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  ÖZ 

Anahtar Kelimeler: 
Siber Güvenlik  
Zararlı Yazılım Tespiti 
Zararlı Yazılım Analizi 

Makine Öğrenmesi 

 Siber saldırılardaki artış internet ve bilişim teknolojileri kullanımını da tehdit etmeye 
başlamıştır. Bu durum, siber saldırılardan sorumlu kötü amaçlı yazılımları tespit etmenin 
önemini vurgulamaktadır. Günümüzde, kötü amaçlı yazılımları algılamak için makine 
öğrenmesi yöntemlerinin geliştirilmesi üzerine çalışmalar bulunmaktadır. Kötü amaçlı 
yazılım dedektörleri, kötü amaçlı yazılımlara karşı savunmada birincil araçlardır. Böyle 
bir dedektöderün kalitesi, kullandığı tekniklerle belirlenir. Makine öğrenmesi, derin 
öğrenme ve statik ve dinamik analiz gibi zararlı yazılım analiz yöntemleri bu teknikler 
arasında yer almaktadır. Bu çalışma kötü amaçlı yazılım analizi ve sınıflandırma 
tekniklerini sunmaktadır. Kötü amaçlı yazılım tespiti için, K-En Yakın Komşular, Saf 
Bayes, Karar Ağaçları ve Rastgele Orman gibi iyi bilinen makine öğrenmesi algoritmaları 
kullanılmıştır. Çalışma, Karar Ağaçları sınıflandırma tekniği kullanımının %97,75 
sınıflandırma ile en iyi doğruluğu ürettiğini, Saf Bayes'in ise %53 ile en düşük doğruluğu 
ürettiğini göstermektedir. 
 

   
 

 
Detection of Malware by Static Analysis Using Machine Learning Methods 
 

  ABSTRACT 
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 The increase in cyber-attacks has also started to threaten the use of internet and 
information technologies. This situation emphasizes the importance of detecting 
malicious software that is responsible for cyber-attacks. Nowadays, there are studies on 
the development of machine learning methods for malicious software detection. 
Malicious software detectors are the primary tools in defense against malicious software. 
The quality of such a detector is determined by the techniques it uses. Malware analysis 
methods such as machine learning, deep learning, and static and dynamic analysis are 
among these techniques. This study presents malware analysis and classification 
techniques. For malware detection, well-known algorithms for machine learning 
including such K-Nearest Neighbors, Naive Bayes, Decision Trees, and Random Forest 
were used. The research shows that the use of Random Forest classification technique 
produces the best accuracy with 97.75% classification, while Naive Bayes produces the 
lowest accuracy of 53%. 
 

 
 
 
 
 
 
 



Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35 

 

  28 Bilgisayar Bilimleri ve Teknolojileri Dergisi 
 

 

1. INTRODUCTION  
 
In recent years, there has been an increase in 

the development of malware. Today, cyber 
attackers use malware for attacks on information 
systems. Internet environments such as e-mails, 
malicious websites, downloaded software are the 
main environments for performing a malware 
attack on information systems. Detection and 
analysis of these malicious software is important for 
information security and healthy internet usage. In 
general, 3 basic techniques (static, dynamic and 
hybrid) are examined for the analysis of malicious 
software. Analyzes extract different features to 
classify and detect malicious and harmless files. 
Static and dynamic methods can be used to 
automate and speed up the steps in malware 
analysis, detection and classification. Extracting 
different malware features through analytical 
techniques is critical to the success of malware 
detection. Data from static or dynamic methods can 
be used to detect malware or classify malware by 
families using machine learning techniques (i.e., 
clustering or classification).  

Analyzing malware without running it is called 
static analysis. Patterns used in static analysis 
include string signature, syntactic library call, byte 
array n-grams, opcode (operation code) frequency 
distribution, control flow diagram, and so on 
(Gandotra et al., 2014). Analysis of the behavior 
(interaction with the system) of a malware while 
running in a controlled environment such as a 
virtual machine, sandbox, simulator, emulator, and 
so on is called dynamic analysis. Before running the 
malware sample, appropriate monitoring tools such 
as Process Monitor, Capture BAT, Process Hacker, 
Process Explorer, Regshot and Wireshark are 
installed and enabled (Gandotra et al., 2014). 
Despite all its benefits, the biggest disadvantage of 
dynamic analysis is the performance cost. When 
dealing with large datasets containing hundreds of 
binaries, dynamic analysis cannot scale effectively 
(Hassen et al., 2017). Since scalability is a need of 
this research, static analysis is used to extract 
features from the malicious programs. 

Although traditional malware classification 
methods were used before, with the rapid spread 
and complexity of malware, there is a need to 
develop new methods. Machine learning methods 
are also powerful technologies that transform the 
effectiveness of cyber security research. In this 
study, Random Forest (RF), Decision Tree (DT), K-
Nearest Neighbor (KNN) and Gaussian Naive Bayes 
(NB) machine learning methods were used to 
classify malware. Calculated accuracy, f1-score, 
precision, and recall metrics are compared to 
determine success of the methods. Among the 
methods used, it is observed that the RF algorithm 
gave the most successful result with an accuracy 
rate of 97.75%. 

Malware has posed a great threat to computer 
systems from past to present. New techniques and 

methods have been tested by adding new malware 
detection studies that have been carried out since 
the past. It has been observed that artificial 
intelligence-assisted methods such as machine 
learning and deep learning methods improve 
malware detections and outperform existing 
methods, with the efficiency of existing methods 
decreasing against new threats. In the continuation 
of this section, a summary of the studies on 
malware detection in the literature is presented. 

Tian et al. (Tian et al., 2009) presented 
malware classification research using classification 
methods based on sequence information. Sequences 
were acquired from 1367 samples, including 
unpackaged trojans, viruses, and clean files. Several 
classification techniques, including tree-based 
classifiers, KNN, statistical algorithms, and 
AdaBoost were used to analyze the information 
identifying the sequences presented in each sample. 
Using k-fold cross validation on unpackaged 
malicious and benign files, the RF classifier achieved 
an accuracy rate of 97%. 

Santos et al. (Santos et al., 2013) offered a new 
hybrid malware detector that merges the frequency 
of occurrence of operational codes (statically 
collected) with information about an executable's 
execution track (dynamically obtained). This hybrid 
strategy has been found to increase the 
performance of both methods when performed 
individually. KNN, DT, RF, SVM (Support Vector 
Machine), and NB methods were used in this work. 
Static, dynamic, and hybrid techniques were 
evaluated separately. The SVM (Normalized 
Polynomial Kernel) achieved the highest accuracy 
for each approximation (Dynamic: %77.26, Hybrid: 
96.60%, and Static: 95.90%). 

Patil et al. (Patil and Deng, 2020) used a 
method to extract various feature sets from 
malware data such as system calls, opcodes, and 
bytecodes. Work has been done on Microsoft's 
malware dataset available on the Kaggle website. 
The dataset contains 10868 malicious files from 
nine different malware families. The study 
examines the effectiveness of machine learning 
algorithms (i.e., DT, RF, NB, KNN, Support Vector 
Classifier (SVC), Stochastic Gradient Descent (SGD), 
Logistic Regression (LR)) and deep learning-based 
(i.e., Deep Neural Network (DNN)) models. Each of 
the features in the dataset is examined and the 
findings show that the feature vector for system 
calls achieves the highest accuracy. 

Azeez et al. (Azeez et al., 2021) proposed a 
method based on collective learning. After applying 
the CNN classifier, various machine learning 
algorithms were applied for the final stage. For 
comparison, RF, NB, DT, GB and Adaboost 
algorithms were used. The RF algorithm yielded the 
highest result with an accuracy rate of 99.24%. 

A literature review of existing malware 
detection classification researchs utilizing machine 
learning techniques was published by Harshalatha 
et al. (Harshalatha and Mohanasundaram, 2020). 
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Random Forest (RF), Support Vector Machine 
(SVM), BayesNet and Multi-Layer Perceptron (MLP) 
are the classifier models utilized in this study. First, 
all malware samples were put through a 10 fold 
cross validation test, and the findings of the 
classifier showed that RF performed the best with 
98% accuracy.  It was shown that using the RF 
classifier for various datasets caused the same RF 
accuracy to drop by 12%. 

Tahtacı and Canbay (Tahtacı and Canbay, 
2020) investigated Android-based files with a 
machine learning model along with N-Gram 

features. The models were combined with methods 
to determine the threshold of variance and obtain 
features information. With the APKTool tool, 3000 
Android Package (APK) files were converted to 
source code and the opcodes of the programs were 
obtained. DT, KNN, NB, LR, RF and SVM machine 
learning algorithms are trained using N-Gram 
features. The best test result is obtained after 
reducing the number of features in 3-gram to two 
(100% test score was obtained in the KNN and SVM 
models).  

Table 1. Summary of the related studies on malware detection and their results. 

Author Year Classifiers Best Classifier Accuracy 

Tian et al. 2009 RF, NB, DT, IB1 and SVM RF 0.97 

Santos et al. 2013 KNN, DT, RF, SVM and NB SVM 
Static:0.9590 

Dynamic:0.7726 
Hybrid: 0.9660 

Patil et al. 2020 
DT, SGD, RF, SVC, LR, 
DNN, NB, KNN 

DNN >0.95 

Tahtacı and Canbay 2020 
DT, KNN, NB, LR, RF and 

SVM 
KNN and SVM 1.0 

Harshalatha et al. 2020 
RF, BayesNet, MLP ve 

SVM 
RF 0.98 

Azeez et al. 2021 
CNN, RF, NB, DT, GB and 

Adaboost 
RF 0.99 

 
The article continues as follows. The second 

chapter highlights technique, which includes 
machine learning-based malware classification and 
detection methods and dataset preprocessing. The 
third chapter analyzes machine learning malware 
detection algorithms and evaluates the findings. 
This topic is concluded in Chapter 4 by addressing 
the research aspects. 

 
2. METHODS  

 
The main purpose of this study is to detect 

malicious software with a data set created by static 
analysis method. This section contains information 
about the dataset and machine learning algorithms 
used for malware analysis.  

 
2.1. Dataset and Data Preprocessing 

 
The data set was obtained from C-Prot Turkey. 

It consists of 1000 pieces of software labeled as 
malicious (malware) and 1000 pieces of software 
labeled as benign (non-malware). In order to 
extract the data set features used in the study, the 
features from the files of programs were obtained 
by applying the static analysis method. The sample 
fragment of the dataset is shown in table 1. The file 
size, digital signature status, libraries and functions 
used in the software were used as dataset features 
of each software. In this study, the data set was 
divided into two sub-datasets and 80% (1600 
pieces) of the data were used for training and 20% 
(400 pieces) for testing.  

Table 1. A sample dataset before the dataset preprocessing step. 

SIZE 
DIGITAL 

SIGNATURE 
LIBRARIES FUNCTIONS LABEL 

323800 1 KERNEL32.dll,USER32.d... GetSystemTime,PostMessage,FreeLib… 1 

6595084 0 MSVCR100.dll,IMM32.dl... MD5,SHA,SHA1,HMAC,GetSe... 1 

139084 0 lib1.dll,bcrypt.dll,KERNEL3... BCryptOpenAlgorithmProvider,BC... 0 

119160 0 kernel32.dll,user32.dll ExitProcess,VirtualAlloc,VirtualFree… 1 

560906 0 uxtheme.dll,gdi32.dll,kern... CreateWindow,CreateWindowEx,Ge… 1 

162733 0 zlib1.dll,bcrypt.dll,KERN… BCryptOpenAlgorithmProvider,BCryp… 0 

511552 1 VCRUNTIME140.dll,KER… SHA,InitializeConditionVariable… 0 
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Among the features in the dataset, each of the 
functions and libraries in the functions and libraries 
(features) column has been made a separate 
feature, so that each function and library name is 
also considered a dataset feature. As a result of this 
process, 195 unique libraries and 4,327 unique 
functions were obtained. Including size, digital 
signature, label, and these unique functions and 
libraries were also used as features in the dataset. 
Thus, a total of 4,525 features (4,525 columns) were 
obtained. Table 2 shows sample dataset after the 
dataset preprocessing step. 
 

The data preprocessing step transforms the data 
into a format that machine learning algorithms can 
analyze efficiently (Markel et al., 2014). In order for 
the models to work efficiently in machine learning 
algorithms, categorical inputs need to be converted 
into numerical expressions. For this reason, 
normalizing all the features in the dataset to binary 
values as "0" or "1" provides an advantage in the 
training process of the model. In this study values of 
1 and 0 (value of 1 presence of the feature in the 
software, 0 value of the absence of the feature in the 
software) were assigned for each feature according 
to the content of the software. 

 
 
Table 2. A sample dataset after the dataset preprocessing step. 

SIZE 
DIGITAL 

SIGNATURE 
.ctor KERNEL32.dll zlib1.dll GetSystemTime ExitProcess LABEL 

323800 1 0 1 0 0 0 1 

6595084 0 1 0 0 0 0 1 

139084 0 0 0 0 1 0 0 

119160 0 0 0 0 0 1 1 

560906 0 0 0 0 0 0 1 

162733 0 0 1 0 0 0 0 

511552 1 0 1 1 0 0 0 

2.2. Machine Learning Algorithms 
 

With the proliferation of new and unseen 
malware families, there is a need to develop new 
methods to detect malware. Machine learning is one 
of these methods. In this study, well-known 
machine learning algorithms such as KNN, RF, DT 
and Gaussian NB were trained and tested to detect 
malware. The theoretical details of the machine 
learning methods used in this study are given 
below. 
 
2.2.1. Gaussian naive bayes 

 
The NB classifier is a Bayesian-based 

probabilistic classification mechanism. The main 
goal of classification is to find the best match 
between a set of new data and a set of 
classifications within a specific problem domain 
(Yang, 2018). The relationship in is stated by Bayes' 
theorem with respect to the class variables 𝑓1 and 𝑓𝑛 
and the dependent feature vector (1).  

C represents the given target, and f represents 
the features. 

 

𝑝(𝐶|𝒇𝟏, … 𝒇𝒏) =
 𝑃(𝐶)𝑝(𝒇𝟏,…𝒇𝒏|𝐶)

𝑝(𝒇𝟏,…𝒇𝒏)
      (1) 

 
In simple Bayesian classification, the Gaussian 

distribution is a method of using continuous 
features. If the feature has continuous values, they 
are from a Gaussian or normal distribution. 

 

𝒑(𝒙𝒊 | 𝒚) =
𝟏

√𝟐𝝅𝝈𝒚
𝟐

 𝒆𝒙𝒑(−
(𝒙𝒊− 𝝁𝒚)𝟐

𝟐𝝈𝒚
𝟐 )   (2) 

      
      

Parameters σ(y) and μ(y) shown in formula (2) 
are estimated using maximum probability. 
 
2.2.2. K-nearest neighbors 

 
Based on the supervised learning technique, 

KNN is one of the Machine Learning algorithms 
used for both classification and regression. Based 
on the similarity between the new state data and 
the existing states, it classifies the new state into the 
category to most similar to the existing classes. It 
computes the distance between the test data and all 
training points and attempts to predict which 
category the test data belongs to.  

Algorithm selects the number of K points close 
to the test data. 'K' value computes the probability 
of test data belonging to training data classes, and 
then the class with the highest probability is chosen.  

To find the nearest neighbors, various distance 
measurement methods are used (Chumachenko, 
2017). The Hamming, Manhattan, Minkowski, and 
Euclidean distances are all popular. Minkowski 
distance was used as a distance measure in this 
study. It then discards the point from among the k 
nearest neighbors to the class (where k is an 
integer). 
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Where x=(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) and  y=(𝑦1, 𝑦2, 𝑦3 , … 
𝑦) and p is an integer. 

𝑫(𝒙, 𝒚) = ∑ (𝑝𝑖 − 𝑞𝑖)
1

𝑝

𝑛

𝑖=1

                   (3) 

 
2.2.3. Decision tree 

 
A DT is a recursively expressed machine 

learning classifier. It consists of nodes that form a 
root tree (Rokach, Maimon, 2005). The root and 
internal nodes, branches, and leaf nodes of decision 
trees have a hierarchical tree structure.  It starts 
with a node and grows a tree structure by adding 
branches when new results are obtained. The result 
is achieved by traversing the nodes using the 
entered value. Figure 1 depicts an example DT. 

 

 
Figure 1. Representation of DT algorithm 
(Deshpande, 2021). 
 

  
 

 
Figure 2. Representation of RF algorithm (Deshpande, 2021). 

2.2.4. Random forest 
 
Random forests are a combination of tree 

estimators that contain a set of DTs in different 
subsets of a given dataset, where each tree is 
sampled independently and depends on the values 
of a random vector with the same distribution for 
all trees in the forest (Breiman, 2001). 

It does not depend on the output of a single 
decision tree, but aggregates the predictions 
generated from each tree and predicts the final 
result based on the majority of these predictions. 
Increasing the number of trees in the forest 
prevents overfitting and improves accuracy.  Figure 
2 presents the RF algorithm. 
 



Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35 

 

  32 Bilgisayar Bilimleri ve Teknolojileri Dergisi 
 

 

  

Figure 3. The overall design of malware analysis system used in the study. 

 
3. FINDINGS  

 
All classifiers used in the study were developed 

and tested with the python-based Scikit learn 
library (URL-1). The results of the models, trained 
with KNN, DT, RF and Gaussian NB algorithms, were 
evaluated with accuracy, f1-score, recall and 
precision metrics.  

Grid search method was applied for 
hyperparameter optimization during the training of 
classifiers. The hyperparameters to be tested in the 
model and the determined value ranges are shown 
in Table 3. In the grid search method, a model is 
built with all combinations separately and the 
model is trained for determining the most 
successful hyperparameter set according to the 
specified metric. Grid search hyperparameter 
optimization technique has been observed to 
increase model performance. The overall design of 

malware analysis system used in the study is shown in 

figure 3. 
According to the results; RF (97% - Highest) 

and DT (94%) algorithms achieved the highest 
accuracy rate, while NB (53% - Lowest) and KNN 
(59%) algorithms achieved lower results. RF and 
DT are more effective than KNN and Gaussian NB  

 
 
for a variety of reasons because they are tree-based 
algorithms. One argument for this is that the tree 
structure they produce tends to reduce the 
inaccuracy rate relative to the previous tree. It is 
thought that the NB algorithm gives weaker 
classification results compared to other 
classification algorithms due to the independent 
determination of the class values of the features. 
Figure 3 shows the comparison graph of accuracy, 
f1-score, precision and recall values of algorithms. 

RF and DT algorithms gave the highest 
accuracy results. There are many reasons that RF 
algorithm gave higher accuracy than DT. One of the 
important reason is that random forest algorithm 
finds the root node and assigns the nodes randomly. 
Rather than feeding a decision tree with all the data, 
it can generate a random forest by feeding it 
piecemeal and multiple DTs. 
From Table 5, it is seen that the f1-score, precision 
and recall values are in similar proportions with the 
accuracy values of the algorithms. In addition, the 
high precision and recall values of the DT and RF 
algorithms prove that they can accurately 
distinguish between malicious and benign software

 

Table 3. The hyperparameter values for machine learning algorithms using grid search method. 

 Hyperparameter Value Range Description 

KNN 
N_neighbours 

Distance Metric 

(1,50) 

Minkowski 

Number of neighbors 

Metric to use for distance computation. 

RF 

Max_depth 

Max_features 

N_estimators 

criterion 

(1,10) 

[3, 5, 10, 15] 

[100, 200, 500, 1000, 2000] 

gini 

The maximum depth of the tree. 

The number of features when looking for the best split. 

The number of trees in the forest. 

The function to measure the quality of a split. 

DT Max_depth (1,10) The tree's maximum depth. 
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Min_samples_split 

 

criterion 

(2,50) 

 

gini 

The minimum number of samples required to split an 
internal node 

The function to measure the quality of a split. 

NB 

priors default=None Prior probabilities of the classes.  

var_smoothing default=1e-9 
Portion of the largest variance of all features that is added 
to variances for calculation stability 

 

 
Figure 3. The comparison graph of accuracy, f1-score, precision and recall values of algorithms. 

Table 5. Accuracy, f1-score, precision and recall 
values of algorithm. 

Algorithm Accuracy 
F1-

Score 
Precision Recall 

KNN 0.5975 0.6063 0.6019 0.6108 

RF 0.9775 0.9781 0.9757 0.9804 

DT 0.9475 0.9496 0.9611 0.9383 

NB 0.530 0.6736 0.9417 0.5243 

 

The difference between the macro and micro 
average performance measures is that the macro 
average weights each class equally, while the micro 
average weights each feature equally. When Figure 
5 and Table 5 are examined, it is seen that the 
balanced sample numbers of the classes in the data 
set cause the macro and micro averages to result in 
the same or very close results.  
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Figure 5. The comparison graph of macro average and micro average values of algorithms. 

 

The RF algorithm gave the best results with 
97.75% micro average and 97.74% macro average 
value. 

 
Table 5. Macro average and micro average values of 
algorithm. 

Algorithm Macro Average Micro Average 

KNN 0.5972 0.5975 

RF 0.9774 0.9775 

DT 0.9474 0.9475 

NB 0.53 0.4171 

 
4. RESULTS  

 
The main purpose of this paper is to detect 

malicious software using static analysis and 
machine learning methods (i.e., DT, KNN, RF, NB). 
The data obtained by static methods were 
processed and converted into a suitable format for 
training with machine learning algorithms, and then 
the models were trained with this data set and 
analyzes were carried out. The experimental results 
of the trained and tested machine learning 
algorithms are compared. It has been seen that tree-
based DT and RF algorithms show high 
performance in malware analysis.  

In future work, the dataset can be trained by 
developing deep learning-based models to improve 
accuracy, f1-score, precision and recall metrics and 
higher malware detection rates. 
 

APPENDIX 
 
We would like to thank C-Prot Turkey 

Company for sharing the dataset used in this study. 
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