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Abstract: In this study, based on the Newton-Raphson method, the unconditional optimization of the “thin cylinder-plane” corona 

electrode system of high-voltage devices with a non-uniform or weakly uniform electric field, widely used in various technological 

processes of electron-ion technology, is analyzed. For this purpose, the condition of a self-sustaining electric discharge was used for 

the electrode system under consideration. 
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Silindir-Düzlem Korona Elektrot Sisteminin Koşulsuz Optimizasyonu 

Özet: Bu çalışmada, çeşitli teknolojik işlemlerde yaygın olarak kullanılan, düzgün olmayan veya zayıf düzgün bir elektrik alanına sahip 

yüksek gerilim cihazlarının “ince silindir-düzlem“ korona elektrot sistemi için, Newton-Raphson yöntemine dayalı olarak koşulsuz 

optimizasyonu analiz edilmektedir. Bu amaçla, söz konusu elektrot sistemi için, elektrik deşarjın kendi-kendini besleme(self-sustained) 

koşulu kullanılmıştır 

Anahtar kelimeler: Kendi-kendini besleme koşulu, Korona deşarjı, Koşulsuz optimizasyon, Newton Raphson yöntemi. 

 

1. Introduction 

As it is known, in various high-voltage technological 

processes, in order to implement a barrier discharge, mainly 

one of four different structures of electrode systems is used, 

respectively: “needle-plane”, “conductor-plane”, “plane-

plane”, and “sphere-plane [1-3]. It should be noted that in both 

the “needle-plane” and “conductor-plane” electrode systems, 

the electric field in the interelectrode gap is non-uniform, and 

for the “needle-plane” electrode system the degree of field 

non-uniformity is higher. Whereas the electric field in the 

interelectrode gap in the “sphere-plane” electrode system is 
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weakly inhomogeneous. 

Unlike a homogeneous electric field, where all field lines are 

identical, in inhomogeneous fields the distributions of field 

strength along different field lines can differ from each other. 

In this regard, in inhomogeneous fields, the time of application 

of voltage is of significant importance. In particular, if the time 

of application of voltage is unlimitedly long, then at the point 

of exit from the electrode of the central field line, an electron 

necessarily appears and the initial voltage will be determined 

by the condition for the development of an avalanche along 

this field line, since in this case the condition for self-

sustaining discharge is satisfied at the lowest voltage [1-6]. If 
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the voltage is applied for a limited time, then the electron may 

not appear at the central point, and the initial avalanche will be 

formed by the electron that appeared closest to the central 

point. Therefore, with short-term exposure, the initial voltage 

loses its definition and will change from experience to 

experience. This circumstance is one of the reasons for the 

scatter of initial stresses, which are the greatest during short-

term stress effects [3,5]. In this work, we will assume that the 

voltage is applied for an indefinitely long time. 

If in a uniform electric field, the initial voltages obey 

Paschen’s law, according to which V0 = f(pd) then in 

inhomogeneous fields a generalization of this law is the law of 

similarity of discharges [2, 3, 5]. According to this law, in 

inhomogeneous fields, the static initial stress is a function of 

the product of the gas pressure or its relative density by one of 

the geometric dimensions of the gap and the ratio of all other 

defining geometric dimensions to this size. 

Finding potentials and electric fields for a given distribution of 

electric charges in space is easily solved only in the simplest 

cases, when the positions of all charges are fixed. Solving 

problems of electrostatics in this case comes down to the 

application of Coulomb’s law and several integrations [7-12]. 

But for real practical electrostatic problems, the actual 

distribution of charges is not always known. The position that 

the charges take depends on the electric field strength E, and 

it, in turn, is determined by the charge distribution itself. The 

introduction of any conductor or insulator into the field of 

other charges, the location of which is known, leads to the 

movement of all charges and, thereby, to a change in the 

charge distribution density on each body, regardless of 

whether it is a conductor or a dielectric. For practical 

problems, special methods for approximate calculation of 

fields, graphical and semi-graphical methods have been 

developed. More complex problems can be solved by using a 

number of techniques and a special mathematical apparatus, 

which in some cases makes it possible to obtain a solution in 

analytical form [7-9]. 

In reality, we mainly have to deal with solving problems, for 

which the charge distributions are not known, but the shapes 

of the conductors, their relative location in space and potentials 

are given. Finding a solution in analytical form for such 

systems is usually a complex mathematical problem 

In this study, based on solving the Laplace equation for the 

“cylinder-plane” electrode system, taking into account the 

image charges and using the condition of self-sufficiency of 

the electric discharge, a nonlinear equation for the potential on 

the electrode surface with the smallest radius of curvature is 

obtained. Next, to optimize this nonlinear equation, the 

Newton Raphson numerical method is used, as a result of 

which an expression is obtained for determining the initial 

discharge voltage of the corona discharge ignition. This 

approach to determining the initial ignition discharge voltage 

for the “cylinder-plane” electrode system can be considered as 

a scientific novelty of the presented work. 

1.1. Statement of the Problem 

For the “thin cylinder-plane” electrode system, using the 

Newton-Raphson numerical method, it is required to find with 

sufficient accuracy the extremum of the function V0 = f(r0). 

In this case, it is assumed that above the surface of a grounded 

flat ideally conducting electrode (thin cylinder), parallel to it 

at a height h, an infinite conductor of circular cross-section 

with radius r0 (see Fig. 1) is suspended, the potential of which 

is equal to V and the relative density of the medium in the 

interelectrode gap is equal to δ. It is necessary to determine the 

radius r0, of the cylinder at which the initial voltage of the 

electric discharge V0 around the conductor would be 

maximum.  

 

Figure 1. “Thin cylinder-plane” electrode system 

1.2. The Approach to Solving the Problem 

In this work, within the framework of the stated problem, we 

have investigated the “cylinder-plane” electrode system, 

which is widely used in the implementation of various 

technical problems of electron-ion technology. At the same 

time, it should be noted that the solution to a similar problem 

for other electrode systems can be implemented using similar 

reasoning, but taking into account the determination of the 

potential and electric field strength for a given geometric 

configuration of the electrode system. For example, for the 

“sphere-plane” electrode system, Laplace’s equation is solved 

in a spherical coordinate system, and for the “plane-plane” 

electrode system in a Cartesian coordinate system, etc. And 

then, the implementation of the problem is carried out 

similarly to the case considered. 

Note that the mentioned electrode systems were not part of the 

purpose of the task and therefore were not analyzed within the 

framework of this work. 

Obviously, a self-sustaining electric discharge near a round 

conductor begins when the maximum electric field strength 

Emax  on its surface is equal to the initial strength E0. 

Since the value of Emax depends on the cylinder potential V in 

a linear way, then from the equation Emax = E0  it is easy to 

find the dependence of the initial voltage V0  on the radius of 

the conductor R0. After this, using the Newton Raphson 

method, it is easy to find the extremum of the function V0 =

f(r0), which will be the solution to the problem. 

The conditions of the problem do not stipulate in any way the 

relationship between the values of h and r0, so we will 

consider them comparable. In this case, it is necessary to take 

into account the displacement of the electrical axis of the 

cylinder relative to its geometric axis. To do this, we use the 

simplest system of equivalent charges, constructed in 

accordance with the image method in a cylinder at a distance 
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a = r0
2 2h⁄  under the geometric axis of the conductor, i.e. At a 

height (h − a ) above a grounded flat ideally conducting 

electrode we will place an infinite uniformly charged axis with 

a charge density Q and below it at a depth (h − a )under a 

grounded flat ideally conducting electrode an axis with a 

charge density −Q. 

Thus, the system of equivalent charges that replace the real 

charges distributed over the surfaces of the conductor and the 

grounded flat ideally conducting electrode, in this case, 

consists of the two mentioned uniformly charged axes. In 

accordance with the principle of superposition, their total 

charge is zero. 

Since a circular wire of radius R0 has a potential V > 0 and a 

grounded flat ideally conducting electrode has zero potential, 

the maximum electric field strength on the surface of the 

cylinder will be achieved at its point  P which is closest to the 

grounded electrode (see Fig. 1) 

2. Theory 

To achieve the goal, the problem is solved step by step. 

Initially, for the system under consideration, based on the 

Laplace equation in a cylindrical coordinate system, the 

potential on the surface of the electrode with the smallest 

radius of curvature (cylinder) is analytically determined, 

taking into account the charge of the image. However, this 

expression of the potential for a given electrode system does 

not allow us to determine the initial voltage of the occurrence 

of a corona discharge due to the fact that it includes 

optimization parameters characterizing a given electrode 

system that must be determined. For this reason, further using 

the relationship between the electric field strength and the 

potential, as well as the condition of independence of the 

electric discharge, a nonlinear equation for the potential of a 

cylindrical electrode is obtained that can be optimized. At the 

final stage of the algorithm, in order to optimize this nonlinear 

equation, the Newton-Raphson numerical method was used, 

for implementation of which a program was compiled in 

MATLAB. 

As it is known, the most general method for calculating electric 

fields is the direct integration of the Laplace or Poisson 

equations, under given boundary conditions. [9,11,13]. 

−∇2(εV) = 0 (1a) 

E = −∇V (1b) 

where E and V are the electric field and potential respectively, 

and ε = ε0εr is permittivity coefficient. 

To find the parameters of the electrostatic field of the “thin 

cylinder-plane” electrode system, it is convenient to use a 

cylindrical coordinate system. Then Laplace's equation will 

take the form. 

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝜑

𝑑𝑟
) = 0     (1c) 

Consequently, for the case under consideration, the 

fundamental solution of Laplace's equation will have the form: 

𝜑𝑝 =
𝑄

2𝜋𝜀0
log (

2ℎ − 𝑟0 − 𝑎

𝑅0 − 𝑎
) 

(2) 

Based on this expression, if we accept that  𝜑𝑃 = 𝑉i.e. the 

given potential of the cylinder V, then it is easy to determine 

the values of the unknown charge Q, therefore: 

𝑄 =
2𝜋𝜀0𝑉

log (
2ℎ − 𝑟0 − 𝑎

𝑟0 − 𝑎
)
 

(3) 

The maximum value of the electric field strength Emax on the 

surface of the cylinder is obviously achieved at point P. It is 

equal to: 

𝐸𝑚𝑎𝑥 =
𝑄

𝜋𝜀0

∙
(ℎ − 𝑎)

(𝑟0 − 𝑎)(2ℎ − 𝑟0 − 𝑎)
 

(4) 

Substituting the previously obtained expression for Q into this 

formula, we obtain the functional dependence Emax(R0), 

𝐸𝑚𝑎𝑥(𝑟0) =
𝑉

log (
2ℎ − 𝑟0 − 𝑎

𝑟0 − 𝑎
)

∙
(ℎ − 𝑎)

(𝑟0 − 𝑎)(2ℎ − 𝑟0 − 𝑎)
 

(5) 

The condition for the independence of the electric discharge 

will be satisfied under the condition Emax = E0, where E0 is 

the initial field strength, which for the case of a smooth round 

cylindrical conductor with radius r0 can be determined by the 

empirical formula [1,3]. 

where δ -is the relative density of air.  

Assuming the equality 𝐸𝑚𝑎𝑥(𝑟0) = 𝐸0(𝑟0) we obtain the 

following equation for the unknown value of the initial voltage 

V0(r0): 

𝑉0(𝑟0) = 24.5 ∙ 103𝛿 (1 +
0.65

(100𝑟0𝛿)0.38
) ∙ 

log (
2ℎ − 𝑟0 − 𝑎

𝑟0 − 𝑎
) ∙

(𝑟0 − 𝑎)(2ℎ − 𝑟0 − 𝑎)

(ℎ − 𝑎)
 

(7) 

Finding the extremum of the function V0 = V(r0), described 

by expression (7), by the Newton-Raphson method is 

organized in the form of a sequence of approximations r0
(k)

, 

k = 0,1,2, … calculated by the formula [14]: 

𝑟0
(𝑘)

= 𝑟0
(𝑘−1)

−
𝑉0

′ (𝑟0
(𝑘−1)

)

𝑉0
′′ (𝑟0

(𝑘−1)
)
 

(8) 

where V0 (r0
(k)

) values of the right hand side of expression (7) 

at points r0
(k)

, 𝑉0
′ (r0

(k−1)
) values of the first derivative of the 

function f(r0) at points r0
(k−1)

, 𝑉0
′′ (r0

(k−1)
) - the values of its 

second derivative at points r0
(k−1)

. Often, both the first and the 

second derivatives of a function look unwieldy. In this case, 

𝐸0(𝑟0) = 24.5 ∙ 103𝛿 (1 +
0.65

(𝑟0𝛿)0.38
)    V/cm (6) 
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the derivatives can be replaced by the corresponding finite 

differences. For the first derivative, we choose the central 

difference, and for the second one we choose the symmetrical 

second difference. Due to the complexity of the function 

𝑉0(r0) on the right hand side of expression (7), it is advisable 

to calculate its first and second derivatives approximately, 

using the central finite difference of the second order of 

accuracy. 

𝑉0
′(𝑟0) =

𝑉0(𝑟0 + ∆𝑟0) − 𝑉0(𝑟0 − ∆𝑟0)

2∆𝑟0

 
(9a) 

𝑉0
′′(𝑟0) =

𝑉0
′(𝑟0 + ∆𝑟0) − 𝑉0

′(𝑟0 − ∆𝑟0)

2∆𝑟0

 
(9b) 

where ∆r0 is the final increment of the value of r0, which was 

taken equal to  ∆r0 r0⁄ = 10−6. 

3. Analysis of the Results 

Based on formulas (5) and (7) for the considered cylinder-

plane electrode system, Fig. 2 and Fig. 3 show the results of 

calculating the electric field strength Emax(r0) and the initial 

voltage 𝑉0(𝑟0) at ℎ = 0.1 𝑚 , 𝛿 = 1 , 𝑉 = 1𝑘𝑉 , respectively. 

 

Figure 2. Dependence of the maximum electric field strength 

on the electrode radius 𝑟0 for the “thin cylinder-plane” 

electrode system (ℎ = 0.1 𝑚 , 𝛿 = 1 , 𝑉 = 1𝑘𝑉). 

 

Figure 3. Dependence of the initial ignition voltage on the 

electrode radius 𝑟0 for the “thin cylinder-plane” electrode 

system (ℎ = 0.1 𝑚 , 𝛿 = 1) 

Analyzing the nature of the change in Fig. 3, we see that the 

maximum value of the curve V0(𝑟0) is in the range of values 

0.02 ≤  𝑟0 ≤  0.04 𝑚. Therefore, as the initial value of 𝑟0 we 

will take the obviously larger value 𝑟0 = 0.05 𝑚. The 

sequence of values, calculated using iterative formula (8) 

𝑟0(𝑘),    𝑘 = 1,2, . . . ,10. In this case, the relative calculation 

error 𝛿𝑟0
(𝑘)

 is calculated using the formula [14],  

𝛿𝑟0
(𝑘)

= |
𝑟0

(𝑘)
− 𝑟0

(𝑘−1)

𝑟0
(𝑘)

| 
(10) 

By using the Newton-Raphson method in Matlab, for different 

gap values of the “cylinder-plane” electrode system, the 

calculated optimization values V0(k) and r0(k) are presented 

in Fig. 4 and fig. 5, respectively. In this case, the calculation 

continues until 𝛿𝑟0
(𝑘)

≤ 𝜀 = 10−6. Taking these circumstances 

into account, it is easy to show that the convergence of the 

Newton-Raphson method for optimizing the values of V0max 

and 𝑟0𝑚𝑎𝑥 according to Eqs. (7), (8), (9a), and (9b) for various 

values of h at a relative air density 𝛿 is completed in six or 

seven steps. These results are shown in Figures 6 and 7 

respectively. 

 

 

 

 

 

 

 

Figure 4. Convergence of the Newton-Raphson method for 

optimization values of 𝑉0𝑚𝑎𝑥  by using formula (7) for the 

three different values of ℎ and the relative air density 𝛿 = 1. 

 

Figure 5. Convergence of the Newton-Raphson method for the 

optimization of 𝑟0𝑚𝑎𝑥 by using formula (7) for the three 

different values of ℎ and the relative air density 𝛿 = 1. 

In conclusion, it should be noted that such an expression 

method for determining the initial ignition voltage of a corona 

discharge is of practical importance for solving a number of 

technical problems in electron-ion technology, for example, in 

the development of a discharge cell for modifying the surface 

properties of materials, in nanotechnology, in the creation of 

electrets, etc. For this reason, this work is expected to stimulate 

the development of various in-demand electrode systems that 

are used in a wide variety of engineering fields. 
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Figure 6. Convergence of the Newton-Raphson method for the 

optimization of  𝑉0𝑚𝑎𝑥 for the three different values of the 

relative air density 𝛿 at h= 0.1 m. 

 

Figure 7. Convergence of the Newton-Raphson method for the 

optimization of 𝑟0𝑚𝑎𝑥 for the three different values of the 

relative air density 𝛿 at ℎ = 0.1 𝑚 . 

4. Conclusion 

Based on the condition of self-sufficiency of the electric 

discharge, an expression has been found to determine the 

initial ignition voltage for the “cylinder-plane” electrode 

system. 

By using the Newton-Raphson method in symbolic 

programming language Matlab for the “cylinder-plane” 

electrode system, the convergence of the method was analyzed 

for varying degrees of electric field inhomogeneity in the 

interelectrode gap. 
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