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Abstract 

 

In recent years, the use of unmanned aerial vehicle (UAV) platforms in civil and military applications has surged, highlighting 

the critical role of artificial intelligence (AI) embedded UAV systems in the future. This study introduces the Autonomous Drone 

(Vechür-SIHA), a novel AI-embedded UAV system designed for real-time detection and tracking of other UAVs during flight 

sequences. Leveraging advanced object detection algorithms and an LSTM-based tracking mechanism, our system achieves an 

impressive 80% accuracy in drone detection, even in challenging conditions like varying backgrounds and adverse weather. 

Our system boasts the capability to simultaneously track multiple drones within its field of view, maintaining flight for up to 35 

minutes, making it ideal for extended missions that require continuous UAV tracking. Moreover, it can lock onto and track other 

UAVs in mid-air for durations of 4-10 seconds without losing contact, a feature with significant potential for security 

applications. 

This research marks a substantial contribution to the development of AI-embedded UAV systems, with broad implications across 

diverse domains such as search and rescue operations, border security, and forest fire prevention. These results provide a solid 

foundation for future research, fostering the creation of similar systems tailored to different applications, ultimately enhancing 

the efficiency and safety of UAV operations. The novel approach to real-time UAV detection and tracking presented here holds 

promise for driving innovations in UAV technology and its diverse applications. 
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1.  INTRODUCTION  

In recent years, unmanned aerial vehicle (UAV) platforms in 

civil and military fields have increased daily and become a 

critical technology. The artificial intelligence (AI) embedded 

UAV system has great importance and potential in the future 

[1-3]. Research and development, search and rescue 

operations, aerial photography, videography, border 

security, traffic control, forest fire prevention, working in 

toxic chemical gas environments, preventing poaching, 

natural resource exploration, agriculture, extraction, and 

UAV detection while in the air are all applications for AI 

embedded UAVs. UAV usage is becoming more common 

due to the nature of aircraft. The increased usage has given 

resulted in unwanted UAVs in restricted areas. Tracking 

trespassing UAVs is also important and detecting the UAVs 

is an emerging field [4-6]. Especially drone detection in the 

air is challenging due to the fast-changing background. 

Therefore drones can be detected using AI with other 

vehicles.  

Specialized systems must be created for tracker UAVs. 

Rotary wing UAVs(drones) can contain hardware units such 

as brushless DC motors, electronic speed controllers, various 

sensors (pressure, gyro, compass, GPS, ultrasonic), 

propellers, power systems, cameras, and communication 

systems. The rotary-wing unmanned aerial vehicle takes off 

with the lift force obtained by rotating the rotors of the 

propellers. Rotation of the rotor at different speeds, the 

rotation movements performed on the fuselage axis set in the 

center of the aircraft enable it to move in the horizontal or 

vertical axis. When the rotors' angular velocity changes, a 

signal is sent to them to allow the flight controller to compile 

the directives and provide the rotors with the correct 

orientation [1]. 

UAVs are aircraft that can move in a predetermined 

trajectory utilizing the sensors on board or can be controlled 

by the user using a remote control. Advances in sensor 

technology and embedded electronic device manufacturing 

have allowed these tools to increase in capabilities and 

reduce size. In line with these developments, the UAV has 

become widely used in defense and civil applications. UAV 

border security is ensured in the defense industry and at 

crime scenes. In addition to being employed for applications 

like research, surveillance, adversary, and target 

Research Article

Academic Platform Journal of Engineering and Smart Systems (APJESS) 12(1), 1-13, 2024

Received: 25-Aug-2023 Accepted: 01-Oct-2023

homepage: https://dergipark.org.tr/tr/pub/apjess

https://doi.org/10.21541/apjess.1349856

Publisher: Akademik Perspektif Derneği https://academicperspective.org/

Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4155-5956


 

 

identification, it may also be used in civil applications for 

things like locating fire zones, search and rescue, and 

assessing geographic changes brought on by natural 

catastrophes [4-6]. With the aid of cameras, Drones can 

detect UAVs with embedded deep-learning algorithms. 

With object tracking, the aim is to keep the information of 

the relevant object from entering the scene to its exit by 

matching the detected objects between consecutive video 

frames. As a result of the object tracking, activities given as 

input to the optimization phase of the video synopsis are 

created [3]. The tracking algorithm and deep learning 

embedded system can detect and track other UAVs [7-9]. 

LSTM (long short-term memory) can be tracked with a deep 

learning algorithm [10-12]. 

In this project, Autonomous Drone (Vechür-SIHA) was 

developed for detecting and tracking other UAVs while in 

flight sequence. The system was simulated in Robot 

Operating System (ROS). Inside the simulated environment 

drone model was used for tracking UAV. After simulations 

and calculations, a Fighter drone was developed and built. 

The real-time UAV detection was made with object 

detection algorithms inside the simulation and in real-time. 

The system was embedded with a tracking algorithm based 

on LSTM (Long-short term memory). The system achieves 

high-accuracy drone detection in changing backgrounds and 

weather conditions (%80 accuracy), LSTM drone tracking 

can be accomplished even with multiple drones inside the 

field of view, and the system is capable of flying for 35 

minutes. The system also can be locked other UAVs and 

track them while flying. The system can track other UAV’s 

4-10 seconds without losing contact. 

In recent years, the usage of unmanned aerial vehicle (UAV) 

platforms has increased dramatically in both civil and 

military fields, leading to the development of critical new 

technologies. One area that holds particular promise for the 

future is the use of artificial intelligence (AI) embedded 

UAV systems, which have the potential to revolutionize a 

wide range of applications [1-3]. These applications include 

research and development, search and rescue operations, 

aerial photography and videography, border security, traffic 

control, forest fire prevention, working in toxic chemical gas 

environments, preventing poaching, natural resource 

exploration, agriculture and extraction, and UAV detection 

while in the air. UAV usage is becoming increasingly 

common, thanks to its unique capabilities and versatility, but 

this has also led to the emergence of unwanted UAVs in 

restricted areas. Tracking and detecting these trespassing 

UAVs has become an urgent need in many contexts, making 

UAV detection and tracking an emerging field of research 

[4-6]. One of the main challenges in this area is detecting 

UAVs in the air, which is made difficult by the fast-changing 

background. However, AI can be used to detect drones in 

combination with other vehicles, and specialized systems 

can be developed for tracking UAVs. 

Rotary wing UAVs (also known as drones) are equipped 

with hardware units such as brushless DC motors, electronic 

speed controllers, various sensors (including pressure, gyro, 

compass, GPS, and ultrasonic sensors), propellers, power 

systems, cameras, and communication systems [1]. The 

rotary-wing unmanned aerial vehicle takes off with the lift 

force obtained by rotating the rotors of the propellers. 

Rotation of the rotor at different speeds, and the rotation 

movements performed on the fuselage axis set in the center 

of the aircraft, enable it to move in the horizontal or vertical 

axis. When the rotors' angular velocity changes, a signal is 

sent to them to allow the flight controller to compile the 

directives and provide the rotors with the correct orientation. 

Advances in sensor technology and embedded electronic 

device manufacturing have allowed UAVs to increase in 

capabilities and reduce in size, making them widely used in 

defense and civil applications. 

In the defense industry and at crime scenes, UAV border 

security is ensured by deploying UAVs for applications like 

research, surveillance, adversary, and target identification. 

UAVs may also be used in civil applications, such as locating 

fire zones, search and rescue operations, and assessing 

geographic changes brought on by natural catastrophes [4-

6]. With the aid of cameras, drones can detect other UAVs 

using embedded deep-learning algorithms. 

Object tracking aims to keep the information of the relevant 

object from entering the scene to its exit by matching the 

detected objects between consecutive video frames. As a 

result of object tracking, activities given as input to the 

optimization phase of the video synopsis are created [3]. The 

tracking algorithm and deep learning embedded system can 

detect and track other UAVs with high accuracy [7-9]. One 

popular method of doing this is to use a long short-term 

memory (LSTM) algorithm, which has shown promising 

results in previous research [10-12]. 

The developed autonomous drone system, called Vechür-

SIHA, was able to detect and track other UAVs in real time 

during flight sequences. The system was first simulated in 

the Robot Operating System (ROS) environment using a 

drone model to track the UAVs. Based on the simulation 

results and calculations, a small fighter drone was then 

designed and built. The system was equipped with an object 

detection algorithm that allowed for real-time UAV 

detection, even in changing backgrounds and weather 

conditions, achieving an accuracy of up to 80%. 

Furthermore, the system utilized a tracking algorithm based 

on long-short-term memory (LSTM) to track multiple drones 

simultaneously within its field of view, with a tracking 

duration of 4-10 seconds before losing contact. The 

developed system was also capable of flying for up to 35 

minutes and locking onto and tracking other UAVs while in 

flight. These results demonstrate the feasibility of using AI-

embedded UAVs for detecting and tracking other UAVs, 

which could be useful in a wide range of applications such 

as border security, surveillance, and search and rescue 

operations. 

2.  MATERIALS AND METHODS 

In this section, the system development from simulation to 

real-life application. The study was organized: ROS 

simulation, Deep learning-based drone detection algorithm 

development, mechanical and electronic system design, and 

real-time flight application. 
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Vechür-SIHA is designed for fighter UAV competitions in 

Teknofest/Turkey. The competition goal is to detect other 

UAVs with vision systems and track them without breaking 

visual contact for 10 seconds. In every flight, more than 12 

UAVs were flying in simultaneously. Our Autonomous 

System (Vechür-SIHA) is designed as a hexacopter with a 

rotating wing structure. The system can be controlled fully 

autonomously or manually. Vechür-SIHA can engage in 

dogfights through blocking or evasive maneuvers by 

detecting other nearby unmanned vehicles with the artificial 

intelligence-assisted visual detection system. In addition, the 

UAV will transmit the images and flight data received during 

the flight to the ground station in real-time using antennas 

that receive and transmit radio frequency signals. While our 

system position data is shared with the competition server 

connected via ethernet, other UAV data is received. The 

server also sends information about other UAVs to track and 

make evasive maneuvers. With the 2.4 GHz radio control, 

manual control can be encrypted and carried out at a 

sufficient distance. The system was simulated in a Robot 

operating system (ROS), and object detection algorithms 

were used for UAV detection for simulations and real-life 

applications. 

Drones, also known as small, remotely-controlled unmanned 

aerial vehicles (UAVs), are used in a variety of societal roles 

such as law enforcement, medical, construction, search and 

rescue, parcel delivery, remote area exploration, topographic 

mapping, forest/water management, and inspection of large 

infrastructures such as power grids [1]. Their low cost and 

ease of operation have made drones accessible for 

recreational and entertainment purposes [2]. However, 

drones can be intentionally or unintentionally misused, 

posing a threat to the safety of others. For instance, an 

aircraft can be severely damaged if it collides with a 

consumer-sized drone, even at moderate speeds [3]. 

Additionally, an ingested drone can quickly disable an 

aircraft engine. The increasing occurrence of drone sightings 

in restricted airport areas is also a significant risk, leading to 

the total closure of airports and the cancellation of hundreds 

of flights [4]. Some hobbyist drone operators violate aviation 

safety regulations, sometimes without knowledge, leading to 

several near-misses and verified collisions with UAVs. Thus, 

research on drone detection has increased significantly [5,6] 

to counteract potential risks due to intrusion in restricted 

areas, either intentional or unintentional. 

This paper addresses the design and evaluation of an 

automatic multi-sensor drone detection and tracking system 

using state-of-the-art machine-learning techniques. We 

extend the methods from conclusions and related literature 

recommendations [5,7] to enhance our development. In 

addition to effective detection, classification, and tracking 

methods, sensor fusion is also considered a critical open area 

to achieve greater accuracy and robustness compared to a 

single sensor. However, research in sensor fusion for drone 

detection is limited [7-10]. This work includes collecting and 

annotating a public dataset to train and evaluate the system. 

A lack of public reference databases serves as a benchmark 

for researchers [5]. Thus, we include three different 

consumer-grade drones in the dataset together with birds, 

airplanes, and helicopters, which constitutes the published 

dataset with the largest number of target classes (drone, bird, 

airplane, and helicopter). In building the classes, we consider 

other flying objects that are likely to be mistaken for a drone 

[11,12]. Additionally, we address the system's classification 

performance as a function of the distance to the target, with 

annotations of the database including such information. 

A preliminary version of this article appeared at a conference 

[13]. In this contribution, we substantially increase the 

number of reported results. For instance, we extensively 

analyze the effect of the internal parameters of different 

detectors on their performance for various sensors. We also 

report results with a radar module and provide comments 

about the fish-eye camera motion detector, all of which were 

missing in the previous publication. Additional results on the 

fusion of sensors are also provided, including an Appendix 

with complementary observations and visual examples. 

Furthermore, we provide new detailed information about the 

system architecture, hardware, and software employed, 

including details about implementation and design choices 

not included in the previous publication. We describe the 

related work in more detail. 

The remainder of the paper is organized as follows. Section 

2 describes the related work. Section 3 extensively describes 

the proposed system, including the architecture, hardware 

components, involved software, Graphical User Interface, 

and dataset. The experimental results are presented and 

discussed in Section 4. Finally, the conclusions are presented 

in Section 5. 

Several sensors can be used for drone detection, such as radar 

(on several different frequency bands, both active and 

passive), cameras in the visible spectrum, cameras detecting 

thermal infrared emission (IR), microphones to detect 

acoustic vibrations, sensors to detect radio frequency signals 

to and from the drone and the controller (RF), and scanning 

lasers (Lidar) [8]. As explored in [14], even humans can be 

employed for the task, and animals can be trained for 

2.1.  Autonomous Drone Specifications  

Vechur-UAV can be used at an altitude of 2 km, 35 minutes 

of flight time was calculated considering the power 

consumption of the motor and the 22000 mAh value of the 

battery. The selected motors are enough to accelerate the 

Vechür-SIHA, which weighs around 4 kg to 15 m/s. 

A 2 MP wide-angle camera was used. The captured images 

are processed by the artificial intelligence algorithm working 

on the embedded system computer (Jeton Nx-Nvidia, USA), 

capable of 21 trillion operations per second using 48 tensor 

cores. Thus, a Vechür-SIHA is developed with the 

infrastructure capable of performing tasks that require high 

computing power, such as target detection, target maneuver 

estimation, and target locking and tracking. A deep learning 

object detection algorithm (Yolov4-Tiny) was used, and 

TensorRT optimization was performed to improve the 

processed frame per second. The system was capable of 

image processing at 22 FPS (frame per second), which is 

suitable for detecting UAVs through the wide-angle camera. 

Due to our data and specifications, the estimated minimum 

detection range was 5 meters, and the maximum was 50 

meters. It is planned to transmit end-to-end encrypted flight 
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telemetry data at a range of 40 km and transmit it to the 

ground station in near real-time. In addition, the video 

transmission system is designed to transmit images at a range 

of about 4 km with delays of less than 30 milliseconds. 

Vechür-SIHA constantly receives GPS data from the 

competition server and moves through to the other UAV's 

location. Suppose the UAVs detect the system and start 

analyzing trajectory, the number of elements with LSTM 

(Long-short term memory), and data received from the 

ground station. In that case, the system is also embedded 

with sub-systems that can follow the course using SLAM 

algorithms to control its route. SLAM is used for the shortest 

route calculation for following other UAVs. 

2.2.  Autonomous Drone Mechanical and Electronic 

System Design 

In the mechanical design phase, the chassis diameter was 

determined as 600 mm, taking into account the dimensions 

of the electronic materials and the minimum distance 

between the propellers due to drone weight. The system 

consists of an embedded computer, flight controller, and 

battery pack. The chassis is designed in two layers to position 

the Electronic system, which has a developer kit, control 

card, and communication modules and is given in Figure 1. 

Carbon fiber will be used in the drone's top-bottom plate, 

arms, and engine holder apparatus to provide durability and 

lightness. A modular flight computer holder has been 

designed on the bottom plate for easier removal and 

installation of the Jetson Xavier NX, which will be 

positioned in the center of the drone. The current breaker 

used as part of the security measures is shown in Figure 2 

and is placed such that it may be rapidly intervened in case 

of a bad circumstance. 

The system was designed with an appropriate deep-learning 

platform (Jettson Xaiver NX). The electronic flight 

controller system was embedded with a 32-bit high-

performance STM32F427 ARM Cortex M7 processor that 

compiles real-time information collected from sensors and 

other flight units into the NuttX RTOS operating system, 

providing safe autonomous/manual flight. Inside the cube, 

isolated from vibration and external factors, 3 IMUs and two 

barometric sensors communicating with SPI protocol 

provide highly accurate real-time information. In addition to 

8 main and six auxiliary output pins, and also supports 

communication protocols such as UART, CAN, I2C, USB, 

DSM, and S-BUS. The Pixhawk Cube, Flight Control Board, 

includes a dedicated processor, an independent power 

supply, and an integrated backup system that includes 

protocols such as fail-safe and manual in-flight override 

(Figure 1). 

 
Figure 1. System and communication diagram 
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Figure 2. Autonomous drone mechanical design 

Considering the weight of the 6-blade Vechür-SIHA system, 

as demonstrated in Figure 2, there are approximately 669 

grams of thrust per hover engine. Thrust power was 

measured with a thrustmeter for more accurate system 

balancing and power management. 

Static and flow analyses of Vechür-SIHA were carried out 

using the 3D analysis program. The average density and 

weight of carbon fiber used in Vechür-SIHA are 1.76 g/cm3 

and 0.198 g/m2, respectively. The tensile strength of the 

carbon fiber is 3,530 MPa, the modulus of elasticity is 230 

GPA, and the end stress is 1.5%, according to the 

manufacturer. According to the information in Figure 3, 

carbon fiber with Young's modulus of 230 GPA was 

selected. The maximum force at takeoff and during flight 

(assumed at full throttle) was derived from the bottom of the 

engine as a function of the engine's thrust in the static 

analysis of the Vechür-SIHA arms. Figure 3. shows that 

when the maximum force is applied, a maximum force of 

8.46 MPa is generated on the arms. As a result of the 

analysis, it can be seen that the arms exceed the tensile 

strength of carbon fiber. 

 
Figure 3. Static analysis of Vechür-SIHA brushless DC motor holder and landing gear 

 

 
Figure 4. ROS simulated environment for drone detection 
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2.3.  Robot Operating System(ROS) Simulation 

The ROS Melodic, a well-established version, was used. A 

gazebo was used for environment simulation. Firstly, the 

necessary infrastructure was prepared for more than three 

rotary-wing UAVs to be able to fly (Figure 4) 

simultaneously. The SDF files of the UAV model, which are 

available in the hector_quadrotor packages used in the ROS 

environment, are designed according to demand and the 

capabilities of dogfighting competition. SITL software was 

used for establishing the Ardupilot-ROS connection, and the 

UAVs can perform autonomous flight according to the 

coordinates entered in the simulation environment. 

Autonomous detection of targets is ensured by integrating 

OpenCV libraries and darknet_ros structure into the Gazebo 

environment. Afterward,  developed algorithms in the ROS 

environment were tested under real-world conditions. 

2.4.  Data Collection, Data Augmentation, and Object 

Detection-Tracking Algorithm 

Artificial intelligence algorithm was used in both ROS and 

Real-world applications. Deep learning models like R-CNN, 

YOLO, and SSD that can generate real-time predictions are 

widely used [12]. In our system, FPS and optimization are 

very crucial. In a real-life environment, only prediction is not 

enough; simultaneously, the drone needs to be detected 

without losing contact. Jetson Nano (Nvidia, USA) is 

embedded inside the drone for real-time application. Jetson 

nano can be used in deep learning algorithms due to tensor 

cores, small size, and inference optimization. Because of the 

FPS needs, a small object problem Yolo Tinyv4 was 

selected. TenorRT and Onnx optimization can be used with 

the YOLO algorithm family. Also, Yolo Tiny models can 

detect smaller objects at a higher speed [12].  

YOLOv4 Tiny Algorithm 

✓ Input image: 

• YoloV4 Tiny takes an input image as its initial input. 

✓ Network architecture: 

• YoloV4 Tiny uses a modified neural network 

architecture, which is typically a smaller and shallower 

version of the YoloV4 architecture to reduce 

computational complexity. 

• It consists of a series of convolutional layers, followed 

by downsampling and upsampling layers to extract 

features and reduce the spatial dimensions of the 

image. 

✓ Anchor boxes: 

• YoloV4 Tiny uses anchor boxes to predict the 

bounding boxes for objects. These anchor boxes are 

predefined in terms of width and height to match the 

expected object sizes in the dataset. 

✓ Object detection: 

• The network predicts bounding boxes for objects and 

class probabilities at multiple scales (usually 13x13 

and 26x26 grids). 

• Each grid cell predicts a fixed number of bounding 

boxes (usually 3 or 6, depending on the configuration). 

• For each bounding box, the network predicts the (x, y) 

coordinates of the bounding box's center relative to the 

grid cell, width, height, and class probabilities. 

• The class probabilities represent the likelihood of the 

object belonging to a specific class (e.g., person, car, 

dog). 

✓ Non-maximum suppression (NMS): 

• After predictions are made at multiple scales, a post-

processing step called non-maximum suppression is 

applied to remove duplicate and low-confidence 

detections. 

• NMS selects the bounding box with the highest 

confidence for each object and removes overlapping 

boxes that have a high intersection-over-union (IoU) 

with the selected box. 

✓ Output: 

• The final output of YoloV4 Tiny is a list of bounding 

boxes, each associated with a class label and a 

confidence score. 

✓ Object classification: 

• YoloV4 Tiny can classify objects into predefined 

classes based on the highest class probability 

associated with each bounding box. 

✓ Bounding box refinement: 

• Optionally, the bounding box coordinates can be 

refined to improve the accuracy of object localization. 

✓ Post-processing: 

• The final detected objects can be drawn on the input 

image, and their class labels and confidence scores can 

be displayed. 

✓ Evaluation and optimization: 

• YOLOv4 Tiny's performance is evaluated using 

metrics like mean average precision (mAP). 

• Model training and hyperparameter optimization are 

performed to improve detection accuracy. 

YoloV4 tiny algorithm explained briefly. Implementing 

YoloV4 Tiny typically requires expertise in deep learning 

frameworks like TensorFlow or PyTorch, along with access 

to labeled training data for specific object detection tasks. 
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The system deep learning models were prepared according 

to the changing environment and fast movements [13-15]. 

Therefore, the data was augmented using several techniques 

to simulate different movements and angles (Figure 5). Data 

augmentation techniques included flipping, mirroring, 

adjusting brightness, blurring, gamma, and adding Gaussian 

noise. The resemblance of the movement effect in our real-

time flying sequence led to the augmentation. Fast 

movements, shutter speeds, frames per second (FPS), 

weather conditions, and sun positions can impact real-time 

images. Our data consist of four thousand images. The 

augmentation was made limitedly to prevent overfitting of 

our model. In the competition, every team has a different 

drone design, which affects the model accuracy in real life. 

 
Figure 5. Data augmentations examples 

Algorithm for Drone Detection and Tracking with YOLOv4 

Tiny is explained briefly in the followint sequence: 

✓ Image acquisition and preprocessing: 

• Real-time imagery is captured using the drone's 

onboard camera. 

• Captured images are preprocessed, resized, and 

normalized for input compatibility with the YOLOv4 

Tiny model. 

✓ Model deployment and inference: 

• A pre-trained YOLOv4 Tiny model, optimized for 

real-time inference, is deployed. 

• The model analyzes the preprocessed images for drone 

detection. 

✓ Object detection: 

• Detected drones are identified in the images, taking 

into account their presence and spatial coordinates. 

✓ Non-maximum suppression (NMS): 

• Non-maximum suppression is applied to refine drone 

detections, eliminating redundancy and preserving 

confidence. 

✓ Tracking initialization: 

• A tracking algorithm (e.g., SORT) is initialized, 

associating unique IDs with each detected drone for 

tracking continuity. 

✓ Drone tracking and prediction: 

• Continuous monitoring updates the drone's position 

and movement over time. 

• Predictive capabilities estimate future drone positions 

based on historical trajectories. 

✓ Real-time ground station communication: 

• The tracking system transmits real-time information on 

detected drones, including their positions and IDs, to a 

ground station. 

✓ Visualization and alert mechanisms: 

• The tracked drones are visualized on the ground 

station's interface, while alert mechanisms promptly 

notify operators of any unauthorized or suspicious 

drone activity. 

✓ Collision avoidance (optional): 

• As needed, a collision avoidance system is integrated 

to maintain safe distances between the tracking drone 

and others, implementing avoidance actions when 

necessary. 

✓ Continuous operation and system resilience: 

• The system is designed for continuous operation 

throughout the drone's mission. 

• It is equipped to handle system failures and ensure 

robust performance. 

✓ Mission completion and termination: 

• The algorithm concludes when the drone mission is 

successfully completed. 

The drone detection and tracking algorithm with YOLOv4 

Tiny involves capturing real-time imagery from a drone's 

camera, preprocessing the images, and running them through 

a pre-trained YOLOv4 Tiny model for object detection to 

identify other drones in flight. Non-maximum suppression is 

applied to refine the drone detections. Then, a tracking 

algorithm is initialized to continuously monitor and predict 

the movements of detected drones, assigning unique IDs to 

each. The tracked drone information is communicated to a 

ground station in real-time for visualization and alerts, 

ensuring the operators are aware of drone activity. 

Optionally, collision avoidance measures can be 

implemented. This system operates throughout the drone's 

flight mission and terminates upon mission completion. The 

algorithm's specific implementation will depend on the 

hardware, software, and application requirements. 
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2.4.1.  LSTM (Long Short-Term Memory) tracking 

algorithm 

The tracking of the detected object is a critical task. The 

control algorithm is dependent on the detection signal. Also, 

to perform the tracking, it is necessary to use an iterative 

neural network to establish a relationship between the 

object's previous steps and its current position. In the system, 

LSTM (Long Short-Term Memory) was preferred. LSTM 

has four gates: Forget, Input, Cell State, and Output. Gate of 

Forgetting: It is the gate that decides which information will 

be forgotten or kept. Information from the current input (Xt) 

and the previous hidden state (ht-1) is subjected to the 

sigmoid activation function. Entrance Gate: It consists of two 

parts; First, the previous hidden state (ht-1) and the current 

input (Xt) are passed through a sigmoid process to decide 

which values to update. 

Then, the same two inputs are "tanh” activated to regulate 

the mesh and multiplied by the sigmoid output (it) to update 

the cell state (C't). Cell state: Input from the previous cell 

state (Ct-1), multiplied pointwise by the output of the gate. 

If the forget output is 0, it discards the previous cell output 

(Ct-1). This output is punctually added with the input gate 

output to update the new cell state (Ct). The current cell state 

will be the entry for the next LSTM unit. Exit port: The 

hidden state contains information about previous entries and 

is used for prediction. The exit port regulates the current 

hidden state (ht). The previous hidden state (ht-1) and the 

current input (tx) are passed to the sigmoid process. This 

output is multiplied by the output of the "tank" function to 

get the current hidden state. The current state (Ct) and the 

current latent state (ht) are the final outputs of a conventional 

LSTM unit. 

The primary usage of LSTM in the project; 

An algorithm has been developed using the LSTM model to 

produce solutions against scenarios that may prevent our 

UAV from being locked during the competition.  

ROS and LSTM were used to simulate the drone's detection 

during flight. Algorithms were designed to create and 

develop the Vechür-SIHA software to perform air combat 

maneuvers and to ensure that the system performs 

accurately. Drone detection was simulated in the ROS 

gazebo environment. The ROS communication diagram is 

demonstrated in Figure 6. 

3.  RESULTS AND DISCUSSION 

The designed system can perform duties at an altitude of 2 

km within 17 minutes of flight time. The selected engines are 

strong enough to accelerate the UAV, which weighs 

approximately 4 kg to 15 m/s. A camera with a minimum 

resolution of 2 MP and a wide angle of up to 170 degrees can 

detect other UAVs. The captured images will be processed 

with the artificial intelligence algorithm working on the 

embedded computer, which can perform 21 trillion 

operations per second with 48 tensor cores on it. Thus, a 

UAV with the infrastructure that can perform tasks that 

require high processing power, such as target detection, 

maneuver estimation, and tracking, was made without any 

error. The Vechür-SIHA can transmit flight telemetry data to 

the ground station at a range of 40 km, in an end-to-end 

encrypted manner and with very low delay. In addition, the 

video transmission system is designed to transmit images at 

a range of approximately 4 km with delays of less than 30 

milliseconds. In addition to directing to the surrounding 

UAVs with the data received from the ground station, it will 

contain sub-systems that can follow the course with SLAM 

algorithms to control its route and prevent crashing. Tests 

were carried out during flight; By recording parameters such 

as flight time, delay, and the internal temperatures of the 

engines during a mission when the aircraft is fully loaded.  

Today, it is undeniable that UAVs provide a significant 

advantage to countries in terms of reconnaissance, 

surveillance, and usage as a weapon system, asymmetrical 

effect, and cost-effectiveness. The primary evidence for the 

dimensions and sizes of these vehicles vary according to the 

desired performance and uses. The vehicle family has been 

expanded according to the variety of weapons and 

ammunition they carry. The study focused on UAV 

technologies and subfields [1,2].

 
Figure 6. ROS communication diagram 
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Figure 7. Yolov4-tiny model training results. 

Designed system ROS simulation results, Deep learning 

model prediction results, and system integration was 

demonstrated in this section. The real-time performance and 

accuracy comparison shows that the performance of the 

YOLO structure is better than the other models compared to 

the FPS and AP (Accuracy Points) [1-3]. 

Table 1. YoloV4 and YoloV4-Tiny model training results. 

Model Accuracy Loss FPS 

YoloV4-Tiny %97 %0.323 10.10 

YoloV4 %98.5 %0.124 7 

YoloV4-Tiny   
TensorRT 

24.99 FPS 

Table 2. Hyperparameter optimization for YoloV4-tiny 

Hyperparameter Range or Options 

Learning Rate [0.001] 

Batch Size [16] 

Number of Epochs [120] 

Backbone Architecture [CSPDarknet53] 

Anchor Box Scales [[2, 4], [1, 3], [3, 5]] 

Anchor Box Ratios 
[[0.5, 1.0], [0.75, 1.0], 

 [0.5, 1.5]] 

Input Image Size [416x416] 

Data Augmentation [Yes] 

Weight Decay [0.0001] 

Dropout Probability [0.2] 

Optimizer [Adam] 

Learning Rate Scheduler [StepLR] 

The Darknet-53 architecture, consisting of 53 layers of 

convolution, is used to deepen the YOLOv3 network 

structure, and residual blocks have been added to this 

network. Instead of using the softmax function in YOLOv3, 

the logistic function is used for multi-label predictions. 

Another critical feature of YOLOv3 is its multiscale 

prediction, which improves the algorithm's ability to predict 

small objects. In 2020 the YOLOv4 algorithm was 

introduced, which is a further development of YOLOv3 [20]. 

Some new technologies, such as weighted residual links, 

cross-stepped partial links, and cross-mini-batch 

normalization, are built into this algorithm to improve the 

speed and accuracy of object detection. In this context, the 

YOLOv4-Tiny (416 x 416) architecture is used (Figure 7), 

which offers the highest real-time performance and 

prediction accuracy among the current models for small-

sized objects suitable for our system. 

This dataset was relatively complicated. The background in 

flight constantly changes. In our dataset, there are several 

different backgrounds with different drones. After model 

training, and hyperparameter optimization as shown in Table 

2, TensorRT optimization was performed, and the fps was 

improved from 10 to 25 FPS (Table 1 and Figure 8). 

 

 
Figure 8. Model training results and TensorRT optimization 

real-time results 

Using the LSTM model, an algorithm was developed to 

solve scenarios that could prevent the Vechür-SIHA from 

being locked during the competition. 

Some sample scenarios;  

● Image distortions,  

● Errors in target detection,  

● Confrontation with more than one target at a time, 

algorithm steps for preventing the tracking faults.  
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The simulations were carried out in ROS and then 

implemented in the system. 

1. The location data of the objects obtained from the 

YOLOv4 Tiny neural network are obtained on the images.  

2. When the target indicated by the target UAV 

determination algorithm is reached according to the location 

data shared by the server  

a. Comparing GPS orientations of UAVs requested to be 

tracked even with the presence of more than one UAV in the 

field of view and the movements of the UAVs detected by 

the camera,  

b. Single target is tracked without restrictions, as in Figure 9 

a. 

3. Positions detected on the second video frame are estimated 

by LSTM, as shown in Figure 9 b. 

4. In Figure 9 c, the positions of the UAVs from the third 

video frame are compared to the positions estimated by the 

LSTM in the second frame, and the UAV with the highest 

percentage of agreement (IoU) is tracked. 

 
Figure 9. LSTM Location estimation with the red bounding 

box 

 
Figure 10. Real-time application of Yolov4-tiny Drone 

detection algorithm. 

Escape algorithm; According to the competition terms, 

Vechür-SIHA is obligated to avoid the ban operation of other 

UAVs during the competition. In this direction, the 

movements of the Vechür-SIHA are stored with the LSTM 

structure, and the outputs of the target tracking system of 

other UAVs are simulated (Figure 10). The stages of this 

process;  

1) UAV GPS movement is similar to Vechür-SIHA for 5 

seconds and is considered a threat, and escape maneuvers 

were made.  

2) By calculating the estimated orientation of the Vechür-

SIHA with the LSTM structure, the orientation of the locking 

quadrant of the other UAVs is estimated.  

3) The escape operation is performed when Vechür-SIHA 

escapes in the opposite direction of the orientation predicted 

by LSTM.  

4) However, when the Vechür-SIHA tries to detect 

competitor UAVs, the system decides on locking priority 

within other UAVs. 

Real-time UAV detection was made with our developed 

Drone system. Deep learning and LSTM algorithm were 

used while Vechür-SIHA was flying. The real-time 

application of the UAV system example is shown in Figure 

11. 

LSTM Real-Time Locking Test: In this direction, the LSTM 

model has been trained, and solutions have been produced 

for scenarios that may occur simultaneously with more than 

one target. The trained LSTM model was tested on a 

YOLOv4-Tiny model with blue caps detected for 

convenience. Some of the steps performed in the tests; 

● Identifying the closest target while in the field of view of 

more than one UAV at the same time, 

● Compensating for frame losses in the target detection 

model, 

● It can be listed as maintaining the visual-locking on the 

initially determined UAV and completing the tracking 

without interfering with other UAVs. 
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Figure 11. Vechür-SIHA system 

Target detection and tracking tasks, which are the primary 

mission of the UAV system, were carried out at the Sakarya 

University of Applied Sciences football field and Bursa 

Yunuseli Airport, and the study's final results were obtained. 

The detection rate of the UAVs displayed in the trials 

reached 80%, and the follow-up process was carried out. 

However, the detection rate at Bursa Airport was recorded as 

45%. The reasons for achieving such a low detection 

accuracy were determined as follows. 

● Since remote UAVs are difficult to detect and are shown 

in very-low resolution by the camera and lens technology 

that is being used, 

● Distortions in the images due to the vibrations and 

shifting of the field of view, 

● Detection algorithms for such technical problems of the 

UAV system need to be implemented with suitable 

hardware systems, 

The relatively low accuracy due to the detection's changing 

backgrounds made tracking targets challenging. 

Therefore, the system was developed with object tracking 

algorithms to prevent these and improve accuracy. As a 

result of the trials, 4-10 second locking and tracking of other 

UAVs was accomplished and was shown in Figure 12. 

The intersection of drone technology and deep learning has 

ignited a transformative era in aerial imagery analysis. This 

concise summary encapsulates key insights from two 

seminal papers [21, 22], highlighting the diverse and 

impactful applications of this fusion. 

 

 

 
Figure 12. Real-life application and competition 

environment. 

Resarchers unveil the realm of real-time human action 

recognition in drone imagery, leveraging deep learning to 

monitor and identify human activities from aerial 

perspectives [23]. Another system pioneer the integration of 

deep learning with RGB and thermal imaging on drones, 

enhancing monitoring operations with improved situational 

awareness and precision [24,25]. 

These groundbreaking studies underscore the potential of 

deep learning in drone-based imagery analysis, with 

applications spanning security, infrastructure monitoring, 

and urban planning. Moreover, they emphasize the need for 

interdisciplinary collaboration, bridging computer vision, 

remote sensing, and robotics to advance drone systems. 
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4.  CONCLUSION 

The increasing use of commercial drones presents a pressing 

need for efficient tracking during flight, a complex task due 

to diverse embedded algorithms and dynamic backgrounds 

[1-2]. The developed UAV system successfully detects, 

tracks, and provides information about UAVs in flight, 

offering the potential to protect against unauthorized UAVs 

and enhance various applications. However, further 

improvements are required for more precise tracking and 

enhanced image acquisition systems [9]. 

Tracking UAVs in restricted areas holds paramount 

importance for several reasons. Firstly, it safeguards airspace 

safety by swiftly identifying and addressing potential 

hazards, benefiting air traffic and ground safety [15-16]. 

Secondly, it combats illicit activities such as terrorism and 

espionage involving drones [17-18]. Lastly, monitoring 

UAVs aids in managing the increasing congestion of 

airspace and preventing collisions, a critical concern given 

the rising number of UAVs [17-18]. 

Achieving UAV tracking relies on a suite of technologies, 

including radar, GPS, and computer vision. Radar provides 

essential data on UAV location, speed, and altitude, while 

GPS precisely pinpoints UAVs and predicts their 

trajectories. Computer vision, including object detection and 

identification, aids in UAV recognition [19]. 

Real-time data analysis through advanced algorithms and 

machine learning further enhances UAV tracking, helping 

identify unusual or hazardous activity [20]. Integration with 

security and air traffic control systems offers a 

comprehensive airspace overview, aiding authorities in 

informed decision-making and ensuring airspace safety and 

efficiency[22-24]. 

In summary, effective UAV tracking in restricted areas 

demands a multifaceted approach, combining diverse 

technologies and cutting-edge data analysis methods. This 

comprehensive system is indispensable for upholding 

airspace safety, security, and efficient management. 
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