a model based 

on snake optimization to improve the accuracy of 

the thermal error estimation of a motorized spindle. 

(Liu et al. 2023) proposed a chaotic gaussian snake 

optimization algorithm for sensor node 

optimization in soil monitoring wireless sensor 

networks. (Fu et al. 2022) proposed a gas explosion 

prediction model in which the improved snake 

optimization algorithm is integrated. Sine chaos 

mapping, spiral search strategy, and snake dynamic 

adaptive weight were used in the snake optimizer to 

increase the search capability. (Cheng et al.2022) 

presented a neural network-based prediction model 

for fingerprint indoor localization technology whose 

weights and thresholds were adjusted using the 

snake optimization technique. (Omran et al.2022) 

used the snake optimizer for optimum sizing of a 

complete green photovoltaic battery fast charging 

station for electric vehicles. Yao et al. (2023) 

proposed an improved SO with a new opposite 

learning strategy and four new dynamic update 

mechanisms, including tent-chaos logic, to improve 

SO performance. (Vellingiri et al. 2023) proposed 

the chaotic SO algorithm, a hybrid algorithm 

combining chaotic maps with SO for the single diode 

model. (Gong et al. 2023) proposed a multi-

objective clustering model for an industrial wireless 

sensor network. A novel chaotic multilevel elite 

clone snake optimization method is designed to 

improve the optimal clustering mechanism in this 

model. 

In this study, different chaotic maps instead of 

random number sequences are integrated into the 

algorithm's parameters to improve the performance 

of standard SO, and SO variants using four different 

chaotic mappings (CSO) are proposed. The 

performances of these proposed algorithms for 

eight different chaotic maps were examined on the 

classical and CEC2019 test functions, and the results 

were compared with those of the standard SO and 

each other. There are not many studies in the 

literature about chaotic map-based SO. This study 

was conducted with the motivation to reveal the 

chaotic map-based performance of the algorithm 

and contribute to the literature on chaotic map-

based versions of SO and their performance. The 

rest of the study is structured in the following 

manner: The snake optimizer and chaotic maps are 

explained in the material and method section in the 

second section. In the third section, the proposed 

chaotic snake optimizer is explained. In the fourth 

section, the findings of the tests are discussed. 

Finally, the fifth section includes the conclusion and 

future work. 

 

2. Materials and Methods 

2.1. Snake Optimizer (SO) 

Hashim and Hussien (2022) proposed the Snake 

Optimizer (SO), a population-based metaheuristic 
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algorithm, in 2022 to imitate snakes' mating 

behavior. Snakes engage in their mating behavior 

when it is cold outside and they can find food. SO is 

initialized by generating a random population 

according to Equation 1. The population is then 

divided equally into two groups, male and female 

(Equation 2). 

𝑥𝑖,𝑗 = 𝐿𝑏𝑗 + 𝑟 ∗ (𝑈𝑏𝑗 − 𝐿𝑏𝑗),        𝑖 = 1,2, … . , 𝑁      𝑗 =

1,2, … . ,𝑚                                                                     (1)                                      

𝑁𝑓𝑒𝑚𝑎𝑙𝑒 ≅ 
𝑁

2
  ,      𝑁𝑚𝑎𝑙𝑒 = 𝑁 − 𝑁𝑓𝑒𝑚𝑎𝑙𝑒             (2)                        

where 𝑥𝑖,𝑗  is the 𝑗𝑡ℎ dimension of the 𝑖𝑡ℎ snake, 𝑚 

is the number of dimensions, 𝑁 is the population 

size, 𝑟 is a random number in the range (0,1), and 

𝑈𝑏 and 𝐿𝑏 are the upper and lower bounds of the 

𝑗𝑡ℎ dimension, respectively. In addition, 𝑁𝑓𝑒𝑚𝑎𝑙𝑒 

indicates the number of female snakes, while 𝑁𝑚𝑎𝑙𝑒 

indicates the number of male snakes. The best 

individual from each group (i.e. 𝐹𝑏𝑒𝑠𝑡,𝑓𝑒𝑚𝑎𝑙𝑒 and 

𝐹𝑏𝑒𝑠𝑡,𝑚𝑎𝑙𝑒) is found in each iteration.  

In the algorithm, temperature (T) and food quality 

(FQ) are calculated according to Equations 3 and 4. 

In these equations, 𝑡 is the current iteration number 

and 𝑡𝑚𝑎𝑥 is the total number of iterations. 𝑐1 is a 

constant (𝑐1 = 0.5). 

 𝑇 = exp (
−𝑡

𝑡𝑚𝑎𝑥
)                                                             (3)                                                      

𝐹𝑄 = 𝑐1 × exp (
𝑡−𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
)                                                (4)                              

The snakes select a random location to search for 

food when FQ < Th (Th=Threshold= 0.25). Then they 

update their position. The exploration behavior of 

male and female snakes is expressed 

mathematically in Equations 5 and 6, respectively. 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑘,𝑗(𝑡) ∓ 𝑐2 × 𝐴𝑖,𝑚𝑎𝑙𝑒((𝑈𝑏 − 𝐿𝑏) × 𝑟1 +

𝐿𝑏),      𝑤ℎ𝑒𝑟𝑒 𝐴𝑖,𝑚𝑎𝑙𝑒 = exp (
−𝐹𝑟,𝑚𝑎𝑙𝑒

𝐹𝑖,𝑚𝑎𝑙𝑒
)                        (5)                                                                                                                                

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑘,𝑗(𝑡 + 1) ∓ 𝑐2 × 𝐴𝑖,𝑓𝑒𝑚𝑎𝑙𝑒((𝑈𝑏 − 𝐿𝑏) ×

𝑟2 + 𝐿𝑏),   𝑤ℎ𝑒𝑟𝑒 𝐴𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 = exp (
−𝐹𝑟,𝑓𝑒𝑚𝑎𝑙𝑒

𝐹𝑖,𝑓𝑒𝑚𝑎𝑙𝑒
)            (6)                                                                                                                                                           

In these equations, 𝑘 is a random integer in the 

range (1, 
𝑁

2
 ), 𝑥𝑘,𝑗 is a randomly selected 

male/female snake from the male/female snake 

population, and 𝑟1and 𝑟2 are random numbers in the 

range (0,1). 𝐴𝑖,𝑚𝑎𝑙𝑒  and 𝐴𝑖,𝑓𝑒𝑚𝑎𝑙𝑒  are the food-

finding abilities of male and female snakes, 

respectively. 𝐹𝑟,𝑚𝑎𝑙𝑒 represents the fitness of a 

previously chosen random male snake, while 

𝐹𝑟,𝑓𝑒𝑚𝑎𝑙𝑒 represents the fitness of a previously 

chosen random female snake. 𝐹𝑖,𝑚𝑎𝑙𝑒  and 𝐹𝑖,𝑓𝑒𝑚𝑎𝑙𝑒  

are the 𝑖𝑡ℎ male and female snake fitness, 

respectively. The flag direction operator (∓) scans 

all possible directions randomly in the given search 

space. 

In the exploitation phase, the algorithm looks for 

the best solutions under the following two 

conditions: 

  If  FQ>Th 

 If the Temperature > Th (0.6) (hot), the 

snakes will only move to the food according 

to Equation 7. 

 𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑓 ∓ 𝑐3 × 𝑇 × 𝑟3 × (𝑥𝑓 − 𝑥𝑖,𝑗(𝑡))          (7)                                           

where 𝑥𝑖,𝑗  indicates where male and female snakes 

are positioned, 𝑥𝑓 denotes the best snakes, 𝑐3 is a 

constant equal to 2, and 𝑟3 is a random number in 

the range (0,1). 

If FQ < Th (Th < 0.6) (cold), the snakes either fight or 

mate. 

 Figthing 

The fighting ability of the male snake 𝐹𝑚𝑎𝑙𝑒 and 

female snake 𝐹𝑓𝑒𝑚𝑎𝑙𝑒 can be expressed as in 

Equations 8 and 9. 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) ± 𝑐4 × 𝐹𝑖,𝑚𝑎𝑙𝑒 × 𝑟4 ×

(𝑥𝑏𝑒𝑠𝑡,𝑓𝑒𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑚𝑎𝑙𝑒(𝑡)) , 𝑤ℎ𝑒𝑟𝑒 𝐹𝑖,𝑚𝑎𝑙𝑒 =

exp (
−𝐹𝑏𝑒𝑠𝑡,𝑓

𝐹𝑖
)                                                                 (8)                                                                                                             

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) ± 𝑐4 × 𝐹𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 × 𝑟5 ×

(𝑥𝑏𝑒𝑠𝑡,𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒(𝑡 + 1)) , 𝑤ℎ𝑒𝑟𝑒 𝐹𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 =

exp (
−𝐹𝑏𝑒𝑠𝑡,𝑚𝑎𝑙𝑒

𝐹𝑖
)                                                           (9)                                                                                                                                                                                                                                               
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where 𝑥𝑖,𝑗  indicates where male and female snakes 

are positioned, 𝑥𝑏𝑒𝑠𝑡,𝑓𝑒𝑚𝑎𝑙𝑒 and 𝑥𝑏𝑒𝑠𝑡,𝑚𝑎𝑙𝑒 denotes 

the positions of the best snakes in the female and 

male groups, respectively. 𝐹𝑖,𝑚𝑎𝑙𝑒 indicates male 

snake-fighting ability, while 𝐹𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 indicates 

female snake-fighting ability. In addition, 𝑐4 is a 

constant equal to 2, and 𝑟4 and 𝑟5  are random 

numbers in the range (0,1). 

 Mating 

In mating, male and female snakes update their 

positions as in Equation 10 and 11. 

𝑥𝑖,𝑚𝑎𝑙𝑒(𝑡 + 1) = 𝑥𝑖,𝑚(𝑡) ± 𝑐5 ×𝑀𝑖,𝑚𝑎𝑙𝑒 × 𝑟6 ×

(𝐹𝑄 × 𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑚𝑎𝑙𝑒(𝑡)) ,     𝑤ℎ𝑒𝑟𝑒 𝑀𝑖,𝑚𝑎𝑙𝑒 =

exp (
−𝑓𝑖,𝑓𝑒𝑚𝑎𝑙𝑒

𝑓𝑖,𝑚𝑎𝑙𝑒
)                                                            (10)                                                                                                                         

𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒(𝑡 + 1) = 𝑥𝑖,𝑓(𝑡) ± 𝑐5 × 𝑀𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 × 𝑟7 ×

(𝐹𝑄 × 𝑥𝑖,𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒(𝑡 + 1)) , 𝑤ℎ𝑒𝑟𝑒 𝑀𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 =

exp (
−𝑓𝑖,𝑚𝑎𝑙𝑒

𝑓𝑖,𝑓𝑒𝑚𝑎𝑙𝑒
)                                                              (11)                                                                                                                                                                                                                                

where 𝑥𝑖,𝑚 and 𝑥𝑖,𝑓  are the 𝑖𝑡ℎ positions of male 

and female snakes, and 𝑀𝑖,𝑚𝑎𝑙𝑒 and 𝑀𝑖,𝑓𝑒𝑚𝑎𝑙𝑒  refer 

to male and female mating ability. 𝑐5 is a constant 

equal to 2, and 𝑟6 and 𝑟7  are random numbers in the 

range (0,1). If the egg hatches, choose the worst 

male and female and replace them. 

  𝑥𝑤,𝑚𝑎𝑙𝑒 = 𝐿𝑏 + 𝑟8 × (𝑈𝑏 − 𝐿𝑏)                               (12)                                        

𝑥𝑤,𝑓𝑒𝑚𝑎𝑙𝑒 = 𝐿𝑏 + 𝑟8 × (𝑈𝑏 − 𝐿𝑏)                              (13)                               

where 𝑥𝑤,𝑚𝑎𝑙𝑒 is the worst male snake while 

𝑥𝑤,𝑓𝑒𝑚𝑎𝑙𝑒 is the worst female snake. 𝑟8 is a random 

number in the range (0,1). The pseudo-code of SO is 

given in Figure 1. 

 

 

 Figure 1. The pseudo-code of SO 

 

2.2. Chaotic maps 

The randomness of a mathematically simple 

deterministic dynamic system is represented by 

chaotic maps, and the chaotic system can be 

regarded as a source of randomness (Alataş et al. 

2007). The convergence ability of SO may depend on 
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random sequences of numbers applied to various 

parameters during the run of the algorithm. There 

are studies in the literature showing that the results 

are very close but not equal when different random 

sequences are used in metaheuristic algorithms 

(Bingol and Alatas 2020, Varol Altay and Alatas 

2020). Chaotic maps are used to generate chaotic 

sequences in the process of metaheuristics. The 

main principle is to apply small chaotic 

perturbations to the candidate solutions in order to 

take advantage of the ergodic (i.e., a dynamic 

system that behaves like the mean) property of 

chaotic maps to enhance the performance of the 

solution (Alatas et al. 2009, Bingol and Alatas 2020, 

Wei et al. 2019). Equation 14 represents a chaotic 

map as a dynamical system. 

 𝑥𝑟+1 = 𝐹(𝑥𝑟),      0 < 𝑥𝑟 < 1,      𝑟 = 0,1,2, …           (14)                                 

In this study, it has been investigated whether more 

efficient results can be obtained from the SO 

algorithm by using chaotic maps. Table 1 presents 

the maps generating the chaotic numbers to be 

used for the SO parameters and their 

demonstrations. 

3.  Chaotic Snake Optimizer (CSO) 

As mentioned above, the numbers obtained from 

chaotic maps have been used in many applications, 

and their effect on performance has been 

investigated. In this study, we aim to improve the 

global convergence performance of the algorithm 

by integrating chaotic maps into the formulas of the 

search strategies of the standard SO. Chaotic maps 

can be applied to all random values in the algorithm. 

However, in this study, the formulas of the search 

strategies, which are considered to contribute more 

to performance, are preferred. In algorithms where 

chaotic maps are used, random numbers are 

generated by pushing the selected chaotic map one 

step further. That is, when random number 

generation is needed from the first iteration on, the 

selected chaotic map is incrementally advanced 

starting from the selected starting point.The new 

CSOs proposed in this study are classified and 

explained as follows: 

 CSO1:  

CSO1 is obtained by taking the random values 

(𝑟1, 𝑟2) in Equations 5 and 6 from the selected 

chaotic map according to iterations. Accordingly, in 

the proposed CSO1 algorithm, these equations are 

replaced by Equations 15 and 16, respectively. 𝐶ℎ𝑘 

is the chaotic sequence obtained from the selected 

chaotic map. The value of 𝑘 indicates the type of 

chaotic map, which can be Gauss, Tend, Logistic, 

Sinusoidal, Circle, Iterative, Sine, or Piecewise. 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑘,𝑗(𝑡) ∓ 𝑐2 × 𝐴𝑖,𝑚𝑎𝑙𝑒((𝑈𝑏 − 𝐿𝑏) ×

𝑪𝒉𝒌(𝒕 + 𝟏) + 𝐿𝑏)                                                        (15) 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑘,𝑗(𝑡 + 1) ∓ 𝑐2 × 𝐴𝑖,𝑓𝑒𝑚𝑎𝑙𝑒((𝑈𝑏 − 𝐿𝑏) ×

𝑪𝒉𝒌(𝒕 + 𝟏) + 𝐿𝑏)                                                         (16) 

 CSO2:  

CSO2 is obtained by taking the random value (𝑟3) in 

Equation 7 from the selected chaotic map according 

to iterations. Accordingly, in the proposed CSO2 

algorithm, this equation is replaced by Equation 17. 

 𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑓 ∓ 𝑐3 × 𝑇 × 𝑪𝒉𝒌(𝒕 + 𝟏) × (𝑥𝑓 −

𝑥𝑖,𝑗(𝑡))                                                                         (17)       

 CSO3:  

CSO3 is obtained by taking the random values (𝑟4, 𝑟5) 

in Equations 8 and 9 in fighting mode from the 

selected chaotic map according to iterations. 

Accordingly, in the proposed CSO3 algorithm, these 

equations are replaced by Equations 18 and 19, 

respectively. 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) ± 𝑐4 × 𝐹𝑖,𝑚𝑎𝑙𝑒 × 𝑪𝒉𝒌(𝒕 + 𝟏) ×

(𝑥𝑏𝑒𝑠𝑡,𝑓𝑒𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑚𝑎𝑙𝑒(𝑡))                                          (18) 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡) ± 𝑐4 × 𝐹𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 × 𝑪𝒉𝒌(𝒕 + 𝟏) ×

(𝑥𝑏𝑒𝑠𝑡,𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒(𝑡 + 1))                                   (19) 

 CSO4 :  

CSO4 is obtained by taking the random values 

(𝑟6, 𝑟7) in Equations 10 and 11 in mating mode from 

the selected chaotic map according to iterations. 

Accordingly, in the proposed CSO4 algorithm, these 
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equations are replaced by Equations 20 and 21, 

respectively. 

𝑥𝑖,𝑚𝑎𝑙𝑒(𝑡 + 1) = 𝑥𝑖,𝑚(𝑡) ± 𝑐5 ×𝑀𝑖,𝑚𝑎𝑙𝑒 × 𝑪𝒉𝒌(𝒕 + 𝟏) ×

(𝐹𝑄 × 𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑚𝑎𝑙𝑒(𝑡))                                    (20) 

𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒(𝑡 + 1) = 𝑥𝑖,𝑓(𝑡) ± 𝑐5 × 𝑀𝑖,𝑓𝑒𝑚𝑎𝑙𝑒 × 𝑪𝒉𝒌(𝒕 +

𝟏) × (𝐹𝑄 × 𝑥𝑖,𝑚𝑎𝑙𝑒 − 𝑥𝑖,𝑓𝑒𝑚𝑎𝑙𝑒(𝑡 + 1))      (21)  

4. Computational Experiments          

In this section, the performance of the proposed 

chaotic mapping SO variants (CSO1, CSO2, CSO3, 

and CSO4) is examined. Two test function suites 

have been chosen for this: the classic test functions 

and the CEC2019 test functions. The classical test 

functions used in this study are given in Table 2. 

These functions consist of a total of twelve 

functions, eight of which are unimodal and four of 

which are multimodal. All of these functions are 

minimization problems, and their optimal values are 

given in the 𝑓𝑚𝑖𝑛 column of the table. The proposed 

CSO1, CSO2, CSO3, and CSO4 algorithms were 

tested on these test functions using eight different 

chaotic maps (Gaussian, Tend, Logistic, Sinusoidal, 

Circle, Iterative, Sine, and Piecewise). In this test 

process, the problem dimension is 30, the number 

of runs is 30, the maximum number of iterations is 

1000, and the snake population size is 50. 

Comparisons in test operations on classical test 

functions were made by taking into account the 

mean of the values obtained from 30 independent 

runs. 

Accordingly, in Table 3, the results obtained by using 

eight different chaotic maps in the CSO1 algorithm 

are compared with the standard algorithm. In 

addition to the mean values, the row named "𝑅" 

gives the order of the results obtained for each 

function in the table. According to the results in the 

table, although the best mean values were obtained 

from different CSO1 variants, 𝐶𝑆𝑂1𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒  found 

the best mean value in six of the twelve functions. 

When the MR line showing the mean of the R values 

obtained for each function was examined, it was 

seen that the best rank mean was again obtained 

from  𝐶𝑆𝑂1𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 and that it was the most 

successful variant. In addition, all CSO1 variants 

outperformed the SO algorithm. The standard 

algorithm, namely SO, took the last place in the MR 

value ranking. According to the result, it can be said 

that the performance of the SO algorithm has been 

improved with the CSO1 algorithm. 

Similarly, in Table 4, the results obtained by using 

eight different chaotic maps in the CSO2 algorithm 

are compared with the standard algorithm. 

According to the results in the table, although the 

best mean values were obtained from different 

algorithms, SO found the best mean value in six of 

the twelve functions. When the MR values were 

examined, it was seen that the best mean rank was 

again obtained from SO. So, it can be said that the 

performance of the SO algorithm has not improved 

with the CSO2 variants. CSO2 variants were 

ineffective in improving SO performance. 

 In Table 5, the results obtained by using eight 

different chaotic maps in the CSO3 algorithm are 

compared with the standard algorithm. When the 

results were examined, it was seen that  

 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒   found the best mean value in five 

of the twelve functions. According to the MR values, 

𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 took the first place with a mean rank 

value of 2.58. The worst MR value was obtained 

from SO. All CSO3 variants are more successful than 

the standard algorithm. Therefore, the CSO3 

approach has improved SO performance. 
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Table 1. Chaotic maps and their demonstration 

Gauss map 

𝑋𝑟+1 = {

0 𝑋𝑟 = 0
1

𝑋𝑟𝑚𝑜𝑑(1)
     𝑋𝑟 ∈ (0,1)

     ,      
1

𝑋𝑟𝑚𝑜𝑑(1)
=
1

𝑋𝑟
− ⌊

1

𝑋𝑟
⌋ 

 

Tend map 

𝑋𝑟+1 =

{
 

 
𝑋𝑟
0.7

𝑋𝑟 < 0.7

10

3𝑋𝑟(1 − 𝑋𝑟)
𝑒𝑙𝑠𝑒

 

 

 

Lojistic map 

𝑋𝑟+1 = 𝑎𝑋𝑟(1 − 𝑋𝑟) 

 

 

Sinusoidal map 

𝑋𝑟+1 = 𝑎𝑥𝑟
2 sin(𝜋𝑥𝑟) , 𝑓𝑜𝑟 𝑎 = 2.3 𝑎𝑛𝑑 𝑋0 = 0.7    𝑋𝑟+1 = sin (𝜋𝑥𝑟) 

 

  

Circle map 

𝑋𝑟+1 = 𝑋𝑟 + 𝑏 − (
𝑎

2𝜋
) sin(2𝜋𝑋𝑟)𝑚𝑜𝑑(1), 𝑎 = 0.5  𝑎𝑛𝑑 𝑏 = 0.2 

 

 
 

Iterative map 

𝑋𝑟+1 = sin (
𝑎𝜋

𝑋𝑟
) ,     𝑎 = 0.7 

 
 

Sine map 

𝑋𝑟+1 =
𝑎

4
sin(𝜋𝑥𝑟) ,        𝑎 = 4 

 
 

Piecewise map 

𝑋𝑟+1 =

{
 
 
 

 
 
 

𝑋𝑟
𝑍

   0 ≤ 𝑋𝑟 < 𝑍

𝑋𝑟 − 𝑍

0.5 − 𝑍
      𝑍 ≤ 𝑋𝑟 < 0.5

1 − 𝑍 − 𝑋𝑟
0.5 − 𝑍

0.5 ≤ 𝑋𝑟 < 1 − 𝑍

1 − 𝑋𝑟
𝑍

1 − 𝑍 ≤ 𝑋𝑟 < 1

 , 𝑍 = 0.4  
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 Table 2.  Classical test functions 

 

 

 

 

Unimodal Functions Range 𝒇𝒎𝒊𝒏 Dim 

𝑓1(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 [−100,100] 0 30 

𝑓2(𝑥) =∑|𝑥𝑖| +∏|𝑥𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

 [−10,10] 0 30 

𝑓3(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗=1

)2
𝑛

𝑖=1

 [−100,100] 0 30 

𝑓4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖  |, 1 ≤ 𝑖 ≤ 𝑛} 
[−100,100] 0 30 

𝑓5(𝑥) =∑[100 (𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑛−1

𝑖=1

 [−30,30] 0 30 

𝑓6(𝑥) =∑([𝑥𝑖 + 0.5])
2

𝑛

𝑖=1

 [−100,100] 0 30 

𝑓7(𝑥) =∑𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑[0,1)

𝑛

𝑖=1

 [−1.28,1.28] 0 30 

𝑓8 =∑−𝑥𝑖sin (√|𝑥𝑖|)

𝑑

𝑖=1

 [−500,500] −418.982 ×dim 30 

Multimodal Functions    

𝑓9 =∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑑

𝑖=1

 
[−5.12,5.12] 0 30 

𝑓10(𝑥) =∑−20exp(−0.2√
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

)

𝑛

𝑖=1

− exp(
1

𝑛
∑cos(2𝜋𝑥𝑖)

𝑛

𝑖=1

) + 20 + 𝑒 [−32,32] 0 30 

𝑓11(𝑥) =
1

4
× 10−3∑𝑥𝑖

2 −∏cos (
𝑥𝑖

√𝑖
+ 1)

𝑛

𝑖=1

𝑛

𝑖=1

 [−600,600] 0 30 

𝑓12(𝑥) =
𝜋

𝑛
{10 sin(𝜋𝑦1) +∑(𝑦𝑖 − 1)

2[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)
2

𝑛−1

𝑖=1

} +∑𝑢(𝑥𝑖 , 10,100,4)

𝑛

𝑖=1

 

𝑦𝑖 =
𝑥𝑖+5

4
     𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚 𝐸ğ𝑒𝑟 𝑥𝑖 > 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚 𝐸ğ𝑒𝑟 𝑥𝑖 < −𝑎

0 𝑑𝑖ğ𝑒𝑟
} 

[−50,50] 0 30 
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In Table 6, the results obtained using eight different 

chaotic maps in the CSO4 algorithm are compared 

with the standard algorithm. When the results were 

examined, it was seen that CSO4Sinusoidal found the 

best mean value in six of the twelve functions. 

According to the MR values, CSO4Sinusoidal took 

first place with a mean rank value of 2.92. The worst 

MR value was obtained from SO. All CSO4 variants 

are more successful than the standard algorithm. 

Therefore, the CSO4 approach has improved SO 

performance. Finally, in order to make a general 

evaluation, the most successful CSO variants were 

selected and compared. (i.e., 𝐶𝑆𝑂1𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒  from 

Table 3, SO from Table 4, 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 from Table 

5, and CSO4Sinusoidal from Table 6). In addition to 

these, the most successful 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒  and 

CSO4Sinusoidal  variants in the previous 

comparisons were run together in the algorithm, 

and a new 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 + CSO4Sinusoidal variant 

was created. The comparison results for all these 

variants are given in Table 7.   

According to the comparison results given in Table 

7, the 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 + CSO4Sinusoidal variant 

created by combining the 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒  and 

CSO4Sinusoidal  variants with similar performance 

found the best mean value in seven of the functions. 

It also ranked first among the algorithms with an MR 

value of 2.08. The standard algorithm took last place 

with an MR value of 3.92. According to these results, 

it was determined that all compared variants 

improved SO performance, and the most successful 

variant was 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 + CSO4Sinusoidal. In 

addition to these evaluations, the nonparametric 

Wilcoxon signed rank test (García et al. 2009) was 

applied at the 0.005 significance level to determine 

whether there was a significant difference between 

the SO and CSO variants. The results are presented 

in Table 8. In the table, 'Better', 'Worse', and 'Equal' 

denote the number of functions for which the CSO 

variants found better, worse, and equal mean 

values, respectively, compared to SO. The 'p-value' 

denotes the level of statistical significance. A p-

value less than 0.05 indicates that there is a 

significant difference between the algorithms; 

otherwise, there is no significant difference. 

Accordingly, when the results in Table 8 are 

examined, it is found that there is a significant 

difference between the 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒  variant and 

SO, while there is no significant difference between 

the other variants and SO. 

Figure 2 shows the convergence graphics according 

to the best value obtained by the CSO variants for 

four randomly selected classical test functions (F1, 

F4, F9, and F10). When the graphs are analyzed, it is 

found that the 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 + CSO4Sinusoidal  

variant converges faster in all functions except F9. In 

the F9 function, the fastest converging variant is 

𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒. The slowest converging variant in all 

functions is  𝐶𝑆𝑂1𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒. Accordingly, it can be 

said that the 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 +

CSO4Sinusoidal variant is generally capable of 

converging faster to a better or similar value. 

Secondly, the performance of the most successful 

variant was examined on the CEC2019 test functions 

(Price et al. 2018). CEC2019 test functions and 

features are given in Table 9. The mean and 

standard deviation values obtained as a result of this 

test process were compared with the algorithms in 

the literature (Xu et al. 2022). These algorithms are 

CSA (Hussien et al. 2020), BOA (Arora and Singh 

2019), MFO (Mirjalili 2015), BA (Yang and He 2013), 

WOA (Mirjalili and Lewis 2016), SCA (Mirjalili 2016), 

PSOGSA (Mirjalili and Hashim 2010), AGWO (Qais et 

al. 2018), OBSCA (Abd Elaziz et al. 2017), and EGWO 

(Joshi and Arora 2017) algorithm. The comparison 

results are given in Table 10. In Table 10, CSO refers 

to the best-performing 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 +

CSO4Sinusoidal in previous comparisons. Results for 

other algorithms are taken directly from the study 

of Xu et al. (Xu et al. 2022). For a fair comparison, 

the population size is 50 and the maximum iteration 

is 10,000 in all algorithms. Each algorithm was run 

independently 30 times, and the mean and standard 

deviation values were found accordingly. 

 

Table 3. Comparison results for SO and CSO1 variants on classical test functions 
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Table 4. Comparison results for SO and CSO2 variants on classical test functions 

 SO 𝑪𝑺𝑶𝟏𝑮𝒂𝒖𝒔𝒔 𝑪𝑺𝑶𝟏𝑻𝒆𝒏𝒅 𝑪𝑺𝑶𝟏𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜 𝑪𝑺𝑶𝟏𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 𝑪𝑺𝑶𝟏𝐂𝐢𝐫𝐜𝐥𝐞 𝑪𝑺𝑶𝟏𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝑪𝑺𝑶𝟏𝐒𝐢𝐧𝐞 𝑪𝑺𝑶𝟏𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 

F1 3.56E-195 2.40E-195 1.10E-195 2.73E-196 5.78E-194 2.16E-196 1.40E-195 3.67E-196 2.42E-196 

R 8 7 5 3 9 1 6 4 2 

F2 2.57E-97 2.45E-98 2.07E-98 9.17E-98 1.26E-98 1.37E-98 3.45E-98 2.28E-98 1.01E-98 

R 9 6 4 8 2 3 7 5 1 

F3 2.54E-128 1.14E-127 1.63E-123 2.93E-127 2.22E-128 1.05E-124 5.98E-125 1.06E-125 1.00E-127 

R 2 4 9 5 1 8 7 6 3 

F4 7.00E-87 7.01E-87 4.24E-87 8.38E-87 1.23E-86 5.58E-87 2.23E-87 6.91E-87 6.31E-87 

R 6 7 2 8 9 3 1 5 4 

F5 1.57E+01 1.52E+01 1.50E+01 1.57E+01 1.52E+01 1.43E+01 1.69E+01 1.46E+01 1.30E+01 

R 7 5 4 7 5 2 9 3 1 

F6 2.61E-02 1.31E-03 1.45E-03 5.25E-03 2.00E-02 1.91E-03 5.65E-03 2.22E-03 1.10E-03 

R 9 2 3 6 8 4 7 5 1 

F7 1.03E-04 9.17E-05 1.09E-04 1.04E-04 9.53E-05 1.21E-04 1.14E-04 1.04E-04 8.15E-05 

R 4 2 7 5 3 9 8 5 1 

F8 -1.25E+04 -1.26E+04 -1.26E+04 -1.25E+04 -1.26E+04 -1.26E+04 -1.25E+04 -1.25E+04 -1.26E+04 

R 2 1 1 2 1 1 2 2 1 

F9 4.73E-01 1.28E-01 9.09E-02 5.62E-01 9.05E-01 5.98E-01 1.15E+00 4.62E-01 6.70E-01 

R 4 2 1 5 8 6 9 3 7 

F10 4.09E-15 3.97E-15 3.97E-15 3.97E-15 4.09E-15 3.85E-15 3.85E-15 3.97E-15 3.61E-15 

R 4 3 3 3 4 2 2 3 1 

F11 8.10E-03 3.42E-03 1.21E-03 4.73E-03 1.13E-02 1.34E-03 4.22E-03 3.71E-03 1.50E-03 

R 8 4 1 7 9 2 6 5 3 

F12 2.09E-02 3.56E-02 2.15E-02 2.40E-02 3.67E-04 9.56E-03 4.30E-03 9.35E-03 3.22E-02 

R 5 9 6 7 1 4 2 3 8 

MR 5.67 4.33 3.83 5.50 5.00 3.75 5.50 4.08 2.75 
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 SO 𝑪𝑺𝑶𝟐𝑮𝒂𝒖𝒔𝒔 𝑪𝑺𝑶𝟐𝑻𝒆𝒏𝒅 𝑪𝑺𝑶𝟐𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜 𝑪𝑺𝑶𝟐𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 𝑪𝑺𝑶𝟐𝐂𝐢𝐫𝐜𝐥𝐞 𝑪𝑺𝑶𝟐𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝑪𝑺𝑶𝟐𝐒𝐢𝐧𝐞 𝑪𝑺𝑶𝟐𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 

F1 
3.56E-

195 

2.63E-

190 

8.34E-

191 
1.47E-189 9.95E-190 

4.77E-

189 
5.51E-191 

1.01E-

189 
2.12E-190 

R 1 5 3 8 6 9 2 7 4 

F2 2.57E-97 4.22E-92 1.96E-92 2.83E-92 2.63E-92 1.45E-92 2.30E-92 6.20E-92 3.53E-92 

R 1 8 3 6 5 2 4 9 7 

F3 
2.54E-

128 

3.96E-

126 

9.10E-

127 
1.60E-123 1.43E-126 

1.66E-

126 
2.48E-124 

7.93E-

123 
1.70E-126 

R 1 6 2 8 3 4 7 9 5 

F4 7.00E-87 5.60E-87 6.39E-87 3.07E-86 8.94E-87 3.59E-87 8.02E-87 4.96E-87 4.35E-86 

R 5 3 4 8 7 1 6 2 9 

F5 1.57E+01 1.41E+01 1.05E+01 1.53E+01 1.80E+01 1.58E+01 1.36E+01 1.31E+01 1.47E+01 

R 7 4 1 6 9 8 3 2 5 

F6 2.61E-02 7.87E-01 7.67E-01 1.08E+00 6.77E-01 7.45E-01 6.80E-01 9.87E-01 5.63E-01 

R 1 7 6 9 3 5 4 8 2 

F7 1.03E-04 1.11E-04 8.46E-05 1.09E-04 8.16E-05 9.93E-05 9.37E-05 9.40E-05 1.06E-04 

R 6 9 2 8 1 5 3 4 7 

F8 
-

1.25E+04 

-

1.26E+04 

-

1.26E+04 
-1.25E+04 -1.25E+04 

-

1.25E+04 
-1.25E+04 

-

1.26E+04 
-1.26E+04 

R 2 1 1 2 2 2 2 1 1 

F9 4.73E-01 2.51E+00 2.25E+00 1.71E+00 9.02E-01 2.62E+00 2.62E+00 8.39E-01 6.18E-01 

R 1 7 6 5 4 8 8 3 2 

F1

0 
4.09E-15 4.44E-15 4.44E-15 4.32E-15 4.09E-15 4.44E-15 4.32E-15 4.32E-15 4.09E-15 

R 1 3 3 2 1 3 2 2 1 

F1

1 
8.10E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.24E-02 0.00E+00 0.00E+00 0.00E+00 

R 2 1 1 1 1 3 1 1 1 

F1

2 
2.09E-02 1.89E-02 1.43E-02 2.28E-02 1.18E-02 1.68E-02 1.00E-02 1.05E-01 1.07E-02 

R 7 6 4 8 3 5 1 9 2 

MR 2.92 5.00 3.00 5.92 3.75 4.58 3.58 4.75 3.83 

 

 



 Chaotic Snake Optimizer, Yıldızdan 

 

 

1133 

 

 

Table 5. Comparison results for SO and CSO3 variants on classical test functions 

 SO 𝑪𝑺𝑶𝟑𝑮𝒂𝒖𝒔𝒔 𝑪𝑺𝑶𝟑𝑻𝒆𝒏𝒅 𝑪𝑺𝑶𝟑𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜 𝑪𝑺𝑶𝟑𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 𝑪𝑺𝑶𝟑𝐂𝐢𝐫𝐜𝐥𝐞 𝑪𝑺𝑶𝟑𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝑪𝑺𝑶𝟑𝐒𝐢𝐧𝐞 𝑪𝑺𝑶𝟑𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 

F1 
3.56E-

195 

3.94E-

233 

1.69E-

243 
2.71E-208 7.39E-278 

1.42E-

248 
3.31E-174 

2.25E-

207 
3.06E-240 

R 8 5 3 6 1 2 9 7 4 

F2 2.57E-97 
8.55E-

121 

9.97E-

126 
1.76E-107 8.28E-139 

1.15E-

127 
3.83E-92 

5.09E-

108 
7.60E-122 

R 8 5 3 7 1 2 9 6 4 

F3 
2.54E-

128 

9.33E-

174 

2.59E-

186 
1.18E-149 1.46E-224 

4.51E-

194 
1.96E-120 

3.60E-

148 
1.54E-182 

R 8 5 3 6 1 2 9 7 4 

F4 7.00E-87 
8.62E-

111 

2.91E-

111 
8.78E-99 2.84E-127 

2.62E-

115 
4.75E-83 2.37E-98 5.99E-112 

R 8 5 4 6 1 2 9 7 3 

F5 1.57E+01 1.27E+01 1.87E+01 1.38E+01 1.68E+01 1.92E+01 1.27E+01 1.27E+01 9.56E+00 

R 6 2 8 5 7 9 2 2 1 

F6 2.61E-02 2.26E-02 1.34E-02 2.60E-02 1.22E-02 1.88E-02 1.81E-02 1.84E-02 1.28E-02 

R 9 7 3 8 1 6 4 5 2 

F7 1.03E-04 8.57E-05 6.45E-05 7.01E-05 7.56E-05 5.78E-05 1.06E-04 9.51E-05 5.70E-05 

R 8 6 3 4 5 2 9 7 1 

F8 
-

1.25E+04 

-

1.26E+04 

-

1.26E+04 
-1.26E+04 -1.25E+04 

-

1.26E+04 
-1.26E+04 

-

1.26E+04 
-1.26E+04 

R 2 1 1 1 2 1 1 1 1 

F9 4.73E-01 0.00E+00 0.00E+00 0.00E+00 1.20E-07 0.00E+00 7.66E-01 0.00E+00 0.00E+00 

R 3 1 1 1 2 1 4 1 1 

F1

0 
4.09E-15 8.88E-16 8.88E-16 8.88E-16 1.13E-15 8.88E-16 8.88E-16 8.88E-16 8.88E-16 

R 3 1 1 1 2 1 1 1 1 

F1

1 
8.10E-03 7.25E-03 1.06E-02 1.13E-02 5.02E-03 8.62E-03 1.01E-02 1.25E-02 9.64E-03 

R 3 2 7 8 1 4 6 9 5 

F1

2 
2.09E-02 5.28E-03 4.70E-03 8.36E-03 9.72E-03 8.98E-03 9.22E-03 2.90E-03 7.56E-03 
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R 9 3 2 5 8 6 7 1 4 

MR 6.25 3.58 3.25 4.83 2.67 3.17 5.83 4.50 2.58 

 

 

 

 

Table 6. Comparison results for SO and CSO4 variants on classical test functions 

 SO 𝑪𝑺𝑶𝟒𝑮𝒂𝒖𝒔𝒔 𝑪𝑺𝑶𝟒𝑻𝒆𝒏𝒅 𝑪𝑺𝑶𝟒𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜 𝑪𝑺𝑶𝟒𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 𝑪𝑺𝑶𝟒𝐂𝐢𝐫𝐜𝐥𝐞 𝑪𝑺𝑶𝟒𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝑪𝑺𝑶𝟒𝐒𝐢𝐧𝐞 𝑪𝑺𝑶𝟒𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 

F1 
3.56E-

195 

9.33E-

246 

5.28E-

252 
7.21E-213 3.91E-304 

2.22E-

259 
1.26E-171 

5.90E-

211 
4.50E-249 

R 8 5 3 6 1 2 9 7 4 

F2 2.57E-97 
5.21E-

124 

5.73E-

128 
1.62E-110 1.81E-150 

1.32E-

130 
7.57E-90 

1.54E-

109 
2.41E-125 

R 8 5 3 6 1 2 9 7 4 

F3 
2.54E-

128 

5.17E-

196 

1.10E-

201 
1.10E-161 3.31E-229 

5.52E-

214 
2.64E-126 

3.36E-

162 
3.92E-197 

R 8 5 3 7 1 2 9 6 4 

F4 7.00E-87 
2.38E-

115 

5.29E-

120 
4.73E-103 5.97E-139 

1.16E-

123 
3.67E-82 

4.74E-

102 
4.67E-118 

R 8 5 3 6 1 2 9 7 4 

F5 1.57E+01 1.46E+01 1.39E+01 1.33E+01 1.37E+01 1.34E+01 1.12E+01 1.06E+01 1.19E+01 

R 9 8 7 4 6 5 2 1 3 

F6 2.61E-02 9.92E-03 1.43E-02 1.15E-02 1.49E-02 2.11E-02 1.96E-02 2.26E-02 1.82E-02 

R 9 1 3 2 4 7 6 8 5 

F7 1.03E-04 7.94E-05 1.01E-04 8.71E-05 6.89E-05 8.27E-05 8.39E-05 1.06E-04 7.14E-05 

R 8 3 7 6 1 4 5 9 2 

F8 
-

1.25E+04 

-

1.26E+04 

-

1.26E+04 
-1.26E+04 -1.25E+04 

-

1.26E+04 
-1.26E+04 

-

1.26E+04 
-1.26E+04 

R 2 1 1 1 2 1 1 1 1 

F9 4.73E-01 9.97E-01 1.00E+00 2.05E+00 2.37E+00 8.98E-01 7.69E-01 0.00E+00 5.23E-06 

R 3 6 7 8 9 5 4 1 2 

F1

0 
4.09E-15 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 

R 2 1 1 1 1 1 1 1 1 
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F1

1 
8.10E-03 6.78E-03 1.12E-02 1.10E-02 9.63E-03 1.24E-02 6.71E-03 8.00E-03 7.83E-03 

R 5 2 8 7 6 9 1 4 3 

F1

2 
2.09E-02 1.22E-02 1.01E-02 2.12E-02 3.93E-03 1.38E-02 2.82E-03 2.21E-02 1.42E-02 

R 7 4 3 8 2 5 1 9 6 

MR 6.42 3.83 4.08 5.17 2.92 3.75 4.75 5.08 3.25 

 

 

 

 

Table 7. Comparison of successful CSO variants 

 SO 𝑪𝑺𝑶𝟏𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 𝑪𝑺𝑶𝟑𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 𝑪𝑺𝑶𝟒𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 
𝑪𝑺𝑶𝟑𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆  

+𝑪𝑺𝑶𝟒𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 

F1 3.56E-195 2.42E-196 3.06E-240 3.91E-304 0.00E+00 

R 5 4 3 2 1 

F2 2.57E-97 1.01E-98 7.60E-122 1.81E-150 6.65E-196 

R 5 4 3 2 1 

F3 2.54E-128 1.00E-127 1.54E-182 3.31E-229 0.00E+00 

R 4 5 3 2 1 

F4 7.00E-87 6.31E-87 5.99E-112 5.97E-139 3.15E-192 

R 5 4 3 2 1 

F5 1.57E+01 1.30E+01 9.56E+00 1.37E+01 1.71E+01 

R 4 2 1 3 5 

F6 2.61E-02 1.10E-03 1.28E-02 1.49E-02 1.99E-02 

R 5 1 2 3 4 

F7 1.03E-04 8.15E-05 5.70E-05 6.89E-05 5.83E-05 

R 5 4 1 3 2 

F8 -1.25E+04 -1.26E+04 -1.26E+04 -1.25E+04 -1.26E+04 

R 2 1 1 2 1 

F9 4.73E-01 6.70E-01 0.00E+00 2.37E+00 0.00E+00 

R 3 4 1 2 1 

F10 4.09E-15 3.61E-15 8.88E-16 8.88E-16 8.88E-16 

R 3 2 1 1 1 



 Chaotic Snake Optimizer, Yıldızdan 

 

 

1136 

F11 8.10E-03 1.50E-03 9.64E-03 9.63E-03 2.45E-02 

R 2 1 4 3 5 

F12 2.09E-02 3.22E-02 7.56E-03 3.93E-03 6.52E-03 

R 4 5 3 1 2 

MR 3.92 3.08 2.17 2.17 2.08 

                                       

 

 

 

 

Table 8. Wilcoxon signed-rank test results 

Algorithms Better Worse Equal p-value 

SO - 𝑪𝑺𝑶𝟏𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 9 3 0 0,136097 

SO - 𝑪𝑺𝑶𝟑𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 11 1 0 0,012063 

SO - 𝑪𝑺𝑶𝟒𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 9 2 1 0,154860 

SO -  𝑪𝑺𝑶𝟑𝑷𝒊𝒆𝒄𝒆𝒘𝒊𝒔𝒆 +𝑪𝑺𝑶𝟒𝐒𝐢𝐧𝐮𝐬𝐨𝐢𝐝𝐚𝐥 10 2 0 0,136097 
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Figure 2. Convergence graphics of CSO variants 

Table 9. CEC2019 test function 

Functions  fmin Dimension  Range  

C1  Storn's Chebyshev Polynomial Fitting Problem  1  9  [-8192, 8192]  
C2  Inverse Hilbert Matrix Problem  1  16  [-16384, 16384]  
C3  Lennard-Jones Minimum Energy Cluster  1  18  [-4,4]  
C4  Rastrigin’s Function  1  10  [-100,100]  
C5  Griewangk’s Function  1  10  [-100,100]  
C6  Weierstrass Function  1  10  [-100,100]  
C7  Modified Schwefel’s Function  1  10  [-100,100]  
C8  Expanded Schaffer’s F6 Function  1  10  [-100,100]  
C9  Happy Cat Function  1  10  [-100,100]  
C10  Ackley Function  1  10  [-100,100]  

 

 

 

 

According to the results in Table 10, the proposed 

CSO in six of the compared functions, OFLCSA in 

three, and OBSCA in one found the best mean. 

When the ranking values given in Table 11 are 

examined, it can be seen that the smallest mean 

rank (MR) value was obtained by the OFLCSA 

algorithm as 2.1. The CSO algorithm took second 

place with an MR value of 2.9. BOA, on the other 

hand, took last place with a mean rank of 11.8. 

According to these results, it has been proved that 

the CSO algorithm has a competitive and successful 

performance when compared to the algorithms in 

the literature. 

In this study, the effect of using chaotic maps on SO 

performance is investigated. Successful results are 

obtained in the tests performed on classical and 

CEC2019 test functions. In addition, the results 

obtained have been a guide for researchers as they 

reveal which chaotic map is used in which search 

strategy of the algorithm contributes more to the 

performance. As encountered in other 

metaheuristic algorithms, a proposed algorithm 

cannot be expected to excel in all optimization 

problems. Therefore, some new modifications may 

be needed if CSO is applied to different test suites 

or real-world problems. 

 

5. Conclusion and future works 

     In this study, SO variants using four different 

chaotic mappings (CSO1, CSO1, CSO3, and CSO4) are 

proposed by integrating different chaotic maps into 

the algorithm's search strategy parameters instead 

of random number sequences to improve SO 

performance. The performances of these proposed 

algorithms for eight different chaotic maps were 

evaluated for classical test functions. According to 

the test results, the most successful algorithm 

variants were 𝐶𝑆𝑂1𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒, 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒, and 

CSO4Sinusoidal. The CSO2 algorithms could not 

contribute to the performance of SO. The most 

successful 𝐶𝑆𝑂3𝑃𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 + CSO4Sinusoidal variant 

was compared with the results of eleven different 

algorithms selected from the literature for the 

CEC2019 test functions. In this comparison, the 

proposed algorithm took second place and proved 

to be a successful algorithm. 

The algorithm proposed as a future work can be 

applied to different optimization problems, such as 

engineering problems, large-scale optimization 

problems, and multiobjective optimization 

problems. 
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Table 10. Mean and standard deviation value comparison of CSO with algorithms in the literature on CEC2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function  Algorithms 

  CSO OFLCSA CSA AGWO BOA MFO BA WOA SCA PSOGSA OBSCA EGWO 

C1 Mean 2.743E+03 1.621E+04 2.174E+05 1.159E+08 1.961E+11 5.464E+10 6.110E+12 3.286E+05 8.056E+07 1.341E+11 4.656E−02 3.902E+06 

 Std 1.159E+04 3.002E+04 3.340E+05 4.335E+08 1.566E+11 8.713E+10 3.375E+12 2.955E+09 2.514E+09 2.834E+11 7.678E−02 1.374E+07 

C2 Mean 3.640E+01 1.028E+06 9.665E+05 4.072E+06 1.535E+08 1.331E+07 2.143E+08 7.471E+07 1.243E+07 1.724E+07 8.257E+04 6.801E+06 

 Std 1.214E+02 7.849E+05 4.234E+05 3.518E+06 6.924E+07 1.972E+07 5.880E+07 2.767E+07 8.182E+06 2.254E+07 2.661E+06 3.386E+06 

C3 Mean 4.737E+00 3.819E−01 3.961E−01 2.052E+04 1.103E+05 4.613E+04 1.100E+05 9.987E−01 6.165E+04 2.342E+04 4.028E−01 5.185E+04 

 Std 2.402E+00 1.030E−01 7.474E−02 1.522E+04 4.542E−01 2.254E+04 5.345E−01 1.162E+04 1.546E+04 2.600E+04 3.320E−01 3.140E+04 

C4 Mean 2.104E+01 1.875E+05 2.500E+05 1.927E+05 1.375E+06 2.549E+05 1.170E+06 4.182E+05 3.213E+05 3.879E+05 3.187E+05 3.861E+05 

 Std 7.400E+00 9.515E+04 9.690E+04 3.852E+04 2.091E+05 8.455E+04 2.075E+05 1.577E+05 4.030E+04 1.431E+05 7.141E+04 1.203E+05 

C5 Mean 1.581E+00 1.575E−01 1.801E−01 1.572E+04 1.572E+06 1.841E−01 1.113E+06 8.418E−01 3.747E+04 3.575E+04 3.781E+04 1.051E+05 

 Std 8.257E-02 9.020E−02 1.142E−01 1.558E−01 4.026E+05 2.833E+04 3.521E+05 3.970E−01 1.128E+04 5.020E+04 1.099E+04 1.348E+05 

C6 Mean 6.251E+00 2.442E+04 2.980E+04 2.720E+04 1.415E+05 3.524E+04 1.241E+05 6.188E+04 4.756E+04 4.951E+04 4.753E+04 5.862E+04 

 Std 1.534E+00 1.517E+04 9.540E−01 9.112E−01 8.705E−01 1.526E+04 9.978E−01 1.780E+04 9.904E−01 2.094E+04 9.183E−01 1.605E+04 

C7 Mean 6.354E+02 6.380E+06 1.024E+07 6.758E+06 2.487E+07 9.483E+06 2.382E+07 1.035E+07 1.083E+07 1.111E+07 9.305E+06 1.054E+07 

 Std 3.032E+02 3.088E+06 2.700E+06 2.022E+06 2.501E+06 3.385E+06 2.150E+06 2.641E+06 1.490E+06 3.578E+06 1.981E+06 2.946E+06 

C8 Mean 3.709E+00 2.353E+04 2.464E+04 2.509E+04 4.359E+04 3.413E+04 4.275E+04 3.276E+04 2.902E+04 3.683E+04 3.284E+04 3.056E+04 

 Std 4.842E-01 5.070E−01 2.531E−01 4.513E−01 1.606E−01 3.721E−01 1.816E−01 4.300E−01 2.132E−01 3.660E−01 1.841E−01 4.531E−01 

C9 Mean 1.277E+00 1.401E−01 1.687E−01 1.705E−01 4.328E+04 3.400E−01 3.604E+04 3.543E−01 3.650E−01 5.224E−01 3.258E−01 2.677E−01 

 Std 1.069E-01 5.726E−02 9.405E−02 6.300E−02 7.373E−01 1.542E−01 8.910E−01 1.941E−01 9.542E−02 2.990E−01 7.004E−02 1.205E−01 

C10 Mean 2.131E+01 5.009E+04 1.100E+05 1.922E+05 2.102E+05 2.014E+05 2.089E+05 2.003E+05 1.965E+05 2.002E+05 1.519E+05 2.005E+05 

 Std 4.736E-02 7.002E+04 9.165E+04 2.432E+04 1.361E−01 1.174E−01 1.150E−01 7.832E−02 1.967E+04 8.225E−02 4.194E+04 5.806E−02 
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Table 11. R-value comparison of CSO with algorithms in the literature on CEC2019 

 CSO OFLCSA CSA AGWO BOA MFO BA WOA SCA PSOGSA OBSCA EGWO 

C1 3 4 5 8 11 9 12 2 7 10 1 6 

C2 1 4 3 5 11 8 12 10 7 9 2 6 

C3 5 1 2 6 12 8 11 4 10 7 3 9 

C4 1 2 4 3 12 5 11 10 7 9 6 8 

C5 5 1 2 6 12 3 11 4 8 7 9 10 

C6 1 2 4 3 12 5 11 10 7 8 6 9 

C7 1 2 6 3 12 5 11 7 9 10 4 8 

C8 1 2 3 4 12 9 11 7 5 10 8 6 

C9 10 1 2 3 12 6 11 7 8 9 5 4 

C10 1 2 3 5 12 10 11 8 6 7 4 9 

MR 2.9 2.1 3.4 4.6 11.8 6.8 11.2 6.9 7.4 8.6 4.8 7.5 
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