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This research introduces a novel metaheuristic algorithm, OCSAPS, representing an upgraded 

cooperation search algorithm (CSA) version. OCSAPS incorporates opposition-based learning (OBL) 

and pattern search (PS) algorithms. The proposed algorithm's application aims to develop a fractional 

order proportional-integral-derivative (FOPID) controller tailored for a buck converter system. The 

efficacy of the proposed algorithm is assessed by statistical boxplot and convergence response analyses. 

Furthermore, the performance of the OCSAPS-based FOPID-controlled buck converter system is 

benchmarked against CSA, Harris hawk optimization (HHO), and genetic algorithm (GA). This 

comparative analysis encompasses transient and frequency responses, performance indices, and 

robustness analysis. The outcomes of this comparison highlight the distinctive advantages of the 

proposed approach-based system. Moreover, the proposed approach's performance was compared with 

six other approaches used to control buck converter systems similarly regarding both time and frequency 

domain responses. Overall, the findings underscore the efficacy of the OCSAPS algorithm as a robust 

solution for designing FOPID controllers in buck converter systems. 
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1. INTRODUCTION 

Over the past decade, there has been a surge in the popularity of battery-powered iterations of corded electronic 

devices like household appliances and consumer electronics. The convenience and portability drive this trend 

that these battery-powered versions offer. These devices rely on power electronics converters to ensure optimal 

DC-DC voltage and power utilization within their circuits. The buck converter has emerged as a favored choice 

for regulating and fine-tuning output voltage in these devices (Zhang & Qiu, 2014). Its widespread adoption 

is attributed to its simplicity, low cost, uncomplicated structure, and exceptional dynamic performance, making 

it versatile for various applications, including power conversion and motor drives (Lee et al., 1997). Designing 

a standout controller for the DC-DC buck converter is critical for establishing stable, efficient, and reliable 

systems. However, the inherent nonlinear characteristics of buck converters pose challenges in controller 

design (Wang et al., 2017). Researchers have responded to these challenges by exploring diverse controller 

types to achieve the desired system qualities (Al-Majidi et al., 2019). 

There have been extensive studies utilizing different types of optimization approaches for DC-DC buck 

converters. In Izci et al. (2002a) and Izci and Ekinci (2022), state-of-the-art metaheuristic algorithms have 

been used to optimize FOPID controllers for DC-DC buck converters, which are some of the best-performing 

systems in the field. In Izci et al. (2002a) a hybrid version of the Levy flight distribution (LFD) algorithm is 

utilized to optimize a FOPID controller for the buck converter. The algorithm they proposed resulted in a 
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12.9% better transient response and 14.8% better frequency response compared to the original LFD. Izci and 

Ekinci (2022) proposed an improved version of the hunger games search (HGS) algorithm to optimally control 

a FOPID controller for a DC-DC buck converter. They obtained a 21.8% faster rise time and 27.9% more 

bandwidth than the original HGS algorithm. 

Similarly, in Sangeetha et al. (2023), a FOPID controller has been optimized for a DC-DC buck converter 

using a hybrid of Golden Jackal Optimization (GJO) and Capuchin Search Algorithm (CapSA), which they 

proposed in their study. They managed to improve the efficiency by 12.9% compared to the second-best 

method in their study, which is the genetic algorithm (GA). They also reduced the cost by 18.9% compared to 

particle swarm optimization (PSO). 

In Warrier & Shah (2021), a cohort intelligence (CI) optimization has been used to optimize a FOPID controller 

for a DC-DC buck converter. They achieved 61.6% less overshoot and 24.7% less computation time compared 

to second best approaches reported in their study. 

Effective controllers are expected to exhibit stability, robustness, swift transient response, accurate tracking, 

and precise frequency response. PID controllers are the most popular due to their straightforward structure, 

adaptability, and wide-scale industrial application (Hsieh & Chou, 2007). Despite the advantages of PID 

controllers, their parameter-tuning process is often laborious, relying on trial and error. Moreover, scenarios 

involving nonlinear effects, load fluctuations, disturbances, and parameter changes challenge the efficacy of 

PID controllers. This has spurred the need for more advanced control strategies (Monje et al., 2008). 

In recent decades, fractional calculus and its application, particularly fractional control, have captivated the 

interest of researchers (Shah & Agashe, 2016; Ortiz-Quisbert et al., 2018; Chevalier et al., 2019; Micev et al., 

2020; Dolai et al., 2022). FOPID controllers offer increased flexibility by incorporating fractional integral (λ) 

and derivative (µ) terms, making them adept at handling uncertainties and parameter variations. They 

effectively govern fractional and integer-order systems (Maâmar & Rachid, 2014), making them suitable for 

managing nonlinear systems like DC-DC converters (Cech & Schlegel, 2013). Given their attributes, this study 

embraces a FOPID controller for a DC-DC buck converter system. With its five parameters, the FOPID 

controller provides ample room for tuning, potentially resulting in highly stable DC-DC converter systems. 

Precise tuning of these parameters is paramount to meet design specifications such as robustness against 

parameter changes, improved overshoot, and settling time (Dastjerdi et al., 2019). 

Literature reveals extensive exploration into parameter tuning for controllers using metaheuristic algorithms 

such as (HHO) (Izci et al., 2023), particle swarm optimization (PSO) (Demir & Demirok, 2023), hybrid whale 

optimization (HWO) algorithm (Hekimoğlu & Ekinci, 2020), Lévy flight distribution (LFD) (Izci et al., 

2022b), artificial ecosystem-based optimization (AEO) (Izci et al., 2022c), and genetic algorithm (GA) 

(Ortatepe, 2023). While HHO offers high accuracy in parameter optimization, it can stagnate in local search 

spaces. PSO is straightforward and resource-efficient. It suffers from premature convergence and local 

trapping. HWO excels in providing effective solutions but demands substantial computational power. LFD 

efficiently handles constrained search spaces but can get stuck in local solutions. AEO is powerful yet tends 

to be trapped in local minima. 

The positive outcomes demonstrated by metaheuristic algorithms in fine-tuning controller parameters for 

regulating the buck converter system, as evidenced in the studies mentioned above, fostered the adoption of a 

newly introduced optimization technique known as the CSA (Feng et al., 2021). This study introduces an 

enhanced version incorporating OBL to improve exploration and leverage PS technique for better local 

optimization within CSA. This algorithm streamlines the design of a FOPID controller for a buck converter 

system, delivering improved efficiency, robustness, and stability. 

Contributions 

• An innovative hybrid metaheuristic algorithm has been developed by enhancing the CSA algorithm with 

OBL and PS. This enhancement effectively elevates the original CSA's exploration and exploitation 

capabilities. 
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• The supremacy of the newly proposed algorithm over CSA, HHO, and GA has been established via statistical 

boxplot and convergence response analyses. 

• The OCSAPS algorithm was skillfully applied to fine-tune the parameters of a FOPID controller in a DC-

DC buck converter system. An array of tests were conducted to showcase the superior performance of the 

OCSAPS-driven FOPID-controlled buck converter system. These tests encompassed evaluations of transient 

and frequency responses, a comparison of diverse performance metrics, and a robustness analysis. 

• Moreover, a comparison was executed between the proposed approach and six other methodologies 

documented in existing literature. These methodologies were utilized for controlling DC-DC buck converter 

systems with FOPID controllers, focusing on both transient and frequency responses. This examination yet 

again underscored the preeminence of the OCSAPS algorithm. 

2. MATERIAL AND METHOD 

2.1. Cooperation Search Algorithm 

The CSA is rooted in a company's core operational principle of keeping pace with a changing world, enhancing 

efficiency, and striving for excellence (Feng et al., 2021). To achieve these objectives, continuous enhancement 

of knowledge, experience, and productivity is required from all tiers of the organization. This involves sharing 

wisdom among each other and replacing underperforming staff with more capable individuals. The pivotal 

factor in attaining the mentioned objectives is effective collaboration between teams. Notably, even the 

highest-ranking executives can be substituted with talented and motivated newcomers if it serves the 

company's betterment. 

The algorithm embodies problem optimization through staff members and teams. It compares problem fitness 

to staff performance, with executive managers and the board of directors symbolizing different solution levels. 

The algorithm employs three operators within the company for solution enhancement.The steps outlining the 

operational mechanism of the CSA algorithm are as follows: 

Team building phase: Here, all team members are chosen randomly using Eq. (1). After evaluating the 

accomplishments of all solutions, a set of M∈[1, I] promising solutions is picked from the initial batch to form 

the higher-ranking set. 

𝑥𝑖,𝑗
𝑘 = ∅(𝑥𝑗, 𝑥̅𝑗), 𝑖 ∈ [1, 𝐼], 𝑗 ∈ [1, 𝐽], 𝑘 = 1 (1) 

where 𝑥𝑖,𝑗
𝑘  represents the 𝑗𝑡ℎ value of the 𝑖𝑡ℎ solution during the 𝑘𝑡ℎ cycle. I denotes the solutions count within 

the present batch, while J signifies the number of variables that align with the optimization problem's 

dimension. Additionally, ∅(𝐿, 𝑈) refers to the function that generates a uniformly distributed random number 

within the range of [𝐿, 𝑈], where L and U denote the lower and upper constraints of the optimization variables, 

respectively. 

Team communication operator: Each staff member can acquire fresh insights by exchanging knowledge with 

higher-ups, the board of directors, and supervisors. As indicated in Eq. (2), the communication process is 

divided into three segments: A stands for the chairperson's intellectual capacity, B denotes the cumulative 

knowledge retained by the board of directors, and C represents the combined intelligence held by the board of 

supervisors. The chairperson's selection is made arbitrarily from among the board of directors to replicate the 

rotational mechanism. Simultaneously, the values of B and C are calculated using identical positional 

information granted to all members of the board of directors and supervisors. 

𝑢𝑖,𝑗
𝑘+1 = 𝑥𝑖,𝑗

𝑘 + 𝐴𝑖,𝑗
𝑘 + 𝐵𝑖,𝑗

𝑘 + 𝐶𝑖,𝑗
𝑘 , 𝑖 ∈ [1, 𝐼], 𝑗 ∈ [1, 𝐽], 𝑘 ∈ [1, 𝐾] (2) 

𝐴𝑖,𝑗
𝑘 = log(1/∅(0,1)) . (𝑔𝑏𝑒𝑠𝑡𝑚,𝑗

𝑘 − 𝑥𝑖,𝑗
𝑘 ) (3) 
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𝐵𝑖,𝑗
𝑘 = 𝛼. ∅(0,1). [

1

𝑀
∑ 𝑔𝑏𝑒𝑠𝑡𝑚,𝑗

𝑘 − 𝑥𝑖,𝑗
𝑘

𝑀

𝑚=1

] (4) 

𝐶𝑖,𝑗
𝑘 = 𝛽. ∅(0,1). [

1

𝐼
∑ 𝑝𝑏𝑒𝑠𝑡𝑖,𝑗

𝑘 − 𝑥𝑖,𝑗
𝑘

𝐼

𝑖=1

] (5) 

where 𝑢𝑖,𝑗
𝑘+1 signifies the 𝑗𝑡ℎ value within the 𝑖𝑡ℎ group solution during the (𝑘 + 1)𝑡ℎ cycle. The 𝑗𝑡ℎ value of 

the 𝑖𝑡ℎ personal best-known solution at the 𝑘𝑡ℎ cycle is represented by 𝑝𝑏𝑒𝑠𝑡𝑖,𝑗
𝑘 . Similarly, 𝑔𝑏𝑒𝑠𝑡𝑚,𝑗

𝑘  stands 

for the 𝑗𝑡ℎ value within the global best-known solution of the 𝑚𝑡ℎ instance, from the beginning until the 𝑘𝑡ℎ 

cycle. The value of m is randomly selected from the set {1,2, … , 𝑀}. Knowledge acquired from the chairman 

is indicated as 𝐴𝑖,𝑗
𝑘 . The learning factors α and β are used to fine-tune the influence of 𝐵𝑖,𝑗

𝑘  and 𝐶𝑖,𝑗
𝑘 , respectively. 

𝐵𝑖,𝑗
𝑘  corresponds to the average knowledge derived from the M best-known solutions achieved thus far over a 

wide range, while 𝐶𝑖,𝑗
𝑘  pertains to the personal best-known solutions of I instances. 

The computational coefficients (α, β, and M) are assigned the values 0.1, 0.15, and 3, respectively, in alignment 

with the original paper introducing the CSA algorithm (Feng et al., 2021). 

Reflective learning operator: In addition to gaining insights from the top-performing candidate solutions, the 

staff also has the opportunity to access novel information by consolidating its expertise in the opposite 

direction, as detailed in the equations below. 

𝑣𝑖,𝑗
𝑘+1 = {

𝑟𝑖,𝑗
𝑘+1

𝑝𝑖,𝑗
𝑘+1  

𝑖𝑓(𝑢𝑖,𝑗
𝑘+1 ≥ 𝑐𝑗)

𝑖𝑓(𝑢𝑖,𝑗
𝑘+1 < 𝑐𝑗)

 , 𝑖 ∈  [1, 𝐼], 𝑗 ∈ [1, 𝐽], 𝑘 ∈ [1, 𝐾] (6) 

𝑟𝑖,𝑗
𝑘+1 = {

∅(𝑥̅𝑗 + 𝑥𝑗 − 𝑢𝑖,𝑗
𝑘+1, 𝑐𝑗)

∅(𝑥𝑗, 𝑥̅𝑗 + 𝑥𝑗 − 𝑢𝑖,𝑗
𝑘+1)

 
𝑖𝑓(|𝑢𝑖,𝑗

𝑘+1 − 𝑐𝑗| < ∅(0,1). |𝑥̅𝑗 − 𝑥𝑗|)

otherwise
 (7) 

𝑝𝑖,𝑗
𝑘+1 = {

∅(𝑐𝑗, 𝑥̅𝑗 + 𝑥𝑗 − 𝑢𝑖,𝑗
𝑘+1)

∅(𝑥̅𝑗 + 𝑥𝑗 − 𝑢𝑖,𝑗
𝑘+1, 𝑥̅𝑗)

 
𝑖𝑓(|𝑢𝑖,𝑗

𝑘+1 − 𝑐𝑗| < ∅(0,1). |𝑥̅𝑗 − 𝑥𝑗|)

otherwise
 (8) 

𝑐𝑗 = (𝑥̅𝑗 + 𝑥𝑗). 0.5 (9) 

where 𝑣𝑖,𝑗
𝑘+1 is the 𝑗𝑡ℎ value of the 𝑖𝑡ℎ reflective solution at the (𝑘 + 1)𝑡ℎ cycle. 

Internal competition operator: The team consistently retains staff members exhibiting superior performance, 

thereby facilitating a gradual improvement in their competitive edge within the market. This preservation is 

ensured through the following expression. 

𝑥𝑖,𝑗
𝑘+1 = {

𝑢𝑖,𝑗
𝑘+1

𝑣𝑖,𝑗
𝑘+1  

𝑖𝑓 (𝐹(𝒖𝑖
𝑘+1) ≤ 𝐹(𝒗𝑖

𝑘+1))

𝑖𝑓 (𝐹(𝒖𝑖
𝑘+1) > 𝐹(𝒗𝑖

𝑘+1))
 , 𝑖 ∈  [1, 𝐼], 𝑗 ∈ [1, 𝐽], 𝑘 ∈ [1, 𝐾] (10) 

where 𝐹(𝒙) represents the fitness value of the solution x.  

Pseudo code of the CSA can be observed in Algorithm 1. Here, the algorithm initiates by establishing the 

population size, defining the applicable boundaries, and initializing the iteration count. Subsequently, the 

designated objective function, outlined in section 4, is specified. The initial candidates are generated randomly, 

from which the initial solutions are derived. Key positions, including the personal best position, are determined 
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by utilizing CSA's operators. It is at this juncture that the essential boundary verification procedure is 

implemented. Ultimately, the updated versions of global best and personal best solutions are ascertained by 

employing reflective learning and internal competition operators. The algorithm exports the global best-known 

solution upon reaching the maximum iteration count. 

Algorithm 1. Pseudo Code of the CSA. 

Initialize 

Define initial parameters and objective function. 

Generate random population in the practicable space. 

Calculate the fitness of the initial randomly generated solutions. 

Set t = 0 

Set max iteration 

while t < max iteration do 

    for each solution in the population do 

        Apply team communication operator using Eqs. (3-5) 

        Calculate group solution 𝑢𝑖,𝑗 

        Update the 𝑢𝑖,𝑗
𝑘+1 position. 

        Apply reflective learning operator. 

        if  
|𝑢𝑖,𝑗

𝑘+1−𝑐𝑗|

|𝑥̅𝑗−𝑥𝑗|
< ∅(0,1) then 

            Determine 𝑟𝑖,𝑗
𝑘+1 and 𝑝𝑖,𝑗

𝑘+1 according to Eq. (7) and (8). 

        end if 

        if 𝑢𝑖,𝑗
𝑘+1 ≥ 𝑐𝑗 then 

            Determine 𝑣𝑖,𝑗
𝑘+1 according to Eq. (6). 

        end if 

        Perform boundary check. 

        Apply internal competition operator. 

        if 𝐹(𝒖𝑖
𝑘+1) ≤ 𝐹(𝒗𝑖

𝑘+1) then 

            Determine 𝑥𝑖,𝑗
𝑘+1 according to Eq. (10). 

        end if 

    end for 

    Update the personal best-known solutions from the initial population. 

    Update the global best-known solutions. 

    Increment t by 1. 

    if t >= max_iteration then 

        Export the global best-known solution. 

    end if 

end while 
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2.2. Opposition-Based Learning 

OBL is a widely recognized methodology that bolsters the exploration capacities of metaheuristic algorithms, 

as detailed by Tizhoosh (2005). A set of potential positions is generated randomly to identify the optimal 

solution. However, when there's no prior information regarding the proximity of the initially chosen position 

x to the optimal solution, the journey towards reaching the desired best solution could be notably protracted. 

In cases where the initially selected solution appears to be distant from the optimal solution or is situated 

unfavorably, it becomes prudent to simultaneously explore all directions, or more effectively, the direction 

opposite to the current position – a notion that aligns logically. The fundamental premise of OBL revolves 

around approaching the optimal solution by concurrently considering both the original value of the current 

position x and its opposite position 𝑥. 

Consider x as a real number confined within the interval of [𝐿, 𝑈]. In a one-dimensional spatial context, the 

term 'opposite' denoted as 𝑥 is defined as follows: 

𝑥 = 𝑈 + 𝐿 − 𝑥 (11) 

For n-dimensional space, consider 𝑥𝑖 ∈ [𝐿𝑖, 𝑈𝑖], and 𝑖 = 1,2, … , 𝑛. In this case, 𝑥 is defined as follows, 

𝑥̅𝑖 = 𝑈𝑖 + 𝐿𝑖 − 𝑥𝑖 (12) 

Upon the random generation or recent update of all x positions, the corresponding opposing positions 𝑥 are 

concurrently computed. Subsequently, the fitness evaluation is performed for both groups of positions (x and 

𝑥), identifying the most optimal positions. This iterative process progressively narrows the proximity to the 

optimal solution with each iteration. 

2.3. Pattern Search Algorithm 

Pattern Search (PS) techniques involve identifying successful search point patterns from recent history and 

leveraging this knowledge to forecast potentially fruitful search points in forthcoming iterations. These 

methods fall within the purview of direct search techniques, encompassing algorithms like the Simplex 

algorithm (Torczon, 1997). In this context, the Multidirectional Search (MDS) algorithm, a variant of the 

pattern search approach, was introduced by Torczon (1989) to tackle unconstrained minimization problems. 

The MDS algorithm excels at pinpointing optimal solutions by maintaining the most promising prior vertex 

and simultaneously conducting line searches in various directions, thereby accumulating valuable exploratory 

data. The flowchart illustrating the PS algorithm is depicted in Figure 1. 

In this algorithm, the procedure begins with selecting the initial simplex, denoted as 𝑆0, alongside expansion 

and contraction factors µ and θ. In each iteration, a search is executed from the current best vertex 𝑣0
𝑘, along 

each of the 'n' directions established by the edges connected to 𝑣0
𝑘. The primary objective of this search is to 

identify a fresh vertex boasting a function value lower than that of 𝑣0
𝑘. The algorithm proceeds with the 

reflection step if such a vertex is located. If not, it proceeds with the contraction step. During contraction, the 

algorithm continues until the condition 𝑓(𝑐𝑖
𝑘) < 𝑓(𝑣0

𝑘) is met. At this juncture, the current vertex is swapped 

with 𝑐𝑖
𝑘, which exhibits a lower function value. 

Conversely, in the expansion step, the algorithm computes 𝑓(𝑒𝑖
𝑘) and compares it with 𝑓(𝑐𝑖

𝑘). Depending on 

the outcome of this comparison, the algorithm decides to replace 𝑣𝑖
𝑘 with either the expansion vertex 𝑒𝑖

𝑘 or the 

reflection vertex 𝑟𝑖
𝑘. The parameters θ, ρ, and µ, governing the lengths of the steps relative to the original 

simplex edges, play a pivotal role in these steps. For this implementation, θ, ρ, and µ, values are assigned as 

0.5, 1, and 2, respectively, as in (Hekimoğlu, 2023). Additionally, a tolerance value crucial for algorithm 

termination and an initial step size required for generating the first simplex and are set to 10−5 and 0.05, 

respectively (Hekimoğlu, 2023). 
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Termination of the PS algorithm transpires either when the iteration count equals the stipulated maximum 

iteration count (set at 50 in this scenario) or when the difference between the worst and best solutions, referred 

to as the "distance," becomes smaller than the tolerance value. 
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Figure 1. Flowchart of PS algorithm. 

https://doi.org/10.54287/gujsa.1357216


424 
Cihan ERSALI, Baran HEKİMOĞLU  

GU J Sci, Part A 10(4) 417-441 (2023) 10.54287/gujsa.1357216  
 

 

2.4. Proposed OCSAPS Algorithm 

While CSA exhibits superior overall performance compared to various traditional evolutionary algorithms 

(Feng et al., 2021), it's important to note that certain limitations are highlighted in (Feng et al., 2022). These 

limitations signify potential areas for enhancement. In the CSA approach, the reduction in staff variation 

gradually occurs over iterations, which might lead to premature convergence issues during the global search 

phase (Feng et al., 2022). To address this concern, an effective strategy involves integrating the OBL 

mechanism into CSA. 

In the proposed hybrid algorithm named OCSAPS, this OBL mechanism introduces the capability to explore 

opposite directions within the global search space. This enhancement subsequently heightens the likelihood of 

discovering improved local search regions. Additionally, the proposed approach incorporates the PS algorithm 

to enhance its exploitation capabilities further. A visual representation of the OCSAPS algorithm's process can 

be found in Figure 2. 

Start

Set CSA and PS parameters

Update the current 

population 

End

yes

Create a population with randomly generated 

individuals, evaluate the fitness value of each 

individual to identify the optimal solution

𝑘 = 𝑘𝑚𝑎𝑥   

It
er

at
io

n
 c

o
u

n
te

r 
𝑘

=
𝑘

+
1

 

Calculate the opposite 

population

no

 Perform main steps of CSA

Formulate the updated current population by  

selecting the finest solutions from both 𝑥 and 𝑥  

Apply the PS 

algorithm

Keep the  best solution

if mod(k, 10) = 0

yes

no

Select the optimal solution from OBL 

and CSA and use it to generate the 

initial simplex.

 

Figure 2. Flowchart of the proposed OCSAPS algorithm. 
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3. BUCK CONVERTER SYSTEM WITH FOPID CONTROLLER 

3.1. Mathematical Model of the Buck Converter 

The DC-DC buck converter functions as a time-variant nonlinear switching circuit. Given its inherent 

nonlinearity, deriving a linearized model becomes imperative when designing a linear controller. Circuit or 

state-space averaging techniques are typically employed to achieve this linearized model (Erickson & 

Maksimović, 2000). The circuit diagram for the DC-DC buck converter is depicted in Figure 3. 

+

-
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𝐷 

 

Figure 3. DC-DC buck converter. 

In the pursuit of linearization, a method called the switching signal-flow graph (SSFG) (Smedley & Cuk, 

1994), based on state-space averaging, is utilized. This approach facilitates the computation of small-signal 

transfer functions required for controller design. The SSFG method employs visual representation to simplify 

deriving small-signal models for switching converters. The SSFG for the DC-DC buck converter is presented 

in Figure 4. 
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Figure 4. Small-signal model of DC-DC buck converter with SSFG method. 

Eq. (15) gives the transfer function from control to output, which stems from the small-signal model of the 

buck converter illustrated in Figure 4. 

𝐺𝑣𝑑(𝑠) =
∆𝑉𝑜(𝑠)

∆𝐷(𝑠)
=

𝑉𝑔/𝐿𝐶

𝑠2 + 𝑠/𝑅𝐶 + 1/𝐿𝐶
 (15) 

where 𝑉𝑔 stands for the input voltage, D denotes the duty cycle, L signifies the inductance, C represents the 

capacitance, and R denotes the load resistance. The step response of the open-loop buck converter, employing 

the parameters detailed in Table 1, is illustrated in Figure 5. 
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Table 1. Buck converter parameters. 

Parameters Values 

𝑉𝑔 36 V 

D 1/3 

𝑉𝑟𝑒𝑓 12 V 

L 1 mH 

C 100 µF 

R 6 Ω 

f 40 kHz 

A brief examination of Figure 5 immediately reveals that the step response of the buck converter, lacking a 

controller, falls short of the desired ideal behavior. It displays significant overshoot, an extended settling 

period, and a prolonged duration to attain a stable state. Integrating a controller into the buck converter system 

becomes imperative to rectify these unfavorable traits within the converter's transient response. In this instance, 

a fractional order proportional integral derivative (FOPID) controller will be implemented to enhance the 

aforementioned transient response attributes. 

 

Figure 5. Open-loop response of the buck converter system. 
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3.2. Fractional Order PID (FOPID) Controller 

The FOPID controller represents a broader version of the conventional PID controller, specifically designed 

to accommodate fractional orders. It was initially introduced by Podlubny (1999). This controller incorporates 

two auxiliary parameters, namely λ and µ, which correspond to the fractional orders associated with the integral 

and derivative terms, respectively. These parameters introduce increased versatility and enhanced robustness. 

Fractional-order controllers, including fractional PID controllers, are acknowledged for delivering superior 

control performance in nonlinear systems featuring intricate dynamics, surpassing the capabilities of 

conventional integer-order controllers, as demonstrated in (Martinez-Patiño et al., 2023). They additionally 

provide enhanced adaptability when fine-tuning the controller's response to diverse system types attributed to 

the fractional derivative and proportional parameters at their disposal (Mohd Tumari et al., 2023). The transfer 

function of the FOPID controller is given in Eq. (16). 

𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑𝑠𝜇 (16) 

where 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 represent the proportional, integral, and derivative gains, respectively. Compared to a 

PID controller, FOPID incorporates two supplementary parameters, offering enhanced precision in fine-tuning 

the controller's behavior and thereby bolstering the system's overall stability. Nonetheless, including these 

additional parameters demands a more intricate parameter adjustment process than a conventional PID 

controller. Moreover, implementing FOPID controllers presents specific challenges, such as memory 

requirements. As non-integer integrators and differentiators necessitate an infinite memory capacity, 

conventional methods are inadequate for executing non-integer order controllers (Li & Zhao, 2015). 

Consequently, the efficient realization of FOPID controllers hinges on employing appropriate approximations. 

In the present scenario, the chosen approach is Oustaloup's approximation method (Oustaloup et al., 2000), 

which addresses the need for effective FOPID controller design. 

Denote the frequency range as (𝜔𝑏 , 𝜔ℎ) where N represents the degree and 2𝑁 + 1 stands for the order of the 

approximation. The methodology proposed by Oustaloup for 𝑠𝛼, where 0 < 𝛼 < 1, is derived and detailed in 

Equations (16) and (17). 

𝐺𝑓(𝑠) = 𝐾 ∏
𝑠 + 𝜔𝑘

′

𝑠 + 𝜔𝑘

𝑁

𝑘=−𝑁

  (16) 

 

𝜔𝑘
′ = 𝜔𝑏 (

𝜔ℎ

𝜔𝑏
)

𝑘+𝑁+
1
2

(1−𝛼)

2𝑁+1
, 𝜔𝑘 = 𝜔𝑏 (

𝜔ℎ

𝜔𝑏
)

𝑘+𝑁+
1
2

(1+𝛼)

2𝑁+1
, 𝐾 = 𝜔ℎ

𝛼 
(17) 

where K denotes the DC gain of the filter, 𝜔𝑘
′  and 𝜔𝑘 represent the frequencies associated with the zeros and 

poles, respectively. For this study, an 11th order Oustaloup's approximation was adopted with N set at 5. This 

approximation was applied within the frequency range of (10−3, 103) rad/s. As such, the lower and upper 

boundaries of this approximation, designated as 𝜔𝑏 and 𝜔ℎ, respectively, were established as 10−3 rad/s and 

103 rad/s. 

3.3. FOPID-Controlled Buck Converter System 

Figure 6 illustrates the block diagram incorporating the FOPID controller to the buck converter. Additionally, 

the closed-loop transfer function for the buck converter system, enhanced by the FOPID controller, is defined 

by Eq. (18). 
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𝐾𝑝 +
𝐾𝑖

𝑠𝜆
+ 𝐾𝑑𝑠𝜇  

𝑉𝑔/𝐿𝐶

𝑠2 + 𝑠/𝑅𝐶 + 1/𝐿𝐶
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Figure 6. FOPID-controlled buck converter system 

∆𝑉𝑜(𝑠)

𝛥𝑉𝑟𝑒𝑓(𝑠)
=

𝐺𝐹𝑂𝑃𝐼𝐷(𝑠)𝐺𝐵𝑢𝑐𝑘(𝑠)

1 + 𝐺𝐹𝑂𝑃𝐼𝐷(𝑠)𝐺𝐵𝑢𝑐𝑘(𝑠)
 , 𝛥𝑉𝑑𝑖𝑠𝑡(𝑠) = 0 (18) 

where ∆𝑉𝑜(𝑠), 𝛥𝑉𝑟𝑒𝑓(𝑠), and 𝛥𝑉𝑑𝑖𝑠𝑡(𝑠) denote changes in the output voltage, reference voltage, and 

disturbance voltage, respectively. The closed-loop transfer function for the FOPID-controlled buck converter 

is given in Eq. (19). 

∆𝑉𝑜(𝑠)

𝛥𝑉𝑟𝑒𝑓(𝑠)
=

(𝐾𝑝𝑠𝜆 + 𝐾𝑖 + 𝐾𝑑𝑠𝜆+µ)𝑉𝑔/𝐿𝐶

𝑠𝜆(𝑠2 + 𝑠/𝑅𝐶 + 1/𝐿𝐶) + (𝐾𝑝𝑠𝜆 + 𝐾𝑖 + 𝐾𝑑𝑠𝜆+µ)𝑉𝑔/𝐿𝐶
  (19) 

The ranges within which the FOPID parameters are employed for this study are specified in Equation (20). 

1 ≤ 𝐾𝑝 ≤ 50 

0.01 ≤ 𝐾𝑖 ≤ 10 

0.001 ≤ 𝐾𝑑 ≤ 0.02 

0 ≤ 𝜆, µ ≤ 2 

(20) 

4. PERFORMANCE INDEX AND OBJECTIVE FUNCTION 

The paramount objective in designing a control system is minimizing the error between the output and the 

reference value. This pursuit significantly contributes to the system's robustness and overall stability. 

Consequently, integral performance metrics are widely adopted to evaluate the performance of a controller 

(Boudjehem & Boudjehem, 2016). Various integral performance metrics have recently been applied to craft 

fractional-order control systems (Das et al., 2012; Pan & Liu, 2016; Eshaghi & Tavazoei, 2023; Ranjan & 

Mehta, 2023). From this assortment of performance metrics, the integral absolute error (IAE) will be utilized 

in this study to minimize the error mentioned above and subsequently enhance the output voltage of the buck 

converter. 

The choice to utilize the IAE objective function arises from the observation that implementing this approach 

during the algorithmic process for determining the necessary parameters of the FOPID controller results in the 

most favorable outcomes. 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|
𝑇

0

𝑑𝑡 (21) 

Eq. (21) provides the integral formulation of the aforementioned performance index. In this equation, 𝑒(𝑡) 

signifies the error arising from subtracting the closed-loop buck converter system's output voltage from its 

reference voltage. The simulation duration, denoted as T, is 5x10−6 seconds. 

5. IMPLEMENTATION OF OCSAPS TO BUCK CONVERTER SYSTEM 

Figure 7 presents a block diagram that depicts the integration of OCSAPS into the buck converter system. The 

diagram reveals that the FOPID controller parameters derived from OCSAPS dictate the buck converter 

system's output voltage. Subsequently, the output voltage is compared with the reference voltage, and the 
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objective is to minimize the error between these values to achieve the targeted system performance. The 

objective function plays a crucial role in minimizing this error, aiming to bring the comparison outcome as 

close to zero as possible. 
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Figure 7. Application of the OCSAPS algorithm to the FOPID-controlled buck converter system. 
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6. SIMULATION RESULTS AND DISCUSSION 

The proposed OCSAPS algorithm underwent a comparative analysis against several other algorithms: the 

original CSA (Feng et al., 2021) and two highly successful algorithms, HHO and GA, in controlling the buck 

converter system with the FOPID controller. The algorithms were executed with uniform settings: a maximum 

iteration count of 30 and 25 runs. Evaluations were conducted on a desktop computer equipped with an Intel 

Core i5 3.30 GHz processor and 16 GB of RAM. MATLAB software was the chosen platform for conducting 

the analyses. 

6.1. Statistical Boxplot Analysis 

A visual representation of the data distribution is presented through boxplot analysis for OCSAPS, CSA, HHO, 

and GA algorithms, offering readers a straightforward initial assessment. Statistical metrics encompassing 

best, mean, median variance, standard deviation, and worst (detailed in Table 2) underscore that the OCSAPS 

algorithm outperforms the original CSA and the other compared algorithms. The results depicted in Figure 8 

illustrate how the OCSAPS algorithm attains notably lower values in terms of upper quartile, lower quartile, 

maximum score, median, and minimum score compared to the mentioned algorithms. This pattern suggests 

the superiority of the proposed OCSAPS approach over the other compared algorithms. 

Table 2. Statistical results of IAE objective function for the compared algorithms. 

Statistical metric OCSAPS CSA HHO GA 

Best 𝟏. 𝟏𝟎𝟗𝟕𝟗𝐱𝟏𝟎−𝟕 1.15239x10−7 1.14736x10−7 1.18042x10−7 

Mean 𝟏. 𝟏𝟏𝟕𝟖𝟗𝐱𝟏𝟎−𝟕 1.43149x10−7 3.18071x10−7 3.21815x10−7 

Median 𝟏. 𝟏𝟏𝟐𝟐𝟐𝐱𝟏𝟎−𝟕 1.39617x10−7 1.44622x10−7 2.39439x10−7 

Variance 𝟏. 𝟐𝟕𝟏𝟑𝟏𝐱𝟏𝟎−𝟏𝟖 2.62815x10−16 6.28873x10−13 5.68841x10−14 

Standard deviation 𝟏. 𝟏𝟐𝟕𝟓𝟑𝐱𝟏𝟎−𝟗 1.62116x10−8 7.93015x10−8 2.38504x10−7 

Worst 𝟏. 𝟏𝟒𝟖𝟐𝟔𝐱𝟏𝟎−𝟕 1.85696x10−7 4.53744x10−6 1.06497x10−6 

6.2. Convergence Response 

In Figure 9, the convergence extent of the objective function values achieved through the execution of the 

OCSAPS, CSA, HHO, and GA are displayed. It's important to note that due to the inherent stochastic nature 

of metaheuristic algorithms, not all runs produce identical outcomes. Accordingly, among the nearly 30 

iterations of these algorithms, it becomes apparent that CSA, HHO, and GA consistently deliver less favorable 

outcomes than OCSAPS. This observation is substantiated by the insights derived from the statistical boxplot 

analysis depicted in Figure 8. 

The data presented in Figure 9 underscores the significant impact of incorporating the OBL and pattern search 

techniques into CSA, resulting in a substantial improvement in discovering superior solutions at an accelerated 

pace. 
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Figure 8. Comparison of the proposed OCSAPS, CSA, HHO, and GA in terms of boxplot analysis. 

 

Figure 9. Comparison of the proposed OCSAPS, CSA, HHO, and GA in terms of convergence behavior. 
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Table 3 presents the optimal FOPID controller parameters achieved through the optimization process for 

compared algorithms that govern the buck converter system. Additionally, employing these parameters, the 

closed-loop transfer functions of the integrated system have been calculated, as denoted by Eqs. (22), (23), 

(24), and (25). 

Table 3. Optimal FOPID controller parameters of compared algorithms. 

FOPID parameter OCSAPS CSA HHO GA 

𝐾𝑝 28.4424 32.4591 18.0622 28.5346 

𝐾𝑖 9.3765 0.5960 1.6709 3.8269 

𝐾𝑑 0.01 0.00841 0.009924 0.0097 

µ 1.0522 1.0553 0.6094 0.2620 

λ 1.1231 1.1146 1.0972 1.0959 

 

GOCSAPS(𝑠) =
0.36𝑠2.1753 + 1023.9𝑠1.0522 + 337.55

10−7𝑠3.0522 + 0.36𝑠2.1753 + 0.0001667𝑠2.0522 + 1024.9𝑠1.0522 + 337.55
 (22) 

 

GCSA(𝑠) =
0.30276𝑠2.1699 + 1168.5𝑠1.0553 + 21.456

10−7𝑠3.0553 + 0.30276𝑠2.1699 + 0.0001667𝑠2.0553 + 1169.5𝑠1.0553 + 21.456
 (23) 

 

GHHO(𝑠) =
0.35726𝑠1.7066 + 650.24𝑠0.6094 + 60.152

10−7𝑠2.6094 + 0.35726𝑠1.7066 + 0.0001667𝑠1.6094 + 651.24𝑠0.6094 + 60.152
 (24) 

 

GGA(𝑠) =
0.3492𝑠1.3579 + 1027.2𝑠0.262 + 137.77

10−7𝑠2.262 + 0.3492𝑠1.3579 + 0.0001667𝑠1.262 + 1028.2𝑠0.262 + 137.77
 (25) 

 

6.3. Transient Response Analysis 

Figure 10 illustrates a comparison of the unit step responses for the buck converter system employing different 

algorithms with FOPID controller. The comparison is conducted using the proposed OCSAPS, CSA, HHO, 

and GA algorithms. Additionally, a comparison of the transient response performance of systems based on 

these algorithms is presented in Table 4. Both the figure and the table collectively demonstrate that the FOPID-

controlled buck converter system using the proposed OCSAPS algorithm exhibits the quickest rise time, 

settling time, and peak time compared to the other algorithms under consideration. 

This observation implies that the FOPID-controlled buck converter system, utilizing the proposed OCSAPS 

algorithm, achieves superior operational efficiency compared to the algorithms mentioned earlier. 
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Figure 10. Transient response comparison of FOPID controllers for different algorithms. 
 

Table 4. Transient response metrics of compared algorithms. 

Controller type Maximum overshoot (%) Rise time (s) Settling time (s) Peak time (s) 

OCSAPS-FOPID 0 2.6081𝐱𝟏𝟎−𝟕 4.6467𝐱𝟏𝟎−𝟕 6.8863𝐱𝟏𝟎−𝟕 

CSA-FOPID 0 3.2880x10−7 5.8550x10−7 8.6839x10−7 

HHO-FOPID 0 3.1434x10−7 5.6030x10−7 8.2980x10−7 

GA-FOPID 0 3.2441x10−7 5.7781x10−7 8.5670x10−7 

6.4. Frequency Response Analysis 

Figure 11 illustrates the Bode plots for the buck converter system employing the OCSAPS algorithm proposed 

in this study. These plots are compared with those of the original CSA, HHO, and GA-based systems. In 

addition, Table 5 provides performance metrics in the frequency domain, including gain margin, phase margin, 

and bandwidth. The findings from the presented figure and table indicate that the system utilizing the proposed 

algorithm boasts a considerably broader bandwidth and phase margin than other systems mentioned. 

Consequently, the proposed algorithm-based system exhibits improved stability when compared against the 

other systems under comparison. 
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Figure 11. Closed-loop frequency responses of FOPID-controlled systems under comparison. 
 

Table 5. Comparison of frequency response metrics of different algorithms. 

Controller type Gain margin (dB) Phase margin (deg) Bandwidth (Hz) 

OCSAPS-FOPID Inf. 89.9970 8.4051𝐱𝟏𝟎𝟔 

CSA-FOPID Inf. 89.9882 6.6660x106 

HHO-FOPID Inf. 1.1785 6.9774x106 

GA-FOPID Inf. 0.9419 6.7639x106 

6.5. Comparison of Performance Indices 

Other than the previously mentioned IAE presented in Eq. (21), several commonly employed performance 

measures exist. These include the integral of time-weighted squared error (ITSE), integral of time-weighted 

absolute error (ITAE), integral of squared error (ISE), and the time domain performance metric ZLG 

(Hekimoğlu, 2019), which was introduced by Gaing (2004). These metrics further highlight the exceptional 

performance of the proposed OCSAPS algorithm-based buck converter system. The formulations for these 

performance measures are provided in Eqs. (26), (27), (28), and (29) respectively. 

𝐼𝑆𝐸 = ∫ (𝛿𝑣𝑟𝑒𝑓(𝑡) − 𝛿𝑣𝑜(𝑡))
2

𝑇

0

𝑑𝑡 (26) 
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𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝛿𝑣𝑟𝑒𝑓(𝑡) − 𝛿𝑣𝑜(𝑡)|
𝑇

0

𝑑𝑡 (27) 

𝐼𝑇𝑆𝐸 = ∫ 𝑡(𝛿𝑣𝑟𝑒𝑓(𝑡) − 𝛿𝑣𝑜(𝑡))
2

𝑇

0

𝑑𝑡 (28) 

𝑍𝐿𝐺 = (1 − 𝑒−𝜌)(𝑀𝑝 + 𝐸𝑠𝑠) + 𝑒−𝜌(𝑇𝑠 − 𝑇𝑟) (29) 

where T represents the simulation duration, set at 5 microseconds, while 𝛿𝑣𝑟𝑒𝑓 signifies the change in reference 

voltage and 𝛿𝑣𝑜 denotes the change in output voltage, the weighting coefficient is represented as ρ, 𝑀𝑝 stands 

for the maximum overshoot, 𝐸𝑠𝑠 represents the steady-state error, 𝑇𝑠 indicates the settling time, and 𝑇𝑟 signifies 

the rise time. Minimizing these performance measures translates to enhanced robustness and stability for the 

buck converter system. Consequently, lower values correspond to heightened system stability. As shown in 

Table 6, the buck converter system based on the proposed OCSAPS algorithm boasts the smallest values across 

all the aforementioned performance measures. Once again, this underscores the system's superiority driven by 

the proposed algorithm. 

Table 6. Performance indices of compared algorithms. 

Controller type ZLG IAE ISE ITAE ITSE 

OCSAPS-FOPID 𝟐. 𝟏𝟗𝟐𝟗𝐱𝟏𝟎−𝟕 𝟏. 𝟏𝟖𝟖𝟖𝐱𝟏𝟎−𝟕 𝟓. 𝟗𝟒𝟖𝟕𝐱𝟏𝟎−𝟖 𝟏. 𝟒𝟐𝟏𝟐𝐱𝟏𝟎−𝟏𝟒 𝟑. 𝟓𝟏𝟒𝟐𝐱𝟏𝟎−𝟏𝟓 

CSA-FOPID 2.7182x10−7 1.4972x10−7 7.4941x10−8 2.2399x10−14 5.5912x10−15 

HHO-FOPID 2.6165x10−7 1.4329x10−7 7.1637x10−8 2.0682x10−14 5.1082x10−15 

GA-FOPID 2.6865x10−7 1.4776x10−7 7.3939x10−8 2.1853x10−14 5.4423x10−15 

6.6. Robustness Analysis 

A crucial aspect of a controller's effectiveness lies in its ability to withstand unforeseen scenarios, such as 

alterations in component values within the system due to environmental factors like temperature fluctuations, 

humidity changes, and gradual degradation over time. With this consideration in mind, variations in the 

inductor and capacitor values have been introduced in four distinct cases, outlined in Table 7, to assess the 

transient response characteristics of the system in response to the perturbations mentioned above. For 

comparison, the same changes in component values have been applied to the other three algorithm-based 

systems against which the proposed OCSAPS approach has been benchmarked so far. 

Table 8 provides a comprehensive overview of the transient response metrics obtained by implementing said 

cases on the various algorithm-driven FOPID-controlled systems being evaluated. Across all instances, the 

buck converter system controlled by the proposed OCSAPS method consistently exhibits the shortest rise time, 

settling time, and peak time. Notice the robustness shortcomings of HHO in the case of increasing C by 20% 

and of GA in the case of decreasing L by 20 %. This illustrates that the proposed approach imparts greater 

robustness and stability to the buck converter system than other algorithm-based counterparts. These results 

further validate and reinforce the superiority of the proposed algorithm in this context. 
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Table 7. Impacts of altering system parameters on the transient response across different algorithms. 

Case Algorithm 
Maximum overshoot 

(%) 
Rise time (s) Settling time (s) Peak time (s) 

Increasing 

C by %20 

OCSAPS 0 3.1294𝐱𝟏𝟎−𝟕 5.5743𝐱𝟏𝟎−𝟕 8.4051𝐱𝟏𝟎−𝟕 

CSA 0 3.9451x10−7 7.0222x10−7 10.421x10−7 

HHO 0 1.7651x10−4 2.1623x10−4 2.2056x10−4 

GA 0 3.8924x10−7 6.9304x10−7 10.281x10−7 

Decreasing 

C by %20 

OCSAPS 0 2.0866𝐱𝟏𝟎−𝟕 3.7185𝐱𝟏𝟎−𝟕 5.5089𝐱𝟏𝟎−𝟕 

CSA 0 2.6308x10−7 4.6866x10−7 6.9468x10−7 

HHO 0 2.5149x10−7 4.4387x10−7 6.6383x10−7 

GA 0 2.5957x10−7 4.6248x10−7 6.8533x10−7 

Increasing 

L by %20 

OCSAPS 0 3.1298𝐱𝟏𝟎−𝟕 5.5769𝐱𝟏𝟎−𝟕 8.2634𝐱𝟏𝟎−𝟕 

CSA 0 3.9457x10−7 7.0261x10−7 10.421x10−7 

HHO 0 3.7724x10−7 6.7255x10−7 9.9574x10−7 

GA 0 3.8930x10−7 6.9342x10−7 10.280x10−7 

Decreasing 

L by %20 

OCSAPS 0 2.0864𝐱𝟏𝟎−𝟕 3.7167𝐱𝟏𝟎−𝟕 5.5091𝐱𝟏𝟎−𝟕 

CSA 0 2.6034x10−7 4.6840x10−7 6.9471x10−7 

HHO 0 2.5146x10−7 4.4811x10−7 6.6386x10−7 

GA 0 2.1954x10−4 2.6894x10−4 2.7433x10−4 
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Apart from the effects of changes in component values on the output of the system, trajectory tracking 

performance has also been examined. Figure 12 provides performance comparison of different algorithms 

against output voltage change. At 2 ms and 4 ms, the output voltage has been changed by -25% and +25%, 

respectively, to see the trajectory tracking performance of the compared algorithms. Similar to Figure 10, the 

proposed approach-based controller performs better than the other algorithm-based controllers, which also 

validates its superior capability in terms of robustness. 

 

Figure 12. Trajectory tracking comparison for different algorithms against output voltage change. 

6.7. Comparison with the Published Works 

Numerous algorithms based on metaheuristic techniques can be found in existing literature. These algorithms 

aim to manage a buck converter system effectively, ensuring favorable stability and robustness outcomes. 

Many of these methodologies have demonstrated commendable achievements in this endeavor. In this context, 

the suggested approach involving the OCSAPS algorithm for FOPID-controlled buck converter systems was 

evaluated alongside other algorithms listed in Table 8. 

Table 8 comprehensively compares the proposed algorithm and other methods previously presented in the 

relevant domain. This evaluation encompasses diverse metrics associated with transient response, 

encompassing overshoot, rise time, settling time, and peak time, along with frequency response parameters 

like gain margin, phase margin, and bandwidth. The analysis underscores that, except in phase margin, the 

proposed algorithm outperforms these previously published approaches across both transient and frequency 

response criteria. As such, the data presented in Table 8 distinctly substantiates the proposed algorithm's 

superior performance compared to its counterparts. 
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Table 8. Comparison of transient and frequency response measures of some of the most effective algorithms 

for FOPID controllers documented in the literature. 

Controller type 

Maximum 

overshoot 

(%) 

Rise time 

(s) 

Settling time 

(s) 

Peak time 

(s) 

Gain 

margin 

(dB) 

Phase 

margin 

(deg) 

Bandwidth 

(Hz) 

OCSAPS-FOPID 0 2.6081𝐱𝟏𝟎−𝟕 4.6467𝐱𝟏𝟎−𝟕 6.8863𝐱𝟏𝟎−𝟕 Inf. 89.9970 8.4051𝐱𝟏𝟎𝟔 

CSA-FOPID 0 3.2880x10−7 5.8550x10−7 8.6839x10−7 inf. 89.9882 6.6660x106 

IHGS-FOPID 

(Izci & Ekinci, 2022) 
0 2.8510x10−7 5.0765x10−7 1.3686x10−6 Inf. 89.9995 7,6879x106 

LFDSA-FOPID 

(Izci et al., 2022a) 
0 3.5068x10−7 6.2519x10−7 1.6823x10−6 Inf. 90.0081 6.2520x106 

LFD-FOPID 

(Izci et al., 2022a) 
0 4.0260x10−7 7.1709x10−7 1.9322x10−6 Inf. 90.0020 5.4445x106 

ABC-FOPID 

(Izci et al., 2022a)) 
0 4.2808x10−7 7.6297x10−7 2.0539x10−6 Inf. 90.0063 5.1212x106 

PSO-FOPID 

(Izci et al., 2022a) 
0 4.6066x10−7 8.2062x10−7 2.2108x10−6 Inf. 90.0029 4.7584x106 

7. CONCLUSION 

A new method, the OCSAPS algorithm, presents a novel hybrid metaheuristic approach for enhancing the 

efficiency of controlling a FOPID controller in a buck converter system. This novel approach integrates the 

OBL mechanism and the PS algorithm, enhancing the exploration and exploitation abilities of the original 

CSA. Statistical boxplot and convergence response analyses were conducted to establish the superiority of 

OCSAPS over CSA. Furthermore, the effectiveness of the proposed algorithm-based FOPID controller in the 

buck converter system was compared to established algorithms like HHO, GA, and CSA, using comprehensive 

testing such as transient and frequency response analysis and robustness assessment. Across these evaluations, 

the OCSAPS algorithm-based FOPID-controlled buck converter system demonstrated remarkable robustness, 

stability, and efficiency, outperforming its counterparts. Moreover, the proposed approach was compared with 

six other approaches regarding time and frequency domain responses. This comparative analysis affirmed the 

OCSAPS approach's exceptional performance, solidifying its preeminence in the relevant field. This 

innovative algorithm can also optimize various controllers in different systems, such as DC motor speed 

control, battery voltage management systems, and cruise control systems, which could be subject to 

investigation in future studies. 
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