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The generalizations of the Carathèodory Inequality for the holomorphic functions 

Bülent Nafi Örnek*1, Tuğba Akyel2 

ABSTRACT 

In this paper, the results of the Carathèodory inequality have been generalized. C. T. Rajagopal further 

strengthened the inequality ( )1.8  by considering the zeros of the function ( )f z . We will obtain more 

general results for the inequalities ( )1.8  and ( )1.9  by considering both the zeros and the poles of the function 

( )f z . 
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Holomorfik fonksiyonlar için Carathèodory eşitsizliğinin genellemesi 

ÖZ 

Bu makalede, Carathèodory eşitsizliğinin sonuçları genelleştirilmiştir. C. T. Rajagopal ( )1.8  eşitsizliğini, 

( )f z  fonksiyonun sıfırlarını da göz önüne alarak daha da güçlendirmiştir. Biz ( )f z  fonksiyonun hem 

sıfırlarını hem de kutuplarını göz önünde bulundurarak, ( )1.8  ve ( )1.9  eşitsizlikleri için daha genel sonuçlar 

elde edeceğiz. 
 

Anahtar Kelimeler: Holomorfik fonksiyon, Kutuplar ve sıfırlar 

 

1. INTRODUCTION 

Estimation of the holomorphic functions and their 
derivatives have a significant place in complex 
analysis and its applications. The real part of the 
holomorphic functions gets involved in the 
estimation of majorant. Among these inequalities 
are the Hadamard-Borel Carathèodory inequality 
for holomorphic functions in { }: 1D z z= <  with 

( )f zℜ bounded from above 
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( )
1

2
( ) (0) sup ( ) (0) ,

1

r
f z f f f z r

r ς

ς
<

− ≤ ℜ − =
−

   (1.1) 

and 

( )
1

1 2
( ) (0) sup ( ) ,

1 1

r r
f z f f z r

r r ς

ς
<

+
≤ + ℜ =
− −

      (1.2) 

frequently called the Borel-Carathèodory 
inequality [4]. 
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Similarly, if the function ( )f z is holomorphic on 

the unit disc D  with (0) 0f = and ( )f z Aℜ ≤ for 

1z < , then we have 

                             
2

( )
1

A z
f z

z
≤
−

                                  (1.3) 

holds for all z D∈ ∂ , and moreover 
                       (0) 2f A′ ≤ .                              (1.4) 

Equality is achieved in ( )1.3  (for some nonzero 

z D∈ ∂ ) or in ( )1.4 if and only if ( )f z is the function 

of the form 
2

( )
1

i

i

Aze
f z

ze

θ

θ
=
+

, 

where θ  is a real number ([4], p.3-4). 
Sometimes, ( )1.1 and ( )1.2 , as well as the related 

inequality for ( )f zℜ  

   ( )
1

1 2
( ) (0) sup ( )

1 1

r r
f z f f

r r ς

ς
<

−
ℜ ≤ + ℜ

+ −
               (1.5) 

are called Hadamard-Borel-Carathèodory 
inequality. 
Introducing the notation 

1 1

sup ( ), sup ( )
z z

A f z M f z
< <

= ℜ = . 

Lindelöf [6] obtained the following two-sided 
inequality similar to Hadamard-Borel-
Carathèodory inequality. 

    1 2 1 2
(0) ( ) (0)

1 1 1 1

r r r r
f A f z f A

r r r r

− −
ℜ − ≤ℜ ≤ ℜ +

+ − + +
          (1.6) 

 

Theorem 1. Let ( )f z  be a bounded holomorphic 

and has no zeros in D  with (0) 1f =  and let 

1

sup ( )
z

M f z
<

= . Then for any z  with 1z r= <  two-

sided inequality 

                   
22

11 ( )
rr

rrM f z M
−

+− ≤ ≤                               (1.7) 

holds ([4], p.14). 
 
A similar estimate for ( )f z  with (0) 1f ≠  can be 

obtained from ( )1.7  with ( )f z  replaced by 
( )

(0)

f z

f
. 

That is; 

               
21

11( ) (0)
rr
rrf z f M

−
++≤ .                            (1.8)                                                                      

Similarly, from ( )1.7 , we take 

            
21

11( ) (0)
rr
rrf z f M

−+
−−≥ .                           (1.9)                                                        

C. T. Rajagopal [5] further strengthened the 
inequality ( )1.8  by considering the zeros of the 

function ( )f z . 

Consider the following product: 

1

( ) .
1

m z a
B z

a z

λ

λ λ=

−
=

−
∏  

( )B z  is called a finite Blaschke product, where 

1 2, ,...,
m

a a a ∈ℂ . ( )B z  is holomorphic in the unit disc 

D , and 
( ) 1B z for z D= ∈∂ , 

since 1
1

z a

a z

λ

λ

−
=

−
 when 1z = . Therefore, the 

Maximum Modul Principle implies 
( ) 1B z for z D< ∈ . 

Similarly, the extremal function is often given by 
the Blaschke function 

1

1
( )

n
k

b

k k

b z
B z

z b=

−
=

−
∏ , 

which is generally defined for any set 1 2, ,...,
n

b b b  of 

poles. 
 
The following Theorem 2 is a simple example of 
the application of the maximum principle for 
holomorphic functions. 
 
Theorem 2. Let ( )f z  be a holomorphic function 

in the unit disc D  except at the poles 1 2, ,...,
n

b b b . 

Suppose that none of the limiting values of ( )f z  

as z  approaches the boundary of the unit disc D  
exceed 1 . Then                                                                           

     
1

1
( ) ,

n
k

k k

b z
f z z D

z b=

−
≤ ∈

−
∏ .                (1.10)                                                                  

Equality at a point z  (not a pole) is attained only 
if ( )f z  is the function of the form 

1

1
( )

n
k

k k

b z
f z c

z b=

−
=

−
∏ , 

where 1c =  and 1
k

b < , 1,2,....,k n=  ([1], p.286). 

2. MAIN RESULTS 

In this section, we will make this kind of 
improvement for the inequalities ( )1.8  and ( )1.9  by 

considering both the zeros and the poles of the 
function ( )f z . 
 

Theorem 3. Let ( )f z  be a holomorphic function 

in the unit disc D  except at the poles 1 2, ,...,
n

b b b  and 

1 2, ,...,
m

a a a  are zeros of ( )f z  in the unit disc D . 

Suppose that none of the limiting values of ( )f z  

as z approaches the boundary of the unit disc D  
exceed 1 . Then for any z r= , we obtain 
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2

1 1

1 1

1

(0)
1

( ) , .
1

n

rkn m

k k r
m

k k

f b
b z z a

f z M z D
z b a z

a

λ

λ λ
λ

λ

= +

= =

=

    − −  ≤ ∈ − −     

∏
∏ ∏

∏
             (2.1)                                         

Proof. Consider the auxiliary function 

1

1

( )
( )

1

1

n
k

m
k k

z bf z
z

z a b z

a z

λ

λ λ

φ
=

=

−
=

− −

−

∏
∏

. 

( )zφ  is a holomorphic function in D  and ( ) 1zφ ≤  

for z D∈ . That is; the function 

1

( ) ( )
1

n
k

k k

z b
z f z

b z
ϕ

=

−
=

−
∏  

is a holomorphic in D . As z  approaches the 
boundary of D , the modulus of the limiting values 
of ( )zϕ does not exceed 1 . Applying the maximum 

principle implies that for each z D∈  we have 
( ) 1zϕ ≤  (see, Theorem1). Now, consider the 

function 

                             
( )

( )
( )

z
z

B z

ϕ
φ = ,                        (2.2) 

where 
1

( )
1

m z a
B z

a z

λ

λ λ=

−
=

−
∏ . ( )B z  is a holomorphic 

function in D , and ( ) 1B z <   for  z D∈ . Therefore, 

the the maximum principle implies that for each 
z D∈  we obtain the inequality ( ) ( )z B zϕ ≤  ([3], 

p.192-193). Thus, we have ( ) 1zφ ≤  for z D∈  and 

if we apply inequality ( )1.8  to the function ( )zφ , 

we obtain inequality ( )2.1 . 
 

Theorem 4. Under the hypotheses of the Theorem 
3 and let 0z =  be a simple zero in addition to the 
zeros in Theorem 3. Then we obtain 

2

1 1

1 1

1

(0)
1

( ) , .
1

n

rkn m

k k r
m

k k

f b
b z z a

f z z M z D
z b a z

a

λ

λ λ
λ

λ

= +

= =

=

  ′   − −  ≤ ∈ − −     

∏
∏ ∏

∏
         (2.3)                                       

Proof. Consider the function 

                  
1

1

( )
( )

1

1

n
k

m
k k

z bf z
z

z a b z
z

a z

λ

λ λ

ψ
=

=

−
=

− −

−

∏
∏

.                  (2.4)                                                                  

( )zψ  is a holomorphic function in D  and ( ) 1zψ ≤  

for z D∈  from proof of the Theorem 3. If we apply 
inequality ( )1.8  to the function ( )zψ , we obtain 

inequality ( )2.4 . 

Theorem 5. Under the hypotheses of the Theorem 
3, we have 

    
2

1 1

1 1

1

(0)
1

( ) , .
1

n

rkn m
k k r

m
k k

f b
b z z a

f z M z D
z b a z

a

λ

λ λ
λ

λ

−

= −

= =

=

    − −  ≥ ∈ − −     

∏
∏ ∏

∏
           (2.5)                                    

Proof. Applying the inequality ( )1.9  to the 

function ( )zφ  which is defined in ( )2.2 , we obtain 

inequality ( )2.5 . 
 

Theorem 6. Under the hypotheses of the Theorem 
3 and let 0z =  be a simple zero in addition to the 
zeros in Theorem 3. Then we obtain                    

2
1 1

1 1

1

(0)
1

( ) , .
1

n

rkn m

k k r
m

k k

f b
b z z a

f z z M z D
z b a z

a

λ

λ λ
λ

λ

−

= −

= =

=

  ′   − −  ≥ ∈ − −     

∏
∏ ∏

∏
         (2.6)      

                                      

Proof. Applying the inequality ( )1.9  to the 

function ( )zψ  which is defined in ( )2.4 , we obtain 

inequality ( )2.6 . 

Now, we will make this kind of improvement for 
the inequalities ( )1.3  and ( )1.4  by considering both 

the zeros and the poles of the function ( )f z . 
 

Theorem 7. Let ( )f z  be a holomorphic function 

in the unit disc D  except at the poles 1 2, ,..., nb b b , 

(0) 0f =  and 1 2, ,..., ma a a  are zeros of ( )f z  in the unit 

disc D  that are different zero. Suppose that none 
of the limiting values of ( )f zℜ  az z  approaches the 

boundary of the unit disc D  exceed A . Then, we 
obtain 

                  1 1

1 1

1
2

1
( )

1
1

1

n m
k

k k

n m
k

k k

b z z a
A z

z b a z
f z

b z z a
z

z b a z

λ

λ λ

λ

λ λ

= =

= =

− −

− −
≤

− −
−

− −

∏ ∏

∏ ∏
                     (2.7)                                            

and 

                                1

1

2

(0)

m

n

k

k

A a

f

b

λ

λ=

=

′ ≤
∏

∏
.                            (2.8)                                                                     

Equality at a point z  (which is not a pole) is 
achieved in ( )2.7  or in ( )2.8  if and only if ( )f z  is 

the function of the form 

1 1

1 1

1

1
( ) 2

1
1

1

m n
i k

k k

m n
i k

k k

z a b z
ze

z ba z
f z A

z a b z
ze

z ba z

θ λ

λ λ

θ λ

λ λ

= =

= =

− −

−−
=

− −
+

−−

∏ ∏

∏ ∏
 

where 1aλ < , 1
k

b <  and θ  is a real number. 
 

Proof. Let 

1

1

1( )
(z)

( ) 2

1

n
k

k k

m

z b

b zf z

z af z A

a z

λ

λ λ

=

=

−

−
ϒ =

−−

−

∏

∏
. 

( )zϒ  is a holomorphic function in D  and ( ) 1zϒ ≤  

for z D∈ . That is; the function 

1

( )
( )

( ) 2 1

n
k

k k

z bf z
w z

f z A b z=

−
=

− −
∏  
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is a holomorphic in D . Assume that any of limiting 
values of ( )f zℜ  do not exceed A  when z  

approaches the boundary of the unit disc D . 
Applying the maximum principle implies that for 
each z D∈  we have ( ) 1w z ≤ . Now, consider the 

function 

1

( )
(z)

1

m

w z

z a

a z

λ

λ λ=

ϒ =
−

−
∏

. 

The maximum principle implies that for each 
z D∈ , we obtain the inequality 

1

( )
1

m z a
w z

a z

λ

λ λ=

−
≤

−
∏ . 

Therefore, we have (z) 1ϒ ≤  for z D∈  and (0) 0ϒ =

. From the Schwarz lemma ([2], p.329), we take 
( )z zϒ ≤  and (0) 1′ϒ ≤ . So, we get 

1

1

1( )

( ) 2

1

n
k

k k

m

z b

b zf z
z

z af z A

a z

λ

λ λ

=

=

−

−
≤

−−

−

∏

∏
 

and 

1

1

2

(0)

m

n

k

k

A a

f

b

λ

λ=

=

′ ≤
∏

∏
. 

 

Thus, we obtain the  inequality ( )2.7  and ( )2.8 . 

Now, we shall show that the inequality ( )2.7  and 

( )2.8  are sharp. Introducing the notation 

0

1 01

m z a
k

a z

λ

λ λ=

−
=

−
∏ , 0

1 0

1n
k

k k

b z

z b
δ

=

−
=

−
∏ . 

If 0
0

0

( ) 2
1

k z
f z A

k z

δ

δ
=

−
, then 

              0 0 0 0( ) ( ) 2f z k z f z Ak zδ δ= + .                 (2.9)                                                                   

We known that, 
0

10 0
0

00

1 0

( ) 1

( ) 2

1

n
k

k k

m

z b

f z b z
z

z af z A

a z

λ

λ λ

=

=

−

−
≤

−−

−

∏

∏
 

and 

0 0 0 0 0 0( ) ( ) 2 2 ( )f z k z f z A Ak z k z f zδ δ δ≤ − ≤+ + . 

From ( )2.9 , we take 

0 0 0( ) ( ) 2f z k z f z Aδ= − . 

Therefore, we obtain 
0

10 0

00

1 0

( ) 1
1

( ) 2

1

n
k

k k

m

z b

f z b z

z af z A

a z

λ

λ λ

=

=

−

−
=

−−

−

∏

∏
 

and since 0z  is arbitrary 

1 1

1 1

1

1
( ) 2

1
1

1

m n
i k

k k

m n
i k

k k

z a b z
ze

z ba z
f z A

z a b z
ze

z ba z

θ λ

λ λ

θ λ

λ λ

= =

= =

− −

−−
=

− −
+

−−

∏ ∏

∏ ∏
. 

The sharpness of ( )2.8  can be shown analogously. 
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