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Abstract − In this study, the solution of the second type of homogeneous nonlinear Fredholm 

integral equations is investigated using a three-step iteration algorithm. In other words, it has 

been shown that the sequences obtained from this algorithm converge to the solution of the 

mentioned equations. Also, data dependency is obtained for the second type of homogeneous 

nonlinear Fredholm integral equations and this result is supported by an example. 
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1. Introduction 

The widely used fixed point theory has its origins in the approximation methods of Liouville, Cauchy, 

Lipschitz, Peano and Picard towards the end of the 19th century (for more detail see [2],[3],[7],[9],[10]). 

In 1922, Stephan Banach introduced the Banach fixed point theorem, which proved the existence and 

uniqueness of the fixed point under various conditions [22]. One of the important results obtained is 

that the sequence obtained by Picard iteration converges to the fixed point [6]. Since iteration methods 

have wide application areas, many researches have been done on this subject. This process, which 

started with Picard, has developed and has survived to the present day. There are two main points to 

consider when defining the iteration method. The first is that the iteration to be defined is faster than 

existing iteration methods, and the second is that this iteration method is simple. For detailed 

information about iteration methods frequently used in the literature, you can refer to the following 

sources: [1], [10]- [20]. 

    In addition to many iteration methods developed in this process, the strong convergence of these 

methods, convergence equivalence, convergence speed and whether the fixed points of these 

transformations are data dependent were investigated for certain transformation classes 

([4],[8],[10],[11],[20]- [24]).The knowledge of which method converges faster for two iteration 

methods whose convergence is equivalent is of great importance in applied mathematics. Another 
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transformation, called the approximation operator, can be used, which is close to the one used when 

constructing an iteration. Since this approximation operator has a different fixed point, the questions of 

how close the fixed point of the transformation and the fixed point of the approximation operator are to 

each other and how to calculate the distance between them bring up the concept of data dependency of 

fixed points. 

    One of the most common uses of fixed point theory, especially in applied mathematics, is the theory 

of integral equations. It is very important to determine the existence and uniqueness of integral 

equations. Fixed point theory is one of the most important tools used for this purpose. In our study, 

Fredholm integral equations, which are used in modeling many current problems, are discussed with 

the new three-step iteration method developed by Karakaya et al [14]. The reason why we use this 

iteration algorithm is that it has been proven to be faster than many iteration algorithms such as Picard, 

Mann, Ishikawa, Noor, SP, CR, Sahu-S and Picard-S [3]. Briefly, our study examines the strong 

convergence of the sequence obtained from the new three-step iteration method to the solution and the 

dependence of this solution on the data, under operators corresponding to nonlinear Fredholm integral 

equations. 

2. Known Results 

Definition 1. Let (𝑋, 𝑑) be a metric space and 𝑇 ∶ 𝑋 → 𝑋 be a mapping. 𝑇 is called a Lipschitzian mapping, 

if there is a 𝜆 > 0 number such that 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦) 

for all 𝑥, 𝑦 ∈ 𝑋 [10].  

 

Definition 2. Let (𝑋, 𝑑) be a metric space and 𝑇 ∶ 𝑋 → 𝑋 be a Lipschitzian mapping. 𝑇 is called a 

contraction mapping, if there is at least one 𝜆 ∈ (0,1) real number such that 

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦) 

for all 𝑥, 𝑦 ∈ 𝑋. 𝜆 is called the contraction ratio [10].  

 

Definition 3. Let 𝑋 be a normed space and 𝑇 ∶ 𝑋 → 𝑋 be a Lipschitzian mapping. 𝑇 is called a contraction 

mapping, if there is at least one 𝜆 ∈ (0,1) real number such that 

‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝜆‖𝑥 − 𝑦‖ 

for all 𝑥, 𝑦 ∈ 𝑋 [10].  

 

Geometrically, Definition 2 and Definition 3 can be interpreted as 𝑇𝑥 and 𝑇𝑦, which are images of any 𝑥 

and 𝑦 points, are closer together than 𝑥 and 𝑦 [10]. 

 

Theorem 1. (Banach Fixed Point Theorem) If (𝑋, 𝑑) is a complete metric space and 𝑇 ∶ 𝑋 → 𝑋 is a 

contraction mapping, 

    • 𝑇 has one and only one fixed point 𝑥 ∈ 𝑋. 

    • For any 𝑥0 ∈ 𝑋, iteration sequence (𝑇𝑛𝑥0) (ie iteration sequence (𝑥𝑛) defined by 𝑥𝑛 = 𝑇𝑥𝑛−1 for all 

𝑛 ∈ ℕ) converges to unique fixed point of 𝑇 [6]. 
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The following three-step iteration algorithm, defined by Karakaya et al. in 2017, has been shown to be 

faster than many iteration algorithms such as Picard, Mann, Ishikawa, Noor, SP, S, CR and Picard-S [14]: 

 

Definition 4. The iteration method 

𝑥0 ∈ 𝑋
𝑥𝑛+1 = 𝑇𝑦𝑛
𝑦𝑛 = (1 − 𝛽𝑛)𝑧𝑛 + 𝛽𝑛𝑇𝑧𝑛
𝑧𝑛 = 𝑇𝑥𝑛

}                                                          (1) 

 

is called the three-step iteration method, where 𝑋 is a Banach space, 𝑇 ∶ 𝑋 → 𝑋 is an operator and 

{𝛽𝑛}𝑛=0
∞ ⊂ [0,1] is a sequence satisfying certain conditions [14].  

 

Definition 5. The integral equations in the form of 

𝑥(𝑡) = 𝜆 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠,                                                                     (2) 

where 𝑘(𝑡, 𝑠, 𝑥) is the known function defined over the region 

𝐷 = {(𝑡, 𝑠, 𝑥) ∈ ℝ3 ∶ 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏,   − ∞ < 𝑥 < ∞} 

and 𝑥(𝑡) an unknown function whose solution is desired, and 𝜆 is any numerical parameter, are called 

the second type of nonlinear Fredholm integral equations. Here, 𝑘 is called the kernel of the integral 

equation [2]. 

 

Lemma 1. 𝐶([𝑎, 𝑏], ‖⋅‖∞) is the space of all continuous functions in the interval [𝑎, 𝑏] defined by 

𝑑(𝑥, 𝑦) = sup
𝑡∈[𝑎,𝑏]

‖𝑥(𝑡) − 𝑦(𝑡)‖∞. 

Now, let the theorem be expressed which gives the existence and uniqueness conditions of the second 

type of nonlinear Fredholm integral equations: 

 

Theorem 2. Consider the operator 𝑇 ∶ 𝐶([𝑎, 𝑏], ‖⋅‖∞) → 𝐶([𝑎, 𝑏], ‖⋅‖∞) defined by 

 𝑇𝑥(𝑡) = 𝜆 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥(𝑠))𝑑𝑠.                                                                      (3) 

𝑘(𝑡, 𝑠, 𝑥) is continuous over the region 

𝐷 = {(𝑡, 𝑠, 𝑥) ∈ ℝ3 ∶ 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏,   − ∞ < 𝑥 < ∞} 

and if 𝐿 > 0 exists such that 

|𝑘(𝑡, 𝑠, 𝑥1) − 𝑘(𝑡, 𝑠, 𝑥2)| ≤ 𝐿|𝑥1 − 𝑥2| 

for 

∀(𝑡, 𝑠, 𝑥1), (𝑡, 𝑠, 𝑥2) ∈ 𝐷𝑟 = {(𝑡, 𝑠, 𝑥) ∈ ℝ
3 ∶ 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏,   |𝑥| ≤ 𝑟 (𝑟 > 0)}, 

there is only one solution 𝑥∗(𝑡) of equation (2) in 𝐶([𝑎, 𝑏]) when |𝜆| < 𝜆0. Here 
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𝜆0 = min {
1

𝐿(𝑏 − 𝑎)
 ,   

𝑟

𝑟𝐿(𝑏 − 𝑎) + 𝐿0
} 

and 

𝐿0 = max
𝑡,𝑠∈[𝑎,𝑏]

{∫
𝑏

𝑎

|𝑘(𝑡, 𝑠, 0)|𝑑𝑠}. 

The sequence (𝑥𝑛(𝑡)) defined as 

𝑥𝑛(𝑡) = 𝜆∫
𝑏

𝑎

𝑘(𝑡, 𝑠, 𝑥𝑛−1(𝑠))𝑑𝑠  ,    𝑛 = 1,2, … 

converges smoothly to the function 𝑥∗(𝑡) for any initial function 𝑥0 ∈ {𝐶([𝑎, 𝑏]), ‖𝑥‖∞ ≤ 𝑟} [2].  

 

Definition 6. Let 𝐴1, 𝐴2 ∶ 𝑌 → 𝑌 be operators. If ‖𝐴1𝑥 − 𝐴2𝑥‖ ≤ 𝜀 for each 𝑥 ∈ 𝑌 and constant 𝜀 > 0, then 

𝐴2 is called the approximation operator of 𝐴1 [24].  

 

Lemma 2. Let {𝑎𝑛}𝑛=0
∞  and {𝑏𝑛}𝑛=0

∞  be two non-negative real sequences satisfting the following 

condition: 

𝑎𝑛+1 ≤ (1 − 𝜇𝑛)𝑎𝑛 + 𝑏𝑛 , 

where 𝜇𝑛 ∈ (0,1) for each 𝑛 ≥ 𝑛0, ∑
∞
𝑛=0 𝜇𝑛 = ∞ and 

𝑏𝑛

𝜇𝑛
→ 0 as 𝑛 → ∞. Then lim𝑛→∞𝑎𝑛 = 0 [25].  

 

Lemma 3. Let {𝑎𝑛}𝑛=0
∞  be a non-negative real sequence and there exists 𝑛0 ∈ ℕ such that for each 𝑛 ≥ 𝑛0 

satisfting the following condition: 

𝑎𝑛+1 ≤ (1 − 𝜇𝑛)𝑎𝑛 + 𝜇𝑛𝛾𝑛 , 

where 𝜇𝑛 ∈ (0,1) such that ∑∞𝑛=0 𝜇𝑛 = ∞ and 𝛾𝑛 ≥ 0. Then the following inequality holds: 

0 ≤ lim
𝑛→∞

sup𝑎𝑛 ≤ lim
𝑛→∞

sup𝛾𝑛 

[24].  

3. Main Results 

Theorem 3. Let 𝑇 ∶ 𝐶([𝑎, 𝑏], ‖⋅‖∞) → 𝐶([𝑎, 𝑏], ‖⋅‖∞) be an operator and {𝛽𝑛}𝑛=0
∞ ⊂ [0,1] be a sequence 

satisfying certain conditions. In this case, the integral equation given by equation (2) has a unique 

solution in the form of 𝑥∗ ∈ 𝐶[𝑎, 𝑏] and the sequence {𝑥𝑛}𝑛=0
∞  obtained from the iteration algorithm 

given by equation (1) converges to this solution. 

 

Proof Consider the sequence {𝑥𝑛}𝑛=0
∞  obtained from the iteration algorithm given by equation (1) 

constructed with the operator 𝑇 ∶ 𝐶([𝑎, 𝑏], ‖⋅‖∞) → 𝐶([𝑎, 𝑏], ‖⋅‖∞). It will be shown that for 𝑛 → ∞ is 

𝑥𝑛 → 𝑥∗. Using equation (1), equation (2) and conditions of Theorem 2, we are obtained the following 

inequality: 

|𝑥𝑛+1(𝑡) − 𝑥
∗(𝑡)| = |𝑇𝑦𝑛(𝑡) − 𝑇𝑥

∗(𝑡)| 
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                                                                                                 = |𝜆 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑦𝑛(𝑠))𝑑𝑠 − 𝜆 ∫

𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥∗(𝑠))𝑑𝑠| 

                                                                                                 = |𝜆| |∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑦𝑛(𝑠)) − 𝑘(𝑡, 𝑠, 𝑥

∗(𝑠))𝑑𝑠| 

≤ |𝜆|∫
𝑏

𝑎

|𝑘(𝑡, 𝑠, 𝑦𝑛(𝑠)) − 𝑘(𝑡, 𝑠, 𝑥
∗(𝑠))|𝑑𝑠 

≤ |𝜆|𝐿∫
𝑏

𝑎

|𝑦𝑛(𝑠) − 𝑥
∗(𝑠)|𝑑𝑠 

≤ |𝜆|𝐿(𝑏 − 𝑎)‖𝑦𝑛 − 𝑥
∗‖∞ 

                                                            ≤ 𝜆0𝐿(𝑏 − 𝑎)‖𝑦𝑛 − 𝑥
∗‖∞ .                                                                                      (4) 

Similarly, by making the necessary calculations, the following inequalities are obtained: 

‖𝑦𝑛 − 𝑥
∗‖∞ = ‖(1 − 𝛽𝑛)𝑧𝑛 + 𝛽𝑛𝑇𝑧𝑛 − 𝑇𝑥

∗‖∞ 

                                                                                = ‖𝑧𝑛 − 𝑥
∗ + 𝛽𝑛(𝑇𝑧𝑛 − 𝑧𝑛)‖∞ 

 ≤ ‖𝑧𝑛 − 𝑥
∗‖∞ ,                                                                                   (5) 

                                                     |𝑧𝑛 − 𝑥
∗| = |𝑇𝑥𝑛 − 𝑇𝑥

∗| 

                                                                        = |𝜆 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥𝑛(𝑠))𝑑𝑠 − 𝜆 ∫

𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥∗(𝑠))𝑑𝑠| 

                                                                        = |𝜆| |∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥𝑛(𝑠)) − 𝑘(𝑡, 𝑠, 𝑥

∗(𝑠))𝑑𝑠| 

                                                                        ≤ |𝜆| ∫
𝑏

𝑎
|𝑘(𝑡, 𝑠, 𝑥𝑛(𝑠)) − 𝑘(𝑡, 𝑠, 𝑥

∗(𝑠))|𝑑𝑠 

                                                                        ≤ |𝜆|𝐿 ∫
𝑏

𝑎
|𝑥𝑛(𝑠) − 𝑥

∗(𝑠)|𝑑𝑠 

                                                                        ≤ |𝜆|𝐿(𝑏 − 𝑎)‖𝑥𝑛 − 𝑥
∗‖∞ 

                                                                        ≤ 𝜆0𝐿(𝑏 − 𝑎)‖𝑥𝑛 − 𝑥
∗‖∞ .                                                                         (6) 

Then, taking the supremum of both sides of inequality (6), 

‖𝑧𝑛 − 𝑥
∗‖∞ ≤ 𝜆0𝐿(𝑏 − 𝑎)‖𝑥𝑛 − 𝑥

∗‖∞                                              (7) 

is obtained. If inequality (7) and inequality (5) are written in inequality (4), 

‖𝑥𝑛+1(𝑡) − 𝑥
∗(𝑡)‖∞ ≤ 𝜆0

2𝐿2(𝑏 − 𝑎)2‖𝑥𝑛 − 𝑥
∗‖∞ 

And by applying induction to the last inequality, the following inequality is obtained: 

‖𝑥𝑛+1(𝑡) − 𝑥
∗(𝑡)‖∞ ≤ 𝛼2‖𝑥𝑛 − 𝑥

∗‖∞ 

                                           ≤ 𝛼4‖𝑥𝑛−1 − 𝑥
∗‖∞ 

                                            ≤ 𝛼6‖𝑥𝑛−2 − 𝑥
∗‖∞  

                       ⋮ 

                                               ≤ 𝛼2(𝑛+1)‖𝑥0 − 𝑥
∗‖∞ 

then  

‖𝑥𝑛+1(𝑡) − 𝑥
∗(𝑡)‖∞ ≤ 𝛼2(𝑛+1)‖𝑥0 − 𝑥

∗‖∞ , 

is found. Thus, since 0 < 𝛼 < 1, 

lim
𝑛→∞

‖𝑥𝑛+1(𝑡) − 𝑥
∗(𝑡)‖∞ = 0 . 

So, the proof is completed.  
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Now, let us examine the data dependency of the solution of the integral equation given by equation (2) 

using the iteration algorithm given in equation (1). On the other hand, for data dependency, consider 

the integral equation 

 𝑢(𝑡) = 𝜆1 ∫
𝑏

𝑎
ℎ(𝑡, 𝑠, 𝑢(𝑠))𝑑𝑠 ,                                                            (8) 

where ℎ(𝑡, 𝑠, 𝑢) is a continuous function given over the region 

𝐷 = {(𝑡, 𝑠, 𝑢) ∈ ℝ3 ∶ 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏 ,   − ∞ < 𝑢 < ∞} , 

and 𝜆1 is a parameter. If equation (8) is written with the operator 𝑆 ∶ 𝐶([𝑎, 𝑏], ‖⋅‖∞) → 𝐶([𝑎, 𝑏], ‖⋅‖∞) , 

 𝑆(𝑢(𝑡)) = 𝜆1 ∫
𝑏

𝑎
ℎ(𝑡, 𝑠, 𝑢(𝑠))𝑑𝑠                                       (9) 

is obtained. If the iteration algorithm given in equation (1) is reconstructed with operators 𝑇(3) and 

𝑆(9), respectively,  

𝑥𝑛+1(𝑡) = 𝜆 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑦𝑛(𝑠))𝑑𝑠

𝑦𝑛(𝑡) = (1 − 𝛽𝑛)𝑧𝑛(𝑡) + 𝛽𝑛 [𝜆 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑧𝑛(𝑠))𝑑𝑠]

𝑧𝑛(𝑡) = 𝜆 ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥𝑛(𝑠))𝑑𝑠 }

 
 

 
 

                  (10) 

and 

 

𝑢𝑛+1(𝑡) = 𝜆1 ∫
𝑏

𝑎
ℎ(𝑡, 𝑠, 𝑣𝑛(𝑠))𝑑𝑠

𝑣𝑛(𝑡) = (1 − 𝛽𝑛)𝑤𝑛(𝑡) + 𝛽𝑛 [𝜆1 ∫
𝑏

𝑎
ℎ(𝑡, 𝑠, 𝑤𝑛(𝑠))𝑑𝑠]

𝑤𝑛(𝑡) = 𝜆1 ∫
𝑏

𝑎
ℎ(𝑡, 𝑠, 𝑢𝑛(𝑠))𝑑𝑠 }

 
 

 
 

                    (11) 

iteration algorithms can be written. 

 

Theorem 4. Let the sequence {𝛽𝑛}𝑛=0
∞ ⊂ [0,1] satisfy the condition 𝛽𝑛 ≥

1

2
 for each 𝑛 ∈ ℕ. Consider the 

sequence {𝑥𝑛}𝑛=0
∞  obtained from equation (10) and the sequence {𝑢𝑛}𝑛=0

∞  obtained from equation (11). 

Let the solutions of equation (2) and equation (8) be 𝑥∗ and 𝑢∗, respectively, with the conditions of 

Theorem 2. Let the constant 𝜀 exists such that ‖𝑘(𝑡, 𝑠, 𝑝(𝑠)) − ℎ(𝑡, 𝑠, 𝑝(𝑠))‖
∞
≤ 𝜀 for each 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏 

and −∞ < 𝑝 < ∞. 𝑘(𝑡, 𝑠, 𝑝) and ℎ(𝑡, 𝑠, 𝑝) are continuous functions given over the region 

𝐴 = {(𝑡, 𝑠, 𝑝) ∈ ℝ3 ∶ 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏, −∞ < 𝑝 < ∞}. 

 𝜆 and 𝜆1 are parameters. 

If 𝑥𝑛 → 𝑥∗ and 𝑢𝑛 → 𝑢∗ as 𝑛 → ∞, then the inequality 

‖𝑥∗ − 𝑢∗‖ ≤
3𝜀𝜆max(𝑏 − 𝑎)

1 − 𝜆max(𝑏 − 𝑎)𝐿
 

is valid, with 𝜆max = max{|𝜆|, |𝜆1|}. 

 

Proof With the hypotheses of the theorem, the following inequality is obtained: 

‖𝑥𝑛+1 − 𝑢𝑛+1‖∞ = ‖𝜆∫
𝑏

𝑎

𝑘(𝑡, 𝑠, 𝑦𝑛(𝑠))𝑑𝑠 − 𝜆1∫
𝑏

𝑎

ℎ(𝑡, 𝑠, 𝑣𝑛(𝑠))𝑑𝑠‖
∞
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                                                                   ≤ ‖𝜆max ∫
𝑏

𝑎
(
𝑘(𝑡, 𝑠, 𝑦𝑛(𝑠)) − 𝑘(𝑡, 𝑠, 𝑣𝑛(𝑠))

+𝑘(𝑡, 𝑠, 𝑣𝑛(𝑠)) − ℎ(𝑡, 𝑠, 𝑣𝑛(𝑠))
)𝑑𝑠‖

∞

 

                                                                   ≤ 𝜆max(
𝐿 ∫

𝑏

𝑎
‖𝑦𝑛(𝑠) − 𝑣𝑛(𝑠)‖∞𝑑𝑠

+∫
𝑏

𝑎
‖𝑘(𝑡, 𝑠, 𝑣𝑛(𝑠)) − ℎ(𝑡, 𝑠, 𝑣𝑛(𝑠))‖∞𝑑𝑠

) 

≤ 𝜆max(𝑏 − 𝑎)(𝐿‖𝑦𝑛 − 𝑣𝑛‖∞ + 𝜀) 

                                                      ≤ 𝜆max(𝑏 − 𝑎)𝐿‖𝑦𝑛 − 𝑣𝑛‖∞ + 𝜆max(𝑏 − 𝑎)𝜀.                                       (12) 

Similarly, 

‖𝑦𝑛 − 𝑣𝑛‖∞ ≤ (1 − 𝛽𝑛)‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛 ‖𝜆∫
𝑏

𝑎

𝑘(𝑡, 𝑠, 𝑧𝑛)𝑑𝑠 − 𝜆1∫
𝑏

𝑎

ℎ(𝑡, 𝑠, 𝑤𝑛)𝑑𝑠‖
∞

 

                                           ≤ (1 − 𝛽𝑛)‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛 ‖𝜆max ∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑧𝑛) − ℎ(𝑡, 𝑠, 𝑤𝑛)𝑑𝑠‖

∞
 

                                            ≤ (1 − 𝛽𝑛)‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛𝜆max ∫
𝑏

𝑎
‖𝑘(𝑡, 𝑠, 𝑧𝑛) − ℎ(𝑡, 𝑠, 𝑤𝑛)‖∞𝑑𝑠 

                                            ≤ (1 − 𝛽𝑛)‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛𝜆max ∫
𝑏

𝑎
‖
𝑘(𝑡, 𝑠, 𝑧𝑛) − 𝑘(𝑡, 𝑠, 𝑤𝑛)

+𝑘(𝑡, 𝑠, 𝑤𝑛) − ℎ(𝑡, 𝑠, 𝑤𝑛)
‖
∞

𝑑𝑠 

                ≤ (1 − 𝛽𝑛)‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛𝜆max (𝐿∫
𝑏

𝑎

‖𝑧𝑛 −𝑤𝑛‖∞𝑑𝑠 + ∫
𝑏

𝑎

𝜀𝑑𝑠) 

 

                                            ≤ (1 − 𝛽𝑛)‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛𝜆max(𝑏 − 𝑎)(𝐿‖𝑧𝑛 −𝑤𝑛‖∞ + 𝜀) 

 

                               ≤ [1 − 𝛽𝑛 + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝐿]‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝜀                                  (13) 

and 

‖𝑧𝑛 − 𝑤𝑛‖∞ = ‖𝜆∫
𝑏

𝑎

𝑘(𝑡, 𝑠, 𝑥𝑛)𝑑𝑠 − 𝜆1∫
𝑏

𝑎

ℎ(𝑡, 𝑠, 𝑢𝑛)𝑑𝑠‖
∞

 

                                                                     ≤ 𝜆max ‖∫
𝑏

𝑎
𝑘(𝑡, 𝑠, 𝑥𝑛) − ℎ(𝑡, 𝑠, 𝑢𝑛)𝑑𝑠‖

∞
 

                                                                      ≤ 𝜆max ∫
𝑏

𝑎
‖
𝑘(𝑡, 𝑠, 𝑥𝑛) − 𝑘(𝑡, 𝑠, 𝑢𝑛)

+𝑘(𝑡, 𝑠, 𝑢𝑛) − ℎ(𝑡, 𝑠, 𝑢𝑛)
‖
∞

𝑑𝑠  

                                                                      ≤ 𝜆max (𝐿 ∫
𝑏

𝑎
‖𝑥𝑛 − 𝑢𝑛‖∞𝑑𝑠 + ∫

𝑏

𝑎
𝜀𝑑𝑠) 

                                                                      ≤ 𝜆max(𝑏 − 𝑎)(𝐿‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝜀) 

                                                                      ≤ 𝜆max(𝑏 − 𝑎)𝐿‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝜆max(𝑏 − 𝑎)𝜀 

 ≤ ‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝜆max(𝑏 − 𝑎)𝜀                                                             (14) 

are found. If inequality (14) is written in inequality (13), 

            ‖𝑦𝑛 − 𝑣𝑛‖∞ ≤ [1 − 𝛽𝑛 + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝐿]‖𝑧𝑛 −𝑤𝑛‖∞ + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝜀 

                                   ≤ [1 − 𝛽𝑛 + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝐿][‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝜆max(𝑏 − 𝑎)𝜀] + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝜀 

                                   ≤ [1 − 𝛽𝑛 + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝐿]‖𝑥𝑛 − 𝑢𝑛‖∞ + [𝜆max(𝑏 − 𝑎)𝜀] + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝜀 

≤ [1 − 𝛽𝑛 + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝐿]‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝜀𝜆max(𝑏 − 𝑎)(1 + 𝛽𝑛) 

is obtained. If the last inequality is written in inequality (12), 

‖𝑥𝑛+1 − 𝑢𝑛+1‖∞ ≤ ‖𝑦𝑛 − 𝑣𝑛‖∞ + 𝜆max(𝑏 − 𝑎)𝜀 

                                 ≤ [1 − 𝛽𝑛 + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝐿]‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝜀𝜆max(𝑏 − 𝑎)(1 + 𝛽𝑛) + 𝜆max(𝑏 − 𝑎)𝜀 
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                                  ≤ [1 − 𝛽𝑛 + 𝛽𝑛𝜆max(𝑏 − 𝑎)𝐿]‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝜀𝜆max(𝑏 − 𝑎)(2 + 𝛽𝑛) 

                                  ≤ {1 − 𝛽𝑛(1 − 𝜆max(𝑏 − 𝑎)𝐿)}‖𝑥𝑛 − 𝑢𝑛‖∞ +𝜀𝜆max(𝑏 − 𝑎)(2 + 𝛽𝑛) 

                                  ≤ {1 − 𝛽𝑛(1 − 𝜆max(𝑏 − 𝑎)𝐿)}‖𝑥𝑛 − 𝑢𝑛‖∞ + 𝛽𝑛(1 − 𝜆max(𝑏 − 𝑎)𝐿)
3𝜀𝜆max(𝑏−𝑎)

1−𝜆max(𝑏−𝑎)𝐿
  (15) 

is found. If is chosen 𝑎𝑛 , 𝜇𝑛 , 𝛾𝑛 as follows in inequality (15), satisfies the conditions of Lemma 3. 

𝑎𝑛 = ‖𝑥𝑛 − 𝑢𝑛‖∞, 

𝜇𝑛 = 𝛽𝑛(1 − 𝜆max(𝑏 − 𝑎)𝐿) ∈ (0,1), 

𝛾𝑛 =
3𝜀𝜆max(𝑏 − 𝑎)

1 − 𝜆max(𝑏 − 𝑎)𝐿
≥ 0. 

𝛽𝑛 ≥
1

2
 requires ∑∞𝑛=0 𝛽𝑛 = ∞ for each 𝑛 ∈ ℕ. Then, 

0 ≤ limsup
𝑛→∞

‖𝑥𝑛 − 𝑢𝑛‖∞ ≤ limsup
𝑛→∞

𝛾𝑛 = limsup
𝑛→∞

3𝜀𝜆max(𝑏 − 𝑎)

1 − 𝜆max(𝑏 − 𝑎)𝐿
 

is obtained. Since 𝑥𝑛 → 𝑥∗ and 𝑢𝑛 → 𝑢∗as 𝑛 → ∞, 

                                        ‖𝑥∗ − 𝑢∗‖∞ ≤
3𝜀𝜆max(𝑏−𝑎)

1−𝜆max(𝑏−𝑎)𝐿
                                                                  (16) 

is found.  

 

Example 1. 

𝑥(𝑡) =
17

64
∫
1

0

1

1 + 𝑥2(𝑠)
𝑑𝑠 

where 𝑘(𝑡, 𝑠, 𝑥) =
1

1+𝑥2(𝑠)
 is a continuous function given over the region 

𝐷 = {(𝑡, 𝑠, 𝑥) ∶ 0 ≤ 𝑡, 𝑠 ≤ 1 ,   − ∞ < 𝑥 < ∞}. 

The partial derivative of 𝑘(𝑡, 𝑠, 𝑥): 

𝜕𝑘

𝜕𝑥
= −

2𝑥

(1 + 𝑥2)2
 

is bounded over the region 𝐷. 

|
𝜕𝑘

𝜕𝑥
| = |−

2𝑥

(1 + 𝑥2)2
| ≤ 1 ,   (𝑡, 𝑠, 𝑥) ∈ 𝐷 

In this case, 𝑘(𝑡, 𝑠, 𝑥) satisfies the Lipschitz condition with the coefficient 𝐿 = 1. 

𝜆 =
17

64
, 𝑎 = 0, 𝑏 = 1, 𝛼 = |𝜆|𝐿(𝑏 − 𝑎) =

17

64
< 1 . 

The equation in question has only one continuous solution 𝑥∗ on [0,1]. 

 

Let’s define the following algorithm with the operator 

𝑇𝑥𝑛(𝑡) =
17

64
∫
1

0

1

1 + 𝑥𝑛
2(𝑠)

𝑑𝑠 

for the solution: 
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𝑥𝑛+1(𝑡) = 𝑇𝑦𝑛(𝑡) =
17

64
∫
1

0

1

1 + 𝑦𝑛
2(𝑠)

𝑑𝑠 

𝑦𝑛(𝑡) = (1 − 𝛽𝑛)𝑧𝑛(𝑡) + 𝛽𝑛𝑇𝑧𝑛(𝑡) = (1 − 𝛽𝑛)𝑧𝑛(𝑡) + 𝛽𝑛 (
17

64
∫
1

0

1

1 + 𝑧𝑛
2(𝑠)

𝑑𝑠) 

𝑧𝑛(𝑡) = 𝑇𝑥𝑛(𝑡) =
17

64
∫
1

0

1

1 + 𝑥𝑛
2(𝑠)

𝑑𝑠. 

On the other hand, let’s consider the integral equation 

𝑢(𝑡) =
65

256
∫
1

0

𝑠

1 + 𝑢2(𝑠)
𝑑𝑠 , 

where 

ℎ(𝑡, 𝑠, 𝑢) =
𝑠

1 + 𝑢2(𝑠)
 

is a continuous function given over the region  

𝐺 = {(𝑡, 𝑠, 𝑢) ∶ 0 ≤ 𝑡, 𝑠 ≤ 1 ,   − ∞ < 𝑢 < ∞} . 

The partial derivative of ℎ(𝑡, 𝑠, 𝑢): 

𝜕ℎ

𝜕𝑢
= −

2𝑠𝑢

(1 + 𝑢2)2
 

is bounded over the region 𝐺. 

|
𝜕ℎ

𝜕𝑢
| = |−

2𝑠𝑢

(1 + 𝑢2)2
| ≤ 1 ,   (𝑡, 𝑠, 𝑢) ∈ 𝐺 

In this case, ℎ(𝑡, 𝑠, 𝑢) satisfies the Lipschitz condition with the coefficient 𝐿 = 1. 

𝜆1 =
65

256
 ,   𝑎 = 0 ,   𝑏 = 1 ,   𝛼 = |𝜆1|𝐿(𝑏 − 𝑎) =

65

256
< 1 . 

The equation in question has only one continuous solution 𝑢∗on [0,1]. 

 

Let’s define the following algorithm with the operator 

𝑆(𝑢𝑛(𝑡)) =
65

256
∫
1

0

𝑠

1 + 𝑢2(𝑠)
𝑑𝑠 

for the solution: 

𝑢𝑛+1(𝑡) = 𝑆𝑣𝑛(𝑡) =
65

256
∫
1

0

𝑠

1 + 𝑣2(𝑠)
𝑑𝑠 

𝑣𝑛(𝑡) = (1 − 𝛽𝑛)𝑤𝑛(𝑡) + 𝛽𝑛𝑆𝑤𝑛(𝑡) = (1 − 𝛽𝑛)𝑤𝑛(𝑡) + 𝛽𝑛 (
65

256
∫
1

0

𝑠

1 + 𝑤2(𝑠)
𝑑𝑠) 

𝑤𝑛(𝑡) = 𝑆𝑢𝑛(𝑡) =
65

256
∫
1

0

𝑠

1 + 𝑢2(𝑠)
𝑑𝑠. 

Thus, 

𝜆max = max{|𝜆|, |𝜆1|} = max {
17

64
,
65

256
} =

17

64
 

is found. Let the constant 𝜀 exists such that 
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‖𝑘(𝑡, 𝑠, 𝑝(𝑠)) − ℎ(𝑡, 𝑠, 𝑝(𝑠))‖
∞
= ‖

1

1 + 𝑝2
−

𝑠

1 + 𝑝2
‖
∞

 

                                          ≤ ‖
1

1 + 𝑝2
‖
∞

 

                                ≤ 1 = 𝜀 

for each (𝑡, 𝑠, 𝑝) ∈ 𝐴. So, all the conditions of Theorem 4 are satisfied. Therefore, inequation (16) is valid. 

If the found values are written in the inequation (16), 

‖𝑥∗ − 𝑢∗‖∞ ≤
3𝜀𝜆max(𝑏 − 𝑎)

1 − 𝜆max(𝑏 − 𝑎)𝐿
=

3.1.
17
64
. 1

1 −
17
64
. 1.1

=
51

47
≃ 1.085 

is obtained. Indeed, 𝑥∗ =
1

4
 and 𝑢∗ =

1

8
 are found. So, 

‖𝑥∗ − 𝑢∗‖∞ = ‖
1

4
−
1

8
‖
∞
=
1

8
= 0.125 ≤ 1.085 

is found. Thus, the theorem is supported by this example.  

4. Conclusion 

Many real-life problems are expressed non-linearly. In the modeling of these problems, nonlinear 

integral equations are mostly used. Fixed point theory is very important for solving these integral 

equations. The basic idea here is to construct algorithms called iterations by including the equation in 

an operator class under certain conditions, and to determine the appropriate conditions for the 

sequence obtained from this iteration to converge to the fixed point of the operator, in other words, to 

the solution of the equation.In this study, the solution of the second type of homogeneous nonlinear 

Fredholm integral equations is investigated using a three-step iteration algorithm. In other words, the 

aim of this study is to show that the sequence obtained from equation (1) iteration method converges 

strongly to the solution of equation (2). It has been shown that the sequences obtained from this 

algorithm converge to the solution of the mentioned equations. In addition, data dependence was 

obtained for the second type of homogeneous nonlinear Fredholm integral equations and this result was 

supported by an example. Interested researchers can reconstruct the newly described three-step 

iteration method for more general transformation classes and apply it to many types of integral 

equations to examine the results of strong convergence and data dependence. 
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