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Abstract—Wireless sensor networks (WSNs) are widely used
in various fields, and their deployment is critical to ensure area
coverage and full network connectivity to achieve the maximum
network lifetime. In this study, we present a mixed-integer
programming (MIP) model that deeply investigates deployment
parameters to optimize lifetime and analyze network connectivity.
We further analyze the obtained results using Deep Belief
Network (DBN) and Deep Neural Network (DNN) algorithms
to achieve higher accuracy rates. Our evaluation shows that the
DBN outperforms the DNN with an accuracy rate of 81.2%,
precision of 81.2%, recall of 99.1%, and an F1-Score of 0.78. We
also utilize two different datasets to justify the efficiency of the
DBN in this research. The findings of this study emphasize the
validity of our DBN algorithm and encourage further research
into lifetime optimization and connectivity analysis in WSNs.

Index Terms—Deep Belief Network, Wireless Sensor Network,
Connectivity

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are networks of
dedicated sensors distributed in space that monitor

physical conditions in a given environment, and collect and
transmit the data they gather to a central base station. With
the increasing use of WSNs, research into the deployment
of sensor nodes has become more intense in recent years.
The main goals of sensor node deployment are to achieve
the best possible network lifetime and the widest possible
coverage area at the lowest cost possible. For that reason.
in the planning phase of a WSN deployment, the aim is to
maximize network lifetime while achieving planned coverage
within the designated budget.

Wireless sensor networks (WSNs) rely on a sparse place-
ment of sensor nodes on a large scale to monitor physical
conditions and transmit data to a central base station. Ensuring
connectivity among these nodes is crucial for accurate data
collection. To address this issue, several studies have been
conducted in recent years. Sheikh-Hosseini and Hashemi,
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for instance, studied node connectivity and different cover-
age types in WSN deployments [1]. They proposed a new
model that optimizes node placement to cover all targets
with the required number of nodes while maximizing lifetime
and coverage using genetic algorithms. Another study by
Senouci and Mellouk [2] investigated optimal plan strategies
for WSN topologies to achieve optimal network connectivity,
sensing coverage quality, reliability, and lifetime with minimal
cost. They developed a probabilistic-based communication
cost model and demonstrated that their deployment approach
can meet the needs of real-world fusion-based WSNs with
predictable performance. Aitsaadi et al. [3] also addressed the
deployment problem of WSNs with the objective of achieving
the best network topology with minimal deployment cost
while ensuring network connectivity and optimal network
lifetime. They proposed a Tabu search metaheuristic and multi-
objective deployment algorithm for their solution. Sengupta
et al. [4] investigated the optimal trade-offs among coverage,
lifetime, energy consumption, and connectivity using a multi-
objective evolutionary algorithm-based model that outperforms
single-objective node deployment schemes. Sevgi and Kocyigit
[5] proposed a novel framework for the optimal deployment
of WSNs from the connectivity perspective, particularly for
random deployments. Overall, these studies contribute to the
understanding and optimization of WSN deployments for con-
nectivity, coverage, reliability, and lifetime, opening avenues
for further research in the field [6], [7].

Although several studies have investigated connectivity is-
sues in wireless sensor networks (WSNs), these studies have
mostly utilized multilayer perceptron (MLP) and backpropa-
gation (BP) [8] to address the problem. Notably, there is a
lack of research that has employed Deep Belief Networks to
address WSN connectivity issues. Given the need for enhanced
performance and robust classification in WSNs, exploring the
potential of DBN becomes imperative. DBN’s superiority lies
in its efficient utilization of hidden layers, yielding substantial
performance gains when compared to Multilayer perceptron
models. Furthermore, DBN exhibits specific robustness in
classification tasks, effortlessly handling variations in topol-
ogy, internode distances, transmission power levels and other
crucial channel parameters. Therefore, incorporating DBN into
the realm of WSN research can significantly contribute to over-
coming connectivity challenges and advancing the capabilities
of wireless sensor networks.
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Fig. 1: Distributions of nodes in WSN grid topology

II. WSN SYSTEM MODEL

In this model, WSN network topology is constructed as a
data flow graph and mathematically modelled using Mixed
Integer Programming (MIP) in GAMS [9].

A. Wsn Model Overview

The WSN is modelled as a square topology (Fig.1) network
consisting of a sink node in the center and sensor nodes around
it. Sensor nodes in the network either transfer the data they
collect directly to the sink node (single-hop) or relay it over
other nodes (multi-hop). The 60-second round time is shared
by all nodes in equal time slots, and each node transmits data
in its own time slot. In each round, each node transmits its gen-
erated packet data in its own time slot. Internode transmission
is performed by handshake, and every packet sent is confirmed
with an ACK message, confirming that the transmission was
successful. In the optimization, the maximum network lifetime
is set as the objective in the linear programming. In the design
of the model, it is assumed that the nodes are stationary, and all
have clock synchronization with the sink node. Furthermore,
we assume that the sink node’s energy resources are limitless.
All topology and route information is provided at the sink
node. Furthermore, we assume that the data packets cannot be
fragmented or aggregated.

B. Link Layer Model

In this study, the log-normal shadowing model [10] is as-
sumed and a two-way handshaking link layer data transmission
model is used, which is the extended version of the study
by Akbas et. al.[11]. The MIP Model has been coded in
GAMS [9] and MATLAB [12], and verified with real-world
data.

C. Linear Programming Model

Each data transfer between nodes can be considered as an
energy expenditure. Each bit of data sent is an energy cost
that reduces the lifetime of the node. Therefore, calculating
the maximum network time for the WSN can be considered
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Fig. 2: Proposed Model Diagram
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Fig. 3: WSN dataset creation

as a graph flow problem to be solved. In complex integer
programming, we calculate the maximum network lifetime by
defining the flow constraints on the network and modelling the
flow on the WSN. The constraints we used in the model are:

• Balanced flow constraint states that for each node, the
sum of the data produced in a node and the data coming
from outside the node is equal to the amount of data sent
from the node.

• The channel bandwidth constraint limits the channel
bandwidth required to perform communication operations
at each node.

• The interference matrix guarantees that the total duration
of inbound data streams, outbound data streams, and in-
terference streams is limited by the total network lifetime
time.

• The non-negative constraint ensures that no data stream
can be negative, i.e., all flows have to reach the sink node.

III. PROPOSED APPROACH

This section presents the proposed WSN classification ap-
proach, including four phases, which are data creation (Fig.3),
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data cleaning and preprocessing, deep learning models, and
evaluation metrics. The proposed model diagram is depicted
in Fig.2.

A. Data Creation

Three different datasets were created and used in this study
to reveal the efficiency of the deep neural network (DNN) and
deep belief networks (DBNs) in the use of variety of datasets.
The rest of this section explains the details of three different
datasets.

We have created and used 3 sets of data as given in Fig. 3,
which are:

• Dataset I: The dataset has been created with the shad-
owing factor taken into account. The dataset has the
following features: Node-count (49,81 and 121 nodes),
Packetsizes (1,2,3,4,5,6 and 8), Internode distances (50 to
109 meters with 1 meter increments), Full-Connectivity
(1 or 0). It has 1260 records.

• Dataset II: Exactly the same as Dataset I except for the
fact that the shadowing factor has not been considered in
the calculations.

• Dataset III: Dataset-III obtained through the outcome of
the model, contains the following features: Shadowing
(1.5 to 5.5), Path Loss exponent (2 to 4), Packet Size (1
to 8), Transmission Powerlevel (6 to 26), Node Count (9
to 121), Internode Distance (20 to 100) and the Network
lifetime (0 to 5M). The size of the dataset is 8200 records.

B. Deep Learning Models

In this study, Deep Belief Networks (DBNs) and Deep
Neural Network (DNN) algorithms were used in this study.
The dataset was split into training (80% - 941 for train) and
testset (20% - 236 for test) based on the hold out method for
datasets I and II. Also, dataset III has 39375 samples, which
were split into training (80% - 31500 for training) and testset
(20%-7875 for testing). Ten-fold cross-validation was used in
the training process of the employed DBNs and DNN while
the test set (unseen data) was used to obtain the evaluation
performance of the employed models. In other words, nested
cross-validation was used in this study. The rest of this section
covers the models’ background and creation process.

1) Deep Neural Network (DNN): The structure of artificial
neural networks (ANN) consists of input, hidden, and output
layers. If the structure of an ANN consists of more than one
hidden layer, it is considered a deep neural network (DNN)
[13]. The structure of the created DNN is presented in Fig. 4.
As it can be seen from Fig. 4, one input, two hidden layers,
and one output layer were used in the judgement of WSNs’
connectivity. Three nodes for input layers were used, while
one node was used in the created DNN. Also, six and three
neurons in the hidden layers were used as a result of attempting
to use the various numbers of neurons in the hidden layers.
Sigmoid was used as an activation function in the deep neural
network model.
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Fig. 4: Structure of the employed Deep Neural Network
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Fig. 5: RBM architecture

2) Deep Belief Networks (DBNS): The structure of a deep
belief network (DBN) includes a sequence of restricted Boltz-
mann machines (RBMs), and they are connected sequentially
[14]. Understanding RBMs is crucial for a thorough knowl-
edge of DBNs. Thus, the rest of this section explains the RBMs
and DBNs, respectively. The structure of an RBM consists of
two units, which are the visible and hidden units [15]. Also,
these two units are fully connected with both forward and
backward connections. In an RBM structure, observable data
is represented in one layer of visible units, while the hidden
unit is used in terms of capturing dependencies of the visible
units. Fig. 5 illustrates the structure of the employed RBMs.
In an RBM, the weights related to each neuron are randomly
initialized, and then the weights in a layer are updated based
on the conditions of the visible and hidden units in the other
layer. This is repeated until the system is sampling from its
equilibrium distribution.

Deep Belief Networks (DBNs) are made up of multiple
RBMs and a classifier [16]. A DBN can be considered a
stacked model because it uses more than one RBM in its
creation. Fig. 6 depicts the DBN architecture that was used. It

Copyright c© BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 11, No. 3, July 2023                                            264

https://dergipark.org.tr/bajece


Sigmoid

 Classifier 

W (Weight)

Visible Layer

Hidden Layer

Hidden Layer

Hidden Layer

Output Layer

RBM3

RBM2

RBM1

Fig. 6: The structure of the employed DBNs

TABLE I: Definition of TP, FP, TN, and FN

Actual Class
Positive Negative

Predicted Class Positive True Positive False Positive
Negative False Negative True Negative

TABLE II: Evaluation results of the models

Model Accuracy Precision Recall F1-Score
DNN 80.1 81.1 98.4 0.725
DBNs 81.2 81.2 99.1 0.728

contains three RBMs and a Sigmoid classifier. In the creation
of the employed DBN structure, two and four RBMs were
used, except for the three RBMs to obtain the optimum number
of RBMs. In the end, the best performance was obtained
through the use of three RBMs.

C. Scoring Metrics

The following scoring parameters are used in the evaluation
of the employed deep belief networks (DBNs) and deep neural
networks (DNNs). Formulas for the used scoring parameters
are presented below [17]. The definition of TP, FP, TN, and
FN is presented in Table I.

• Accuracy = (TN + TP)/(TN+TP+FN+FP),
• Precision = TN/(TN + FP),
• Sensitivity (Recall) = TP/(TP + FN)
• F1-Score = 2*((precision*recall)/(precision+recall))

IV. RESULTS AND DISCUSSION

A. Evaluation Of The Models

Table II presents the evaluation results of the employed deep
neural networks (DNNs) and deep belief networks (DBNs)
using Dataset I. Detailed information about the dataset was
given in Sec. III-A. As it can be seen from Table II, DBNs
provided better performance in terms of accuracy (81.2%), pre-
cision (81.2%), recall (100%), F1-score (72.8%), and Jaccard
(81.2%). Even if the used DBNs provided better performance
in the classification of fully-connectedness state analysis, the
differences between the DBNs and DNN in terms of scoring
metrics are not large.

TABLE III: Evaluation results of the models for different
datasets

Dataset Model Accuracy Precision Recall F1-Score
Dataset 2 DNN 81.6 84.4 92.7 89.4

DBNs 84.4 86.4 100 91.5
Dataset 3 DNN 77.4 77.4 90.4 87.3

DBNs 80.2 85 100 87.6

B. Evaluation Of The Models With Different Datasets

To reveal the efficiency of the employed DBNs in the predic-
tion of whether a given WSN is fully connected, two different
datasets were also created. Detailed information about these
two datasets (Dataset II and III) was given in Section III-A.

The efficiency of DBNs is compared with that of DNNs in
the prediction of the fully-connectedness of WSN based on
datasets II and III. Table III shows the prediction performance
scores of DBNs and DNNs. The results indicate that DBNs
outperformed DNN if WSN is fully connected for database II
and III.

In other words, DBNs have the ability to provide more
accurate performance than DNNs. On the other hand, the
overall prediction performance of DBNs for dataset III is
considerably worse than the prediction performance of DBNs
for dataset II. Moreover, the overall performance of DNN for
Dataset III is also worse than the prediction performance of
DNN for Dataset III.

It should be highlighted that, the number of features in
datasets II and III is different. Initially, DNN was created
based on Dataset II. Then, the created DNN was also used in
the prediction of the connection state of the WSN network.
using Dataset III. Due to the different number of features
in the dataset, the number of neurons in the hidden layers
was arranged to create an optimal DNN structure for Dataset
III. As a result, the arranged DNN structure provides better
performance than the previous DNN structure created for
Database II. Table III shows the scoring performance of the
arranged DNN.

C. General Discussion

The computational complexity of NNs rises exponentially
with node count. Therefore, this turns into a challenging
problem to resolve for constrained WSN devices and new
computational methods are required to be employed and im-
plemented. Though there are specialized libraries for use with
limited capability and computing platforms [18]. Although
there are specialized libraries for use with limited capabilities
and computing platforms [18], the training phase of machine
learning algorithms constitutes the dominant part of the high
computational cost. Once the training is complete, the testing
stage is a quick process that generally produces the desired
results quickly and at a lower computational cost.

We’ve used NN models up to 121 nodes, beyond which a
reasonable amount of time is not possible. For this reason, rel-
atively small-sized WSNs were chosen. Nevertheless, increas-
ing the number of nodes within the WSN does not endanger
the forecast performance of the NN model, as the outcome.
Consequently, it’s possible to assume that the parameters of
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the more extensive networks can also be forecasted likewise.
New optimization methods might be suggested to be able to
analyze larger topologies in future studies. As highlighted in
Section I, to the best of the authors’ knowledge, there is no
research that has investigated the WSN connectivity. Thus,
this study revealed that DBNs can be used in the connectivity
prediction for a WSN with given parameters.

V. CONCLUSION

A WSN needs to be fully connected so as to collect and
transmit the data to the sink node. As a node fails or dies,
WSN connectivity may be questioned as to whether it operates
properly. In this regard, it is critical to justify a given topology
in relation to WSN connectivity.In this sense, the prediction
of WSN connectivity plays a key role in determining if WSN
is still connected or disconnected. With the motivation that
connectivity estimation can be achieved with higher accu-
racy and precision at a lower computational complexity, we
suggested a hybrid solution based on Deep Belief Networks.
Algorithms with deep architectures mostly have advantages
compared to single-based algorithms in terms of robust results
and higher accuracy. Therefore, Deep Belief Networks (DBNs)
and Deep Neural Network (DNN) classification algorithms
were employed in this study.Three different datasets were
used to compare the scoring performance of these algorithms.
DBNs provided better scoring values in the classification of
WSN connectivity decisions than DNNs (see Table II and III)
in the use of these three datasets. The findings reflect the
importance of DBN compared to DNN in the classification
of WSN lifetimes. As a further study, a hybrid deep neural
network can be developed to predict WSN connectivity.
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