
Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

*Sorumlu Yazar

*(nvuran@mersin.edu.trl) ORCID ID 0000–0001–7042–3031
 (maci@mersin.edu.tr) ORCID ID 0000–0002–7245–8673

e-ISSN: 2717-8579

Geliş Tarihi: 06/06/2023; Kabul Tarihi: 08/08/2023 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Araştırma Makalesi

Makine Öğrenimi Yöntemlerini Kullanarak Kötü Amaçlı Yazılımların Statik Analiz ile
Tespiti

Nisa VURAN SARI*1, Mehmet ACI2

1Mersin Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği, Mersin, Türkiye
2 Mersin Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği, Mersin, Türkiye

 ÖZ

Anahtar Kelimeler:
Siber Güvenlik
Zararlı Yazılım Tespiti
Zararlı Yazılım Analizi

Makine Öğrenmesi

 Siber saldırılardaki artış internet ve bilişim teknolojileri kullanımını da tehdit etmeye
başlamıştır. Bu durum, siber saldırılardan sorumlu kötü amaçlı yazılımları tespit etmenin
önemini vurgulamaktadır. Günümüzde, kötü amaçlı yazılımları algılamak için makine
öğrenmesi yöntemlerinin geliştirilmesi üzerine çalışmalar bulunmaktadır. Kötü amaçlı
yazılım dedektörleri, kötü amaçlı yazılımlara karşı savunmada birincil araçlardır. Böyle
bir dedektöderün kalitesi, kullandığı tekniklerle belirlenir. Makine öğrenmesi, derin
öğrenme ve statik ve dinamik analiz gibi zararlı yazılım analiz yöntemleri bu teknikler
arasında yer almaktadır. Bu çalışma kötü amaçlı yazılım analizi ve sınıflandırma
tekniklerini sunmaktadır. Kötü amaçlı yazılım tespiti için, K-En Yakın Komşular, Saf
Bayes, Karar Ağaçları ve Rastgele Orman gibi iyi bilinen makine öğrenmesi algoritmaları
kullanılmıştır. Çalışma, Karar Ağaçları sınıflandırma tekniği kullanımının %97,75
sınıflandırma ile en iyi doğruluğu ürettiğini, Saf Bayes'in ise %53 ile en düşük doğruluğu
ürettiğini göstermektedir.

Detection of Malware by Static Analysis Using Machine Learning Methods

 ABSTRACT
Keywords:
Cyber Security
Malware Detection
Malware Analysis
Machine Learning

 The increase in cyber-attacks has also started to threaten the use of internet and
information technologies. This situation emphasizes the importance of detecting
malicious software that is responsible for cyber-attacks. Nowadays, there are studies on
the development of machine learning methods for malicious software detection.
Malicious software detectors are the primary tools in defense against malicious software.
The quality of such a detector is determined by the techniques it uses. Malware analysis
methods such as machine learning, deep learning, and static and dynamic analysis are
among these techniques. This study presents malware analysis and classification
techniques. For malware detection, well-known algorithms for machine learning
including such K-Nearest Neighbors, Naive Bayes, Decision Trees, and Random Forest
were used. The research shows that the use of Random Forest classification technique
produces the best accuracy with 97.75% classification, while Naive Bayes produces the
lowest accuracy of 53%.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 28 Bilgisayar Bilimleri ve Teknolojileri Dergisi

1. INTRODUCTION

In recent years, there has been an increase in

the development of malware. Today, cyber
attackers use malware for attacks on information
systems. Internet environments such as e-mails,
malicious websites, downloaded software are the
main environments for performing a malware
attack on information systems. Detection and
analysis of these malicious software is important for
information security and healthy internet usage. In
general, 3 basic techniques (static, dynamic and
hybrid) are examined for the analysis of malicious
software. Analyzes extract different features to
classify and detect malicious and harmless files.
Static and dynamic methods can be used to
automate and speed up the steps in malware
analysis, detection and classification. Extracting
different malware features through analytical
techniques is critical to the success of malware
detection. Data from static or dynamic methods can
be used to detect malware or classify malware by
families using machine learning techniques (i.e.,
clustering or classification).

Analyzing malware without running it is called
static analysis. Patterns used in static analysis
include string signature, syntactic library call, byte
array n-grams, opcode (operation code) frequency
distribution, control flow diagram, and so on
(Gandotra et al., 2014). Analysis of the behavior
(interaction with the system) of a malware while
running in a controlled environment such as a
virtual machine, sandbox, simulator, emulator, and
so on is called dynamic analysis. Before running the
malware sample, appropriate monitoring tools such
as Process Monitor, Capture BAT, Process Hacker,
Process Explorer, Regshot and Wireshark are
installed and enabled (Gandotra et al., 2014).
Despite all its benefits, the biggest disadvantage of
dynamic analysis is the performance cost. When
dealing with large datasets containing hundreds of
binaries, dynamic analysis cannot scale effectively
(Hassen et al., 2017). Since scalability is a need of
this research, static analysis is used to extract
features from the malicious programs.

Although traditional malware classification
methods were used before, with the rapid spread
and complexity of malware, there is a need to
develop new methods. Machine learning methods
are also powerful technologies that transform the
effectiveness of cyber security research. In this
study, Random Forest (RF), Decision Tree (DT), K-
Nearest Neighbor (KNN) and Gaussian Naive Bayes
(NB) machine learning methods were used to
classify malware. Calculated accuracy, f1-score,
precision, and recall metrics are compared to
determine success of the methods. Among the
methods used, it is observed that the RF algorithm
gave the most successful result with an accuracy
rate of 97.75%.

Malware has posed a great threat to computer
systems from past to present. New techniques and

methods have been tested by adding new malware
detection studies that have been carried out since
the past. It has been observed that artificial
intelligence-assisted methods such as machine
learning and deep learning methods improve
malware detections and outperform existing
methods, with the efficiency of existing methods
decreasing against new threats. In the continuation
of this section, a summary of the studies on
malware detection in the literature is presented.

Tian et al. (Tian et al., 2009) presented
malware classification research using classification
methods based on sequence information. Sequences
were acquired from 1367 samples, including
unpackaged trojans, viruses, and clean files. Several
classification techniques, including tree-based
classifiers, KNN, statistical algorithms, and
AdaBoost were used to analyze the information
identifying the sequences presented in each sample.
Using k-fold cross validation on unpackaged
malicious and benign files, the RF classifier achieved
an accuracy rate of 97%.

Santos et al. (Santos et al., 2013) offered a new
hybrid malware detector that merges the frequency
of occurrence of operational codes (statically
collected) with information about an executable's
execution track (dynamically obtained). This hybrid
strategy has been found to increase the
performance of both methods when performed
individually. KNN, DT, RF, SVM (Support Vector
Machine), and NB methods were used in this work.
Static, dynamic, and hybrid techniques were
evaluated separately. The SVM (Normalized
Polynomial Kernel) achieved the highest accuracy
for each approximation (Dynamic: %77.26, Hybrid:
96.60%, and Static: 95.90%).

Patil et al. (Patil and Deng, 2020) used a
method to extract various feature sets from
malware data such as system calls, opcodes, and
bytecodes. Work has been done on Microsoft's
malware dataset available on the Kaggle website.
The dataset contains 10868 malicious files from
nine different malware families. The study
examines the effectiveness of machine learning
algorithms (i.e., DT, RF, NB, KNN, Support Vector
Classifier (SVC), Stochastic Gradient Descent (SGD),
Logistic Regression (LR)) and deep learning-based
(i.e., Deep Neural Network (DNN)) models. Each of
the features in the dataset is examined and the
findings show that the feature vector for system
calls achieves the highest accuracy.

Azeez et al. (Azeez et al., 2021) proposed a
method based on collective learning. After applying
the CNN classifier, various machine learning
algorithms were applied for the final stage. For
comparison, RF, NB, DT, GB and Adaboost
algorithms were used. The RF algorithm yielded the
highest result with an accuracy rate of 99.24%.

A literature review of existing malware
detection classification researchs utilizing machine
learning techniques was published by Harshalatha
et al. (Harshalatha and Mohanasundaram, 2020).

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 29 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Random Forest (RF), Support Vector Machine
(SVM), BayesNet and Multi-Layer Perceptron (MLP)
are the classifier models utilized in this study. First,
all malware samples were put through a 10 fold
cross validation test, and the findings of the
classifier showed that RF performed the best with
98% accuracy. It was shown that using the RF
classifier for various datasets caused the same RF
accuracy to drop by 12%.

Tahtacı and Canbay (Tahtacı and Canbay,
2020) investigated Android-based files with a
machine learning model along with N-Gram

features. The models were combined with methods
to determine the threshold of variance and obtain
features information. With the APKTool tool, 3000
Android Package (APK) files were converted to
source code and the opcodes of the programs were
obtained. DT, KNN, NB, LR, RF and SVM machine
learning algorithms are trained using N-Gram
features. The best test result is obtained after
reducing the number of features in 3-gram to two
(100% test score was obtained in the KNN and SVM
models).

Table 1. Summary of the related studies on malware detection and their results.

Author Year Classifiers Best Classifier Accuracy

Tian et al. 2009 RF, NB, DT, IB1 and SVM RF 0.97

Santos et al. 2013 KNN, DT, RF, SVM and NB SVM
Static:0.9590

Dynamic:0.7726
Hybrid: 0.9660

Patil et al. 2020
DT, SGD, RF, SVC, LR,
DNN, NB, KNN

DNN >0.95

Tahtacı and Canbay 2020
DT, KNN, NB, LR, RF and

SVM
KNN and SVM 1.0

Harshalatha et al. 2020
RF, BayesNet, MLP ve

SVM
RF 0.98

Azeez et al. 2021
CNN, RF, NB, DT, GB and

Adaboost
RF 0.99

The article continues as follows. The second

chapter highlights technique, which includes
machine learning-based malware classification and
detection methods and dataset preprocessing. The
third chapter analyzes machine learning malware
detection algorithms and evaluates the findings.
This topic is concluded in Chapter 4 by addressing
the research aspects.

2. METHODS

The main purpose of this study is to detect

malicious software with a data set created by static
analysis method. This section contains information
about the dataset and machine learning algorithms
used for malware analysis.

2.1. Dataset and Data Preprocessing

The data set was obtained from C-Prot Turkey.

It consists of 1000 pieces of software labeled as
malicious (malware) and 1000 pieces of software
labeled as benign (non-malware). In order to
extract the data set features used in the study, the
features from the files of programs were obtained
by applying the static analysis method. The sample
fragment of the dataset is shown in table 1. The file
size, digital signature status, libraries and functions
used in the software were used as dataset features
of each software. In this study, the data set was
divided into two sub-datasets and 80% (1600
pieces) of the data were used for training and 20%
(400 pieces) for testing.

Table 1. A sample dataset before the dataset preprocessing step.

SIZE
DIGITAL

SIGNATURE
LIBRARIES FUNCTIONS LABEL

323800 1 KERNEL32.dll,USER32.d... GetSystemTime,PostMessage,FreeLib… 1

6595084 0 MSVCR100.dll,IMM32.dl... MD5,SHA,SHA1,HMAC,GetSe... 1

139084 0 lib1.dll,bcrypt.dll,KERNEL3... BCryptOpenAlgorithmProvider,BC... 0

119160 0 kernel32.dll,user32.dll ExitProcess,VirtualAlloc,VirtualFree… 1

560906 0 uxtheme.dll,gdi32.dll,kern... CreateWindow,CreateWindowEx,Ge… 1

162733 0 zlib1.dll,bcrypt.dll,KERN… BCryptOpenAlgorithmProvider,BCryp… 0

511552 1 VCRUNTIME140.dll,KER… SHA,InitializeConditionVariable… 0

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 30 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Among the features in the dataset, each of the
functions and libraries in the functions and libraries
(features) column has been made a separate
feature, so that each function and library name is
also considered a dataset feature. As a result of this
process, 195 unique libraries and 4,327 unique
functions were obtained. Including size, digital
signature, label, and these unique functions and
libraries were also used as features in the dataset.
Thus, a total of 4,525 features (4,525 columns) were
obtained. Table 2 shows sample dataset after the
dataset preprocessing step.

The data preprocessing step transforms the data
into a format that machine learning algorithms can
analyze efficiently (Markel et al., 2014). In order for
the models to work efficiently in machine learning
algorithms, categorical inputs need to be converted
into numerical expressions. For this reason,
normalizing all the features in the dataset to binary
values as "0" or "1" provides an advantage in the
training process of the model. In this study values of
1 and 0 (value of 1 presence of the feature in the
software, 0 value of the absence of the feature in the
software) were assigned for each feature according
to the content of the software.

Table 2. A sample dataset after the dataset preprocessing step.

SIZE
DIGITAL

SIGNATURE
.ctor KERNEL32.dll zlib1.dll GetSystemTime ExitProcess LABEL

323800 1 0 1 0 0 0 1

6595084 0 1 0 0 0 0 1

139084 0 0 0 0 1 0 0

119160 0 0 0 0 0 1 1

560906 0 0 0 0 0 0 1

162733 0 0 1 0 0 0 0

511552 1 0 1 1 0 0 0

2.2. Machine Learning Algorithms

With the proliferation of new and unseen
malware families, there is a need to develop new
methods to detect malware. Machine learning is one
of these methods. In this study, well-known
machine learning algorithms such as KNN, RF, DT
and Gaussian NB were trained and tested to detect
malware. The theoretical details of the machine
learning methods used in this study are given
below.

2.2.1. Gaussian naive bayes

The NB classifier is a Bayesian-based

probabilistic classification mechanism. The main
goal of classification is to find the best match
between a set of new data and a set of
classifications within a specific problem domain
(Yang, 2018). The relationship in is stated by Bayes'
theorem with respect to the class variables 𝑓1 and 𝑓𝑛
and the dependent feature vector (1).

C represents the given target, and f represents
the features.

𝑝(𝐶|𝒇𝟏, … 𝒇𝒏) =
 𝑃(𝐶)𝑝(𝒇𝟏,…𝒇𝒏|𝐶)

𝑝(𝒇𝟏,…𝒇𝒏)
 (1)

In simple Bayesian classification, the Gaussian

distribution is a method of using continuous
features. If the feature has continuous values, they
are from a Gaussian or normal distribution.

𝒑(𝒙𝒊 | 𝒚) =
𝟏

√𝟐𝝅𝝈𝒚
𝟐

 𝒆𝒙𝒑(−
(𝒙𝒊− 𝝁𝒚)𝟐

𝟐𝝈𝒚
𝟐) (2)

Parameters σ(y) and μ(y) shown in formula (2)
are estimated using maximum probability.

2.2.2. K-nearest neighbors

Based on the supervised learning technique,

KNN is one of the Machine Learning algorithms
used for both classification and regression. Based
on the similarity between the new state data and
the existing states, it classifies the new state into the
category to most similar to the existing classes. It
computes the distance between the test data and all
training points and attempts to predict which
category the test data belongs to.

Algorithm selects the number of K points close
to the test data. 'K' value computes the probability
of test data belonging to training data classes, and
then the class with the highest probability is chosen.

To find the nearest neighbors, various distance
measurement methods are used (Chumachenko,
2017). The Hamming, Manhattan, Minkowski, and
Euclidean distances are all popular. Minkowski
distance was used as a distance measure in this
study. It then discards the point from among the k
nearest neighbors to the class (where k is an
integer).

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 31 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Where x=(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛) and y=(𝑦1, 𝑦2, 𝑦3 , …
𝑦) and p is an integer.

𝑫(𝒙, 𝒚) = ∑ (𝑝𝑖 − 𝑞𝑖)
1

𝑝

𝑛

𝑖=1

 (3)

2.2.3. Decision tree

A DT is a recursively expressed machine

learning classifier. It consists of nodes that form a
root tree (Rokach, Maimon, 2005). The root and
internal nodes, branches, and leaf nodes of decision
trees have a hierarchical tree structure. It starts
with a node and grows a tree structure by adding
branches when new results are obtained. The result
is achieved by traversing the nodes using the
entered value. Figure 1 depicts an example DT.

Figure 1. Representation of DT algorithm
(Deshpande, 2021).

Figure 2. Representation of RF algorithm (Deshpande, 2021).

2.2.4. Random forest

Random forests are a combination of tree

estimators that contain a set of DTs in different
subsets of a given dataset, where each tree is
sampled independently and depends on the values
of a random vector with the same distribution for
all trees in the forest (Breiman, 2001).

It does not depend on the output of a single
decision tree, but aggregates the predictions
generated from each tree and predicts the final
result based on the majority of these predictions.
Increasing the number of trees in the forest
prevents overfitting and improves accuracy. Figure
2 presents the RF algorithm.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 32 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Figure 3. The overall design of malware analysis system used in the study.

3. FINDINGS

All classifiers used in the study were developed

and tested with the python-based Scikit learn
library (URL-1). The results of the models, trained
with KNN, DT, RF and Gaussian NB algorithms, were
evaluated with accuracy, f1-score, recall and
precision metrics.

Grid search method was applied for
hyperparameter optimization during the training of
classifiers. The hyperparameters to be tested in the
model and the determined value ranges are shown
in Table 3. In the grid search method, a model is
built with all combinations separately and the
model is trained for determining the most
successful hyperparameter set according to the
specified metric. Grid search hyperparameter
optimization technique has been observed to
increase model performance. The overall design of

malware analysis system used in the study is shown in

figure 3.
According to the results; RF (97% - Highest)

and DT (94%) algorithms achieved the highest
accuracy rate, while NB (53% - Lowest) and KNN
(59%) algorithms achieved lower results. RF and
DT are more effective than KNN and Gaussian NB

for a variety of reasons because they are tree-based
algorithms. One argument for this is that the tree
structure they produce tends to reduce the
inaccuracy rate relative to the previous tree. It is
thought that the NB algorithm gives weaker
classification results compared to other
classification algorithms due to the independent
determination of the class values of the features.
Figure 3 shows the comparison graph of accuracy,
f1-score, precision and recall values of algorithms.

RF and DT algorithms gave the highest
accuracy results. There are many reasons that RF
algorithm gave higher accuracy than DT. One of the
important reason is that random forest algorithm
finds the root node and assigns the nodes randomly.
Rather than feeding a decision tree with all the data,
it can generate a random forest by feeding it
piecemeal and multiple DTs.
From Table 5, it is seen that the f1-score, precision
and recall values are in similar proportions with the
accuracy values of the algorithms. In addition, the
high precision and recall values of the DT and RF
algorithms prove that they can accurately
distinguish between malicious and benign software

Table 3. The hyperparameter values for machine learning algorithms using grid search method.

 Hyperparameter Value Range Description

KNN
N_neighbours

Distance Metric

(1,50)

Minkowski

Number of neighbors

Metric to use for distance computation.

RF

Max_depth

Max_features

N_estimators

criterion

(1,10)

[3, 5, 10, 15]

[100, 200, 500, 1000, 2000]

gini

The maximum depth of the tree.

The number of features when looking for the best split.

The number of trees in the forest.

The function to measure the quality of a split.

DT Max_depth (1,10) The tree's maximum depth.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 33 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Min_samples_split

criterion

(2,50)

gini

The minimum number of samples required to split an
internal node

The function to measure the quality of a split.

NB

priors default=None Prior probabilities of the classes.

var_smoothing default=1e-9
Portion of the largest variance of all features that is added
to variances for calculation stability

Figure 3. The comparison graph of accuracy, f1-score, precision and recall values of algorithms.

Table 5. Accuracy, f1-score, precision and recall
values of algorithm.

Algorithm Accuracy
F1-

Score
Precision Recall

KNN 0.5975 0.6063 0.6019 0.6108

RF 0.9775 0.9781 0.9757 0.9804

DT 0.9475 0.9496 0.9611 0.9383

NB 0.530 0.6736 0.9417 0.5243

The difference between the macro and micro
average performance measures is that the macro
average weights each class equally, while the micro
average weights each feature equally. When Figure
5 and Table 5 are examined, it is seen that the
balanced sample numbers of the classes in the data
set cause the macro and micro averages to result in
the same or very close results.

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 34 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Figure 5. The comparison graph of macro average and micro average values of algorithms.

The RF algorithm gave the best results with
97.75% micro average and 97.74% macro average
value.

Table 5. Macro average and micro average values of
algorithm.

Algorithm Macro Average Micro Average

KNN 0.5972 0.5975

RF 0.9774 0.9775

DT 0.9474 0.9475

NB 0.53 0.4171

4. RESULTS

The main purpose of this paper is to detect

malicious software using static analysis and
machine learning methods (i.e., DT, KNN, RF, NB).
The data obtained by static methods were
processed and converted into a suitable format for
training with machine learning algorithms, and then
the models were trained with this data set and
analyzes were carried out. The experimental results
of the trained and tested machine learning
algorithms are compared. It has been seen that tree-
based DT and RF algorithms show high
performance in malware analysis.

In future work, the dataset can be trained by
developing deep learning-based models to improve
accuracy, f1-score, precision and recall metrics and
higher malware detection rates.

APPENDIX

We would like to thank C-Prot Turkey

Company for sharing the dataset used in this study.

REFERENCES

Azeez, N. A., Odufuwa, O. E., Misra, S., Oluranti, J., &

Damaševičius, R. (2021). Windows PE malware
detection using ensemble learning.
In Informatics (Vol. 8, No. 1, p. 10). MDPI.

Breiman, L. (2001). Random forests. Machine

learning, 45, 5-32.

Chumachenko, K. (2017). Machine learning

methods for malware detection and
classification.

Deshpande, N. M., Gite, S., & Aluvalu, R. (2021). A

review of microscopic analysis of blood cells
for disease detection with AI perspective. PeerJ
Computer Science, 7, e460.

Gandotra, E., Bansal, D., & Sofat, S. (2014). Malware

analysis and classification: A survey. Journal of
Information Security, 2014.

Harshalatha, P., & Mohanasundaram, R. (2020).

Classification Of Malware Detection Using
Machine Learn-ing Algorithms: A
Survey. International Journal of Scientific &
Technology Research, 9(02).

Bilgisayar Bilimleri ve Teknolojileri Dergisi– 2023; 4(2); 27-35

 35 Bilgisayar Bilimleri ve Teknolojileri Dergisi

Hassen, M., Carvalho, M. M., & Chan, P. K. (2017,

November). Malware classification using static
analysis based features. In 2017 IEEE
Symposium Series on Computational Intelligence
(SSCI) (pp. 1-7). IEEE.

Maimon, O., & Rokach, L. (Eds.). (2005). Data mining

and knowledge discovery handbook.

Markel, Z., & Bilzor, M. (2014, October). Building a

machine learning classifier for malware
detection. In 2014 second workshop on anti-
malware testing research (WATeR) (pp. 1-4).
IEEE.

Patil, R., & Deng, W. (2020, March). Malware

analysis using machine learning and deep
learning techniques. In 2020 SoutheastCon (Vol.
2, pp. 1-7). IEEE.

Santos, I., Devesa, J., Brezo, F., Nieves, J., & Bringas,

P. G. (2013). Opem: A static-dynamic approach
for machine-learning-based malware detection.
In International joint conference CISIS’12-
ICEUTE´ 12-SOCO´ 12 special sessions (pp. 271-
280). Springer Berlin Heidelberg.

Sapountzoglou, N., Lago, J., & Raison, B. (2020).

Fault diagnosis in low voltage smart
distribution grids using gradient boosting
trees. Electric Power Systems Research, 182,
106254.

TAHTACI, B., & CANBAY, B. (2020, October).

Android malware detection using machine
learning. In 2020 Innovations in Intelligent
Systems and Applications Conference
(ASYU) (pp. 1-6). IEEE.

Tian, R., Batten, L., Islam, R., & Versteeg, S. (2009,

October). An automated classification system
based on the strings of trojan and virus
families. In 2009 4th International conference
on malicious and unwanted software
(MALWARE) (pp. 23-30). IEEE.

Yang, F. J. (2018, December). An implementation of

naive bayes classifier. In 2018 International
conference on computational science and
computational intelligence (CSCI) (pp. 301-
306). IEEE.

URL-1: https://scikit-learn.org/stable/
[Erişim Tarihi: 15.05.2023]

