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Abstract

In this study, an exact and a numerical method namely direct algebraic method and collocation finite
element method are proposed for solving soliton solutions of a special form of fifth-order KdV
(fKdV) equation that is of particular importance: Caudrey-Dodd-Gibbon (CDG) equation. For these
aims, homogeneous balance method and septic B-spline functions are used for exact and numerical
solutions, respectively. Next, it is proved by applying von-Neumann stability analysis that the
numerical method is unconditionally stable. The error norms L2 and L∞ have been computed to
control proficiency and conservation properties of the suggested algorithm. The obtained numerical
results have been listed in the tables. The graphs are modelled so that easy visualization of properties
of the problem. Also, the obtained results indicate that our method is favourable for solving such
problems.

1. Introduction

The fifth-order KdV-type (fKdV) equation has the following form

ut +αu2ux +βuxuxx + γuuxxx +uxxxxx = 0, (1.1)

where α , β and γ are arbitrary positive parameters [1]-[4]. The fKdV equation (1.1) identifies motions of long waves in
shallow water under gravity and in a one-dimensional nonlinear lattice [5]-[14], and has many physical applications in fields as
diverse as nonlinear optics and quantum mechanics. These parameters greatly modify affect the characteristics of the equation.
For example, if α = 180, β = 30, and γ = 30 are taken the following CDG equation

ut +180u2ux +30uxuxx +30uuxxx +uxxxxx = 0, (1.2)

is obtained. It is well-known that equation is fully integrable. That means that it has multiple-soliton solutions [15]. The CDG
equation owns the Painleve´ property as verified by Weiss in [16]. The equation can be found out to be solved by several
methods, among other methods in the literature; Hirota’s bilinear method [17] Hirota’s direct method [15], Riccati equation
method [18], tanh method [19], exp-function method [20, 21], collocation finite element approach [22].
The paper has been designated as follows: Analytical solutions of the equation are shown in Section 2 along with the graphs.
In Section 3, construction of the numerical method has been done. Section 4 contains stability analysis of the numerical
technique. Test problems taken from the literature have been solved and the obtained results are given in the tabular form as
well as plotted graphically in Section 5. The article ends with the conclusions.

≫≫≫ Received: 11-11-2023 ≫≫≫ Revised: 15-03-2024 ≫≫≫ Accepted: 22-03-2024 ≫≫≫ Online: 29-03-2024 ≫≫≫ Published: 31-03-2024

https://orcid.org/0000-0002-2348-4170
https://orcid.org/0000-0001-8396-8081
mailto:sbgkarakoc@nevsehir.edu.tr
mailto:dryldrmsucu@gmail.com


Fundamental Journal of Mathematics and Applications 27

2. Analytical solutions

Here, we implement the direct algebraic method to the converted ODE of the investigated model by employing u(x, t) =
U(ξ ), ξ = x+ ct, which is given by

cU′+α U2U′+β U′U′′+ γ UU(3)+U(5) = 0. (2.1)

Applying the homogeneous balance rule along with the method’s framework, one gets the next general solutions of the ODE:

U(ξ ) =
n

∑
i=0

ai φ(ξ )i = a2 φ(ξ )2 +a1 φ(ξ )+a0, (2.2)

where a0, a1, a2 are arbitrary constants to be determined later. Using Eq.(2.2) along with the ODE (2.1) and the employed
method’s framework, obtain the values of the above-shown parameters as follows:
Set I

a0→
2a2d

3
,a1→ 0,c→ 2

3
(
a2βd2 +36d2) ,α →−6(a2β +2a2γ +60)

a2
2

. (2.3)

Set II

a1 → 0,a2→−
60

β + γ
,c→

−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2

10(β + γ)
, (2.4)

α → 1
10

γ(β + γ). (2.5)

Set III

a0→−
40d

γ
,a1→ 0,a2→−

60
γ
,c→

8
(
3γd2−5βd2

)
γ

,α → 1
10

γ(β + γ). (2.6)

Thus, the soliton wave solutions of the investigated model are constructed by
for b < 0, we get

uI,1 =
1
3

a2

(
3b tan2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
, (2.7)

uI,2 =
1
3

a2

(
3bcot2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
, (2.8)

uII,1 = a0−
60b tan2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.9)

uII,2 = a0−
60bcot2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.10)

uIII,1 =−
20
(

3b tan2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
, (2.11)

uIII,2 =−
20
(

3bcot2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
. (2.12)

For b > 0, we get

uI,3 =
1
3

a2

(
3b tan2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
, (2.13)
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uI,4 =
1
3

a2

(
3bcot2

(√
b
(

2
3

t
(
a2βd2 +36d2)+ x

))
+2d

)
,

uII,3 = a0−
60b tan2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.14)

uII,4 = a0−
60bcot2

(√
b
(

t(−a2
0β 2γ−2a2

0βγ2−a2
0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)

10(β+γ) + x
))

β + γ
, (2.15)

uIII,3 =−
20
(

3b tan2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
, (2.16)

uIII,4 =−
20
(

3bcot2
(√

b
(

8t(3γd2−5βd2)
γ

+ x
))

+2d
)

γ
. (2.17)

For b = 0, we get

uI,5 = a2

(
1( 2

3 t (a2βd2 +36d2)+ x
)

2
+

2d
3

)
, (2.18)

uII,5 = a0−
60

(β + γ)

(
t(−a2

0β 2γ−2a2
0βγ2−a2

0γ3−80a0βγd−80a0γ2d−160βd2−1360γd2)
10(β+γ) + x

)
2
, (2.19)

uIII,5 =

20

− 3(
8t(3γd2−5βd2)

γ
+x

)2 −2d


γ

. (2.20)

The following figures belong to each exact solution family:

= 0.1

= 0.3

= 0.5

Figure 1: Graph of Set I.

3. Numerical scheme for the model problem

In this section, Eq. (1.2) has been solved by using the septic B-spline collocation method with the following boundary and
initial conditions

u(a, t) = 0, u(b, t) = 0,
ux(a, t) = 0, ux(b, t) = 0,
uxx(a, t) = 0, uxx(b, t) = 0,
u(x,0) = f (x), a≤ x≤ b.

(3.1)
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Figure 2: Graph of Set II.

Figure 3: Graph of Set III.

Septic B-spline functions φm(x), m =−3(1)N +3, at the nodes xm are given over the solution interval [a, b] by Prenter [23].
In collocation method, unumeric(x, t) corresponding to the uexact(x, t) can be given as a linear combination of septic B-splines as
follows [24]

uN(x, t) =
N+3

∑
m=−3

φm(x)σm(t). (3.2)

Implementing the following transformation hρ = x− xm, 0 ≤ ρ ≤ 1 to specific region [xm,xm+1], the region turns to an
interval of [0,1] [25]. Thus the septic B-spline functions in the new region [0,1] are obtained as follows:

φm−3 = 1−7ρ +21ρ2−35ρ3 +35ρ4−21ρ5 +7ρ6−ρ7,
φm−2 = 120−392ρ +504ρ2−280ρ3 +84ρ5−42ρ6 +7ρ7,
φm−1 = 1191−1715ρ +315ρ2 +665ρ3−315ρ4−105ρ5 +105ρ6−21ρ7,
φm = 2416−1680ρ +560ρ4−140ρ6 +35ρ7,
φm+1 = 1191+1715ρ +315ρ2−665ρ3−315ρ4 +105ρ5 +105ρ6−35ρ7,
φm+2 = 120+392ρ +504ρ2 +280ρ3−84ρ5−42ρ6 +21ρ7,
φm+3 = 1+7ρ +21ρ2 +35ρ3 +35ρ4 +21ρ5 +7ρ6−ρ7,
φm+4 = ρ7.

(3.3)

Using the equalities given by (3.2) and (3.3), the following expressions are obtained:

uN(xm, t) = ρm−3 +120ρm−2 +1191ρm−1 +2416ρm +1191ρm+1 +120ρm+2 +ρm+3,
u′m = 7

h (−ρm−3−56ρm−2−245ρm−1 +245ρm+1 +56ρm+2 +ρm+3),
u′′m = 42

h2 (ρm−3 +24ρm−2 +15ρm−1−80ρm +15ρm+1 +24ρm+2 +ρm+3),

u′′′m = 210
h3 (−ρm−3−8ρm−2 +19ρm−1−19ρm+1 +8ρm+2 +ρm+3),

uiv
m = 840

h4 (ρm−3−9ρm−1 +16ρm−9ρm+1 +ρm+3),

uv
m = 2520

h5 (−ρm−3 +4ρm−2−5ρm−1 +5ρm+1−4ρm+2 +ρm+3).

(3.4)
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Now, putting (3.2) and (3.4) into Eq.(1.2) and simplifying, the following system of ODEs are reached:

·
ρm−3 +120

·
ρm−2 +1191

·
ρm−1 +2416

·
ρm +1191

·
ρm+1 +120

·
ρm+2 +

·
ρm+3

+(180Zm1 +30Zm2)
7
h (−ρm−3−56ρm−2−245ρm−1 +245ρm+1 +56ρm+2 +ρm+3)

+30Zm3
210
h3 (−ρm−3−8ρm−2 +19ρm−1−19ρm+1 +8ρm+2 +ρm+3)

+ 2520
h5 (−ρm−3 +4ρm−2−5ρm−1 +5ρm+1−4ρm+2 +ρm+3) = 0,

(3.5)

where
·
ρ = dσ

dt ,

Zm1 = u2 = (ρm−3 +120ρm−2 +1191ρm−1 +2416ρm +1191ρm+1 +120ρm+2 +ρm+3)
2,

Zm2 = uxx =
42
h2 (ρm−3 +24ρm−2 +15ρm−1−80ρm +15ρm+1 +24ρm+2 +ρm+3),

Zm3 = u = ρm−3 +120ρm−2 +1191ρm−1 +2416ρm +1191ρm+1 +120ρm+2 +ρm+3.

If Crank-Nicolson scheme and forward difference approximation which are defined below is used respectively in Eq.(3.5)

ρi =
ρ

n+1
i +ρn

i
2

,
·
ρ i =

ρ
n+1
i −ρn

i
∆t

(3.6)

the following iteration equation is obtained

λ1ρ
n+1
m−3 +λ2ρ

n+1
m−2 +λ3ρ

n+1
m−1 +λ4ρn+1

m +λ5ρ
n+1
m+1 +λ6ρ

n+1
m+2 +λ7ρ

n+1
m+3

= λ7ρn
m−3 +λ6ρn

m−2 +λ5ρn
m−1 +λ4ρn

m +λ3ρn
m+1 +λ2ρn

m+2 +λ1ρn
m+3,

(3.7)

where

λ1 = [1−E−T −M] ,
λ2 = [120−56E−8T +4M] ,
λ3 = [1191−245E +19T −5M] ,
λ4 = [2416] ,
λ5 = [1191+245E−19T +5M] ,
λ6 = [120+56E +8T −4M] ,
λ7 = [1+E +T +M] ,

E = ϖ

2 ∆t, T = κ
2 ∆t, M = 2520

2h5 ∆t,
ϖ = [180Zm1 +30Zm2],

κ = [ 6300
h3 Zm3].

(3.8)

By eliminating the unknown parameters ρ−3,ρ−2,ρ−1,ρN+1,ρN+2, and ρN+3 which are not in the solution region of the
problem, the system of equations given by (3.7) becomes solvable. This procedure can be easily done using the values of u
and boundary conditions, and then the following system

Rdn+1 = Sdn (3.9)

is obtained where dn = (ρ0,ρ1, ...,ρN)
T .

4. Stability Analysis

For the stability analysis, Von Neumann technique has been used. In a typical amplitude mode, we can define the magnification
factor ξ of the error as follows [26, 27]:

ρ
n
m = ξ

neimkh. (4.1)

Using (4.1) into the (3.7),

ξ =
ρ1− iρ2

ρ1 + iρ2
, (4.2)

is obtained and in which

ρ1 = 2cos(3kh)+240cos(2kh)+2382cos(kh)+2416,
ρ2 = (2M+2T +2E)sin(3kh) , (4.3)

so that |ξ |= 1, which proves unconditional stability of the linearized numerical scheme for the CDG equation.
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5. Numerical Experiments and Discussions

In this section, the proposed scheme is applied for solution of CDG equation for different values of the time and space division
and we approximate them using the described scheme. Error norms, namely L2 and L∞, are used in order to check the method
[28, 29]:

L2 =
∥∥uexact −uN

∥∥
2 '

√√√√h
N

∑
j=1

∣∣∣uexact
j − (uN) j

∣∣∣2, (5.1)

and

L∞ =
∥∥uexact −uN

∥∥
∞
'max

j

∣∣∣uexact
j − (uN) j

∣∣∣ , j = 1,2, ...,N. (5.2)

The CDG equation has an exact solution of the form [22]

u(x, t) =
k2 exp(k(x− k4t))

(1+ exp(k(x− k4t)))2 , (5.3)

and the equation will be examined with the boundary-initial condition which is

u(x,0) = f (x) =
k2 exp(kx)

(1+ exp(kx))2 , (5.4)

where k = 1 and u→ 0 as x→±∞.
To prove accuracy of our numerical algorithm, interval of the problem is chosen as [−15,15] and up to time t = 1. In simulation
calculations in terms of compliance comply with the literature, as common values ∆t = 0.0004 and 0.0001 with h = 0.5 and
0.05 are chosen. In Tables (1−3), values of the error norms L2 and L∞ calculated over these values for time levels and step
sizes are presented. So, it can be seen more clearly how the amount of collocation points have an effect on the method. When
tables are examined, the calculated error norms L2 and L∞ are obtained to be marginally small. It is clear that the minimum
L∞ error norm 2.4892×10−5 with the parameters ∆t = 0.0001 and h = 0.05. These errors hardly change as time progresses.
Moreover, it can be said from the tables that the values of the error norms are compatible with the exact solution and the
numerical solution, and the method is quite efficient. Two and three dimensional forms of bell-shaped solitary wave solutions
produced from t = 0 to t = 1 are clearly seen in Figure (4). Besides, the contour line for the movement of the individual wave
is plotted in Figure (4). It can be indicated that the wave maintains its amplitude and shape as time passes from these figures.
Also, error distribution is shown at t = 1 for different values of h and ∆t in Figure (5).

Table 1: Error norms for k = 0.01 and different values of h and ∆t.

∆t = 0.0004,h = 0.5 ∆t = 0.0001,h = 0.05
t L2 L∞ L2 L∞

0.1 .0000494593 .0000249293 .0000414945 .0000270235
0.2 .0000532876 .0000252706 .0000465528 .0000248927
0.3 .0000532946 .0000257885 .0000497414 .0000271132
0.4 .0000537765 .0000249308 .0000557418 .0000303556
0.5 .0000544981 .0000255910 .0000617223 .0000337686
0.6 .0000582073 .0000249191 .0000619409 .0000441115
0.7 .0000563601 .0000249129 .0000679581 .0000468114
0.8 .0000553124 .0000249021 .0000803376 .0000475394
0.9 .0000559314 .0000256542 .0000912949 .0000595731
1.0 .0000587193 .0000256739 .0001058028 .0000597128

6. Conclusion

In this study, two important goals have been executed: Generating the direct algebraic method for obtaining exact solutions
of the CDG equation and based on septic B-spline approximation, a collocation method has been introduced and performed
for the numerical solution of CDG equation by taking into consideration different parameter values of test problem. The von
Neumann method has been applied rigorously to check stability of the numerical scheme and the method has been proved to be
unconditionally stable. The algorithm is run with a single solitary wave motion whose exact solution is known to perform
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Table 2: The error norms for k = 0.01, t = 0.0001 and various values of h.

h L2 L∞

0.25 .0000419227 .0000276440
0.1 .0000337090 .0000230659

0.01 .0000339219 .0000366059
0.05 .0000317705 .0000242181

0.025 .0000335113 .0000341147
1.0 .0000510913 .0000283967

Table 3: The error norms fork = 0.01,h = 0.1 and various values of ∆t.

∆t L2 L∞

0.04 .0000431579 .0000492631
0.02 .0000405068 .0000491365
0.01 .0000380355 .0000489782

0.001 .0000266854 .0000293648
0.005 .0000323331 .0000310227
0.0025 .0000298689 .0000306730

0.00125 .0000274591 .0000298586
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Figure 4: Motion of single solitary wave and its contour line for ∆t = 0.0004 and h = 0.5.
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Figure 5: Error distributions at t = 1 for the parameters with h = 0.05; ∆t = 0.0004; h = 0.05 and ∆t = 0.0001 .
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numerical experiments. The obtained solutions from both methods are plotted graphically to check the dynamical behavior of
the solutions. The reliability and efficiency of the numerical method have been evaluated using L2 and L∞ error norms and it
can be seen that the obtained results are quite good. Finally, it is said that the approach applied in this study can be easily
applied to other nonlinear evolutions and good results can be achieved.
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[29] N.M. Yağmurlu and A.S. Karakaş, Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based

on Rubin–Graves type linearization, Numer. Methods Partial Differ. Equ., 36(5) (2020), 1170-1183. [CrossRef] [Scopus] [Web of Science]

Fundamental Journal of Mathematics and Applications (FUJMA), (Fundam. J. Math. Appl.)
https://dergipark.org.tr/en/pub/fujma

All open access articles published are distributed under the terms of the CC BY-NC 4.0 license (Creative Commons Attribution-
Non-Commercial 4.0 International Public License as currently displayed at http://creativecommons.org/licenses/by-nc/4.
0/legalcode) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the
original work is properly cited.
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