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Abstract: The advancement of the Internet has been progressively easing human life. The 

development of mobile communication technologies has led to the widespread adoption of Internet 

of Things (IoT) applications. Thus, most systems and devices have connected to the Internet more 

efficiently. The integration of communication systems into critical infrastructures, such as 

electricity grids, has given rise to the concept of IoT-based smart grids. In smart grid systems, data 

communication is facilitated through the Advanced Metering Infrastructure (AMI). Due to the 

inherent characteristics of communication systems, AMI may be vulnerable to cyber-attacks.  Some 

vulnerabilities have resulted in the emergence of cyber-attack vectors against energy consumption 

data obtained from smart meters. In this study, an effective energy theft intrusion detection system 

(IDS) based on users' consumption patterns is proposed. A Deep Neural Network (DNN) based 

classification model was employed to assess the predictability of both honest and malicious 

consumption patterns. The proposed model exhibits high and adjustable performance. Extensive 

experiments have been carried out on a real consumption dataset of approximately 2000 customers. 

Manipulated data from real readings with two different attack vectors were injected into the dataset. 

K-fold cross-validation technique was used. The proposed model performed a high performance 

reaching up to 97.4% accuracy. 

 

 

Kullanıcı Tüketim Kalıpları Aracılığıyla Akıllı Şebekelerdeki Enerji Hırsızlığını Tespit Etmek 

İçin Etkili Bir DNN Tabanlı Yaklaşım 
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AMI,  

DNN, 

Siber güvenlik, 

Enerji 

hırsızlığı, 
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güvenliği 

Öz: İnternetin ilerlemesi insan hayatını giderek kolaylaştırmaktadır. Mobil iletişim teknolojilerinin 

gelişmesi, Nesnelerin İnterneti (Internet of Things-IoT) uygulamalarının yaygın olarak 

benimsenmesine yol açmıştır. Böylece, çoğu sistem ve cihaz internete daha verimli bir şekilde 

bağlanmıştır. İletişim sistemlerinin elektrik şebekeleri gibi kritik altyapılara entegre edilmesi, IoT 

tabanlı akıllı şebekeler kavramını ortaya çıkarmıştır. Akıllı şebeke sistemlerinde veri iletişimi, 

Gelişmiş Ölçüm Altyapısı (Advanced Metering Infrastructure - AMI) aracılığıyla sağlanmaktadır. 

İletişim sistemlerinin doğal özellikleri nedeniyle, AMI siber saldırılara karşı savunmasız olabilir.  

Bazı güvenlik açıkları, akıllı sayaçlardan elde edilen enerji tüketim verilerine karşı siber saldırı 

vektörlerinin ortaya çıkmasına neden olmuştur. Bu çalışmada, kullanıcıların tüketim modellerine 

dayalı etkili bir enerji hırsızlığı saldırı tespit sistemi önerilmektedir. Hem dürüst hem de kötü niyetli 

tüketim kalıplarının tahmin edilebilirliğini değerlendirmek için Derin Sinir Ağı (Deep Neural 

Network - DNN) tabanlı bir sınıflandırma modeli kullanılmıştır. Önerilen model yüksek ve 

ayarlanabilir performans sergilemektedir. Yaklaşık 2000 müşteriden oluşan gerçek bir tüketim veri 

kümesi üzerinde kapsamlı deneyler gerçekleştirilmiştir. Veri kümesine iki farklı saldırı vektörü ile 

gerçek okumalardan elde edilen manipüle edilmiş veriler enjekte edilmiştir. K-katlı çapraz-

doğrulama tekniği kullanılmıştır. Önerilen model %97,4 doğruluğa ulaşarak yüksek bir performans 

göstermiştir. 
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1. INTRODUCTION 

 

IoT is a revolutionary technology that connects daily 

objects and devices to the Internet [1]. Thanks to the IoT, 

daily devices and systems can communicate with each 

other, share information, and make autonomous 

decisions more efficiently. It leads to development of 

new applications that can facilitate processes and 

improve quality of life [2]. Smart grids, which are 

critical infrastructures, have increased their usability 

with the development of IoT technologies. An IoT-based 

smart grid application uses IoT technologies to optimize 

energy generation, transmission, distribution, and 

consumption processes. AMI and smart meter are main 

elements of a smart grid system [3]. A smart meter is an 

electronic device designed to continuously monitor and 

log electricity consumption at regular time intervals [4]. 

Smart meters facilitate real-time monitoring of electricity 

consumption and offer valuable analytics for consumers 

and utilities [5]. By enabling bidirectional 

communication between service providers and 

consumers, smart meters improve the accuracy of 

billing, promote demand response, and empower 

customers to make conscious decisions regarding their 

energy consumption [6]. Cyber security issues are 

critical for the development of smart grid applications 

[7]. AMI causes many different cyber-attacks that occur 

in the smart grid applications due to its nature [7, 8]. 

Most of the attacks exploit security vulnerabilities in 

smart meters. While consumption data in a smart meter, 

which is an important component of AMI, passes 

through different stages, it can be sensitive against local 

and remote data tampering [9]. Storing and transmitting 

the data are the stages. Illegal manipulation of users' 

energy consumption data represents an important and 

major cyber security problem for smart grid systems 

[10]. Therefore, it is important to develop an effective 

IDS that can detect data manipulation attacks such as 

False Data Injection (FDI) in AMI with high accuracy 

[11]. 

 

Non-technical losses (NTLs) resulting from FDI attacks 

present a significant global concern [12]. While 

complete elimination of fraud may be unattainable for 

smart grid suppliers but implementing measures to 

detect, prevent, and reduce fraud is a viable approach 

[13]. Classification-based methods utilize detailed 

electricity consumption data obtained from smart meters. 

Customer consumption follows a specific statistical 

pattern in normal conditions [14]. Usage pattern 

irregularities may indicate malicious activities [15]. 

Deep learning (DL) models can be used to train a 

classifier based on real samples and synthetically 

generated samples. In our work honest samples are 

obtained from the real dataset. Malicious samples are 

obtained synthetically. We present a consumption 

pattern-based energy theft detector that utilize DNN. 

 

DL approaches have gained popularity due to their 

superior performance compared to traditional machine 

learning (ML) methods in recent times [16]. The DNN-

based IDS was trained using historical data of the honest 

consumers and synthetic attack data. The attack datasets 

were generated from honest samples. The classifier was 

then used to determine whether a new sample is honest 

or malicious. We have presented a novel IDS for 

detecting energy theft in AMI. It detects anomalies in the 

consumption pattern of customers, offering a cost-

efficient and high-performing solution for identifying 

energy theft and detecting data manipulation. In place of 

current classification-based techniques, the introduced 

IDS is resilient to attacks and benign alterations in 

consumption patterns. It achieves higher accuracy, 

sensitivity, and lower FPR. We obtained promising 

results with the model that we proposed. The proposed 

model was trained separately on balanced and 

imbalanced datasets using cross-validation technique. As 

a result of the training and testing, confusion matrices 

were created to measure the performance of the model. 

Performance metrics were obtained from these matrices. 

We tested the performance of the IDS with real data 

from nearly 2000 customers. The dataset serves as a 

valuable reference point for assessing and comparing 

various energy theft detection methods. The outcomes 

affirm the efficiency of our method. 

 

FDI cyber-attacks, which can result in NTL, involve 

transmitting consumption data to the center with a value 

that is less than the actual one [17]. Many academic 

studies have been conducted to detect and prevent these 

cyber-attacks. Viegas et al. [14] used statistical and ML 

methods in the study focusing on electricity demand 

profile and achieved a forecast success of up to 76%. 

Jokar et al. [18] proposed an IDS using statistical 

methods based on consumption pattern in AMI and 

achieved accuracy in the range of 83.25% and 98.75%. 

Nagi et al. [12] proposed an approach with the SVM 

method based on load profile for NTL detection and 

achieved 60% accuracy. Otuoze et al. [19] proposed a 

framework for energy theft detection insight of smart 

city planning, but did not mention the performance rate 

of the proposed framework. Baskaran et al. [8] proposed 

a framework for detecting FDI data falsification attacks 

that may occur in AMI, but did not mention the 

performance rate of the proposed framework. Na et al. 

[10] created an FDI detector model using CNN and 

weighted random forest together and achieved an 

accuracy of up to 95.7% from the model. Kocaman and 

Tümen [17] created a LSTM-based model achieved an 

accuracy of up to 93.60%. DNN-based IDS system that 

we recommended has achieved 97.46% accuracy. 

 

The rest of the paper is organized as follows: materials 

and methods are presented in section 2, and the 

experimental results are presented in section 3. 

Consequently, the conclusion remarks and future work 

are given in section 4. 

 
2. MATERIAL AND METHOD 

 

Real smart meter consumption data has recently been 

made available to researchers for academic and 

commercial studies. The Irish Social Science Data 

Archive (ISSDA) shares smart meter data that is difficult 

for individuals to obtain through real-life applications 

[20]. However, it is almost impossible to obtain data that 
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has been subjected to real cyber-attacks [21]. Therefore, 

hacked synthetic datasets are widely used in cyber 

security works. This, facilitates the development of 

artificial intelligence applications. Current DL models 

generally provide better performance than ML methods 

[22, 23]. Therefore, an up-to-date and high-performance 

DNN model was presented in this study. 

 

2.1. Dataset and Attack Vectors 

 

The ISSDA made available a dataset in January 2012, 

obtained through a collaboration with the Irish 

Commission for Energy Regulation (CER) [20]. This 

dataset comprises half-hourly electricity usage data for 

over 5,000 Irish households and businesses over a 536-

day period in 2009 and 2010. The participants had smart 

meters and willingly took part in the project. All the data 

came from honest users. The size of dataset, diversity of 

participants, extended data collection period, and public 

accessibility make it a valuable resource for research in 

the analysis of smart meter data. In our tests, 

consumption data of 1948 customers for ten weekdays 

are used in half-hour periods by creating a 1948 rows 

and 480 colums dataset. Honest samples are labeled as 1, 

malicious samples are labeled as 0. 

 

The hacked consumption data was obtained 

synthetically. Two different attack vectors were used in 

the study to create synthetic attack data. The attacks are 

named 𝑓1  and 𝑓2 . While the 𝑓1 attack aims the 

multiplication of the real data by a random number 

between 0.1 − 0.8, the 𝑓2 attack aims the reduction of 

the values at a specific time of the day to zero. The 

equations of attack vectors 𝑓1 and 𝑓2 are as in (1) and (2). 

 

𝑓1= random(0.1-0.8) * all honest data (1) 

𝑓2= 0 * honest data (specific time range, t=37-41) (2) 

 

There are 48 consumption data per day for a customer. 

While the first reading is done at 00.30, the last reading 

is done at 00.00. In this context, the 37th, 38th, 39th, 

40th, 41th readings between 18.30 and 20.30, where the 

consumption is high, were selected for the 𝑓2 attack 

vector. It is important to visualize how an FDI attack 

vector that aims to reduce energy consumption data 

changes the actual data. In this context, the honest 

consumer pattern of a customer and the 𝑓1 , 𝑓2 attack 

forms are shown in figure 1. 

 

2.2. Deep Neural Network 

 

A DNN model employs techniques to automatically 

adjust its weights during training on large datasets, 

allowing it to capture intricate patterns [16]. A DNN 

model comprises various layers, such as input, dense 

(fully connected), convolutional, recurrent, activation, 

and output layers, depending on the architecture. Each of 

these output neurons serves as input for subsequent 

layers. Dense layers, prevalent in DNNs, are often 

combined with other layers to construct models capable 

of extracting hierarchical features and representations 

from the input data. 

 
Figure 1. Honest consumer pattern of a customer with 𝑓1, 𝑓2 attacks 

 

The arrangement and quantity of dense layers in a neural 

network structure are determined by the specific problem 

at hand and the desired level of model complexity [23]. 

DNN encompasses diverse areas such as computer 

vision, natural language processing, and pattern 

recognition. The training process involves fine-tuning 

the weights through backpropagation, enabling the DNN 

to learn and generalize from the provided datasets. 

DNNs have played a crucial role in advancing the 

capability of deep learning across a wide range of 

applications, showcasing their adaptability and 

effectiveness in capturing complex patterns within data. 

 

2.3. Proposed Approach 

 

Users with no missing data were selected as samples. 

Hence 10-days consumption data of approximately 2000 

customers was designed in 30-minutes periods. The 

dataset was converted into 1𝑥480 input data for each 

customer. Synthetic attack datasets were obtained by 

applying 𝑓1 and 𝑓2 attacks on all honest-data (ℎ). These 

datasets were normalized by combining them as ℎ +
𝑓1, ℎ + 𝑓2, ℎ + 𝑓1 + 𝑓2 . Honest data labeled as 1 and 

malicious ones as 0. While ℎ + 𝑓1 and ℎ + 𝑓2 are balance 

datasets, ℎ + 𝑓1 + 𝑓2 is an imbalance dataset. In the 

training phase, confusion matrices are obtained for each 

fold using the k-fold cross validation technique. The 

value of k is five. Model performance results were got 

from the performance metrics that are obtained from 

these confusion matrices. 

  

The dataset obtained from ISSDA is consumption data 

belongs completely honest customers. This honest 

dataset was exposed to 𝑓1, 𝑓2, 𝑓1&𝑓2 attacks. Thus, 

different datasets that were exposed to three different 

cyber-attacks were obtained. 𝑓1 attack dataset, 𝑓2 attack 

dataset, and 𝑓1&𝑓2 attack dataset were generated 

separately. The dataset created with 𝑓1&𝑓2 is imbalanced 

while the others are balanced. After these datasets were 

normalized, they were given to the DNN algorithm as 

input for the training and validation processes. Our 

model consists of seven layers, including the input layer, 

five fully connected layers and the output layer. The 

architecture of the energy theft detector is shown in 

figure 2. 

 



 

Tr. J. Nature Sci. Volume 12, Issue 4, Page 163-170, 2023 
 

 

166 

 

 

Figure 2. The architecture of the DNN-based energy theft detector 

 

 

The model accepts 1-by-480 consumption pattern into 

the input layer. Glorot uniform initializer, ReLU 

activation function, dropout, early stopping and L2 

regularization were preferred to prevent over-fitting with 

batch normalization in every fully connected layer. 

 

The model flow is as follows:  

The input data is represented as a vector. Mathematical 

output of fully connected (dense) layers is stated as 

       



 
5

1

1

i

iiii bAWZ                   

   )(Re ii ZLUA   

Where: 
 0A represents the input data vector. 
 iW is the weight matrix layer i. 

 ib  is the bias vector for layer i. 

 iZ is the linear operation result at layer i. 
 iA is the activation at layer i, computed using the 𝑅𝑒𝐿𝑈 

activation function. Output layer is stated as 

                                                                          
       6566 bAWZ   

 )( 6ZSigmoidY 


 

Where: 


Y is the output prediction, typically using sigmoid 

activation function for binary classification. 

       

2.4. Evaluation of the Proposed Model 

 

The confusion matrix, also called as the error matrix, is a 

common method for evaluating a model's effectiveness. 

It is generated when the model compares its predicted 

outcomes with the actual samples, resulting in four key 

indicators. True Positives (TP - correctly predicted 

positives), True Negatives (TN - correctly predicted 

negatives), False Positives (FP - incorrectly predicted 

positives), False Negatives (FN - incorrectly predicted 

negatives) [16]. The number of TP and TN represent the 

number of correctly recognized malicious and honest 

samples respectively. The number of FP and FN 

represent the number of misclassified malicious and 

honest samples respectively. The structure of the 

confusion matrix used in the study is shown in figure 3. 

 

 
Figure 3. Confusion matrix for 2-classes 

 

Evaluation metrics derived from a confusion matrix 

include several key indicators used to assess the 

performance of classification models. These metrics are 

calculated based on the values present in the confusion 

matrix. Table 1 shows prominent performance metrics 

such as sensitivity, specificity, precision, F1-score, 

accuracy, and False Positive Rate (FPR) obtained from 

the confusion matrix. Meanwhile recall, True Positive 

Rate (TPR), hit rate, Detection Rate (DR) and sensitivity 

represent the same metric. These metrics help in 

assessing different aspects of a classification model's 

performance, considering both the correct and incorrect 

classifications made by the model in comparison to the 

actual values. 

 

In our experiments, we employed k-fold cross- 

validation technique to ensure reliable and generalized 

outcomes. This approach involves partitioning the 

dataset into training and validation sets to evaluate and 

compare model performance. During the k-fold cross-

validation process, every data point is utilized for both 

training and validation across each fold of the dataset. K-

fold cross-validation serves two fundamental objectives 

in model assessment. Firstly, it rigorously evaluates a 

model's performance using the provided dataset, 

developing its ability to yield accurate predictions or 

classifications on entirely novel, unseen data. This 

process ensures a comprehensive understanding of the 

model's generalization capabilities beyond the training 

set.  
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Table 1. Performance metrics obtained from the confusion matrix 

Metrics Equation Short Description 

Sensitivity  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The performance of the model 

in detecting malicious 

samples. 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The performance of the model 

in detecting honest samples. 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The ratio of malicious 
samples predicted as 

malicious to all malicious 

samples.  

F1-score 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

It is expressed as the 
harmonic mean between 

precision and sensitivity. 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Measures the overall 

correctness of predictions by 

the model. 

FPR (
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
) 

Measures the proportion of 
actual honest that were 

incorrectly classified as 

malicious samples. 

 

Secondly, by systematically partitioning the data into 

subsets for training and validation, k-fold cross-

validation facilitates a comparative analysis of the model 

performances. This methodological approach aids in 

determining the optimal model among various 

algorithms based on their performance metrics within the 

dataset. As a result, it empowers the informed selection 

of the algorithm that exhibits superior predictive ability 

and robustness, crucial considerations for addressing 

specific problem domains effectively. 

 

3. EXPERIMENTAL RESULTS 

 

We used Python 3.10 and Google Colab Pro (A100 GPU 

and V100 GPU) platforms for all processes. The honest 

and malicious datasets were trained and tested using the 

five-fold cross-validation method. Hyper parameters are 

given in table 2. 
 

Table 2. Hyper parameters used in the DNN-based model 

Hyper parameters Values 

Epoch 100 

Batch Size 64 

Optimizer SGD 

Learning Rate 0.01 

L2 Regularization 0.0001 

Kernel Initializer Glorot_uniform 

Seed 12 

 

Balance datasets and imbalance dataset were trained 

with the model using the statified five-fold cross-

validation technique. Confusion matrices were obtained 

for each fold of each dataset. The confusion matrices 

obtained for each fold of each dataset is given in table 3. 

 

The performances of the models were measured with the 

accuracy, precision, specificity, sensitivity, F1-score, and 

FPR performance metrics. The standard deviations were 

also calculated. Performance metrics were obtained with 

the related confusion matrices presented in table 3. The 

results of these metrics are given in table 4. According to 

the results, 84.68% accuracy was obtained with the 

𝐻𝑜𝑛𝑒𝑠𝑡 + 𝑓1 attack dataset, while 97.46% accuracy was 

obtained with the Honest+𝑓2 attack dataset. These results 

were obtained from balanced datasets. An accuracy of 

85.28% was achieved with the Honest+ 𝑓1 + 𝑓2 attack 

dataset, which is the imbalance dataset. According to 

these results, the best performance result was obtained 

with 𝐻𝑜𝑛𝑒𝑠𝑡 + 𝑓2 attack dataset, which includes 𝑓2attack 

vector. Accuracy, specificity, sensitivity, and FPR 

performance metrics were used sequentially. Therefore, 

84.68%, 89.16%, 81.32%, 10.84% were achieved in the 

Honest+ 𝑓1 attack respectively. 97.46%, 99.90%, 

95.38%, 0.10% were achieved in the Honest+𝑓2attack 

respectively. 85.28%, 81.08%, 87.30%, 18.92% were 

achieved in the Honest+𝑓1+𝑓2 attack respectively. 

 

Figure 4 shows the ROC curves of the models trained 

with different balanced datasets. The AUC values of the 

model trained with 𝐻𝑜𝑛𝑒𝑠𝑡 + 𝑓1 attack data at each fold 

are 89.97%, 90.60%, 90.67%, 90.89%, and 90.59%, 

respectively. The AUC values of the model trained 

with 𝐻𝑜𝑛𝑒𝑠𝑡 + 𝑓2 attack data at each fold are 99.94%, 

99.16%, 99.84%, 99.42%, and 99.71%, respectively. As 

can be seen from the curves and AUC values in figure 4, 

the  𝐻𝑜𝑛𝑒𝑠𝑡 + 𝑓2 attack dataset showed a higher 

accuracy rate than other datasets. 

 

The ROC curve demonstrates the model's capacity to 

reasonably differentiate malicious samples, even within 

the context of the dataset's inherent imbalance. ROC 

analysis serves as a critical indicator of the stability of 

the trained deep learning model, particularly in 

challenging scenarios involving imbalanced dataset, 

where achieving high accuracy presents difficulties. 

 

Figure 5 exhibits ROC curves of the folds corresponding 

model trained with imbalanced ( 𝐻𝑜𝑛𝑒𝑠𝑡 + 𝑓1 + 𝑓2 ) 

dataset. The AUC values of the model trained with 

𝐻𝑜𝑛𝑒𝑠𝑡 + 𝑓1 + 𝑓2 attack data on each fold were 

calculated as 92.50%, 91.90%, 91.02%, 90.59%, and 

92.61%, respectively. Additionally, figure 5 shows loss-

accuracy graphs of the folds corresponding to the 

imbalanced dataset. When examining the epochs, it 

becomes apparent that the accuracy generally increases 

while the loss curve decreases at a certain rate, 

ultimately reaching a reasonable level. Hence, the model 

has undergone the learning process in a determined 

manner, effectively avoiding overfitting. 

 

The information regarding the balancing or imbalancing 

of datasets in articles is often unclear, which adds 

complexity to examining the distribution nature of the 

datasets utilized in various studies. Table 5 shows the 

comparison of our study with some existing studies. All 

studies work on the same dataset with different sample 

rates. In [14], statistical and ML methodologies were 

explored to forecast consumer demand profiles. Among 

these models, the support vector machine (SVM) 

algorithm achieved an accuracy rate as high as 75.8% for 

this particular application. 
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Table 3. Confusion matrices for each fold of the proposed model 

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Honest +  

𝒇𝟏 Attack 

362a 28b 355a 34b 354a 35b 339a 51b 349a 41b 

97c 293d 104c 286d 80c 310d 61c 328d 66c 323d 

Honest +  

𝒇𝟐 Attack 

390a 0b 389a 0b 388a 1b 390a 0b 389a 1b 

9c 381d 20c 370d 12c 378d 49c 340d 7c 382d 

Honest +  

𝒇𝟏&𝒇𝟐 Attack 

695a 84b 720a 59b 686a 93b 717a 63b 738a 41b 

79c 311d 116c 274d 92c 298d 113c 276d 120c 269d 

TP (a), FP (b), FN (c), TN (d) 

 

 

Table 4. Performance results and standard deviation of the proposed model according to balance and imbalance datasets 

 
Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) F1-score (%) FPR (%) 

Honest + 

𝒇𝟏 Attack 
84.68±1.41 90.30±1.99 89.16±1.55 81.32±2.88 85.51±1.0 10.84±1.55 

Honest + 

𝒇𝟐 Attack 
97.46±1.95 99.90±0.13 99.90±0.13 95.38±3.44 97.56±1.81 0.10±0.13 

Honest + 

𝒇𝟏&𝒇𝟐 Attack 
85.28±0.76 91.27±2.38 81.08±3.55 87.30±1.47 89.20±0.67 18.92±3.55 

Mean ± standard deviation 

 

 

Table 5. A comparision of exist studies on the same dataset 

Reference Year 
Simulation 

Platform 
Poroposed Model 

Dataset 

Resource 
Accuracy(%) 

[14] 2015 N/A SVM ISSDA 75.8 

[24] 2017 N/A Density-based clustering ISSDA 93.2 

[25] 2016 N/A SVM-based ISSDA 94.0 

[26] 2020 N/A MP-ANN ISSDA 93.4 

[13] 2018 Python 3.x DNN-based ISSDA 93.0 

Our study 2023 Python 3.10 DNN-based ISSDA 97.4 

 

 
Figure 4. The ROC curves of the DNN models for balanced datasets 
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Figure 5. The ROC curve and loss-accuracy graphs along with epochs for imbalanced dataset 

 

In [24], the method using smart meter data effectively 

detects energy theft by focusing on abnormal load 

profiles, outperforming traditional unsupervised 

techniques like k-means clustering, GMM clustering, 

and DBSCAN. It has high accuracy. The technique is 

helpless for attackers that do not generate load profiles 

with an abnormal shape. Moreover, the proposed SVM-

driven detector in [25] exhibits notable efficacy, 

demonstrating an average detection rate of 94% 

alongside a false alarm rate of 11%. In [26], a multilayer 

perceptron was developed the detection of energy theft 

in distribution systems using the Multilayer Perceptron 

Artificial Neural Network (MP-ANN) algorithm. They 

obtained 93.4% accuracy. In [13], a DNN based system 

was designed for identifying energy theft on a per-

customer basis. This specialized DNN-based detector 

attains a detection rate reaching 93%. Simulation 

outcomes underscore a considerable advancement in 

performance when compared with state-of-the-art 

shallow detection methodologies. In some studies, it has 

not been clearly stated  the real data exposed to which 

attack vectors and whether the data is imbalanced or 

balanced. In our proposed model, real data were exposed 

to 𝑓1 and 𝑓2 attacks separately and together, as explained 

before. Our energy theft detector provides up to 97.4% 

accuracy. 

 

4. CONCLUSION 

 

In this study, the detection of energy theft in smart grids 

was investigated on synthetic data obtained from a real 

dataset with a DNN-based approach. The method relies 

on consumption data patterns. The manipulated values 

were injected into the dataset with two different attack 

vectors. Both balanced and imbalanced datasets were 

investigated with the same DNN network. Stratified five-

fold cross-validation technique was used to obtain more 

generalizable results during the training phase. The 

results were compared. Widely accepted performance 

metrics such as accuracy, precision, specificity, 

sensitivity, FPR, and AUC-ROC were used to evaluate 

the performance of the model. We observed that the 

classification done with the Honest+𝑓2 balanced dataset 

performed better results than the imbalanced dataset. The 

model achieved 97.46% accuracy, 99.9% precision, 

99.9% specificity, 95.38% sensitivity, 97.56% F1-score, 

0.1% FPR, and up to 99% AUC-ROC when it was tested 

on Honest+𝑓2 balanced dataset. Compared to other data-

driven methods evaluated on the same dataset, we 

achieved the best accuracy of 97.46% among existing 

studies. By proactively identifying irregularities in 

consumption patterns, the DNN-based approach offers a 

robust IDS, enhancing the reliability and resilience of 

energy distribution systems. In future work, a study will 

be done with more cyber-attack vectors and a CNN-

based hybrid model will be developed on a larger 

balanced dataset. 
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