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Abstract

The main purpose of this study is to establish new inequalities including Riemann-Liouville fractional integrals for various classes of functions
with two variables. We first establish two identities involving Riemann-Liouville fractional integrals for higher-order partial differential
functions. Then, some fractional Ostrowski type inequalities for functions of bounded variation of two variables are attained. Moreover, we
present fractional integral inequalities for functions whose higher-order partial derivatives are elements of L∞ and L1, respectively. Some
special cases and midpoint versions of our main results are also examined.
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1. Introduction

Many mathematicians with an interest in both pure and applied mathematics have devoted much of their effort over the past century to the
study of various forms of integral inequalities. One of the many essential mathematical findings of A. M. Ostrowski [29] is the following
classical integral inequality associated with the functions whose derivatives are bounded:

Theorem 1.1. Supposing that f : [a,b]→ R is a differentiable function on (a,b) whose derivative f ′ : (a,b)→ R is bounded on (a,b) , i.e.
‖ f ′‖

∞
:= sup

t∈(a,b)
| f ′(t)|< ∞. Then, one has the integral inequality

∣∣∣∣∣∣ f (x)− 1
b−a

b∫
a

f (t)dt

∣∣∣∣∣∣≤
1

4
+

(
x− a+b

2

)2

(b−a)2

(b−a)
∥∥ f ′
∥∥

∞
,

for all x ∈ [a,b]. The constant 1
4 is the best possible.

Applications of Ostrowski inequality can be found in quadrature, probability, and optimization theory, as well as in information, statistics,
and integral operator theory. Until now, numerous scholarly articles and books regarding Ostrowski inequalities and their various applications
have been published. For new results, the researchers examined refinements, counterparts and generalizations of classical Ostrowski
inequality, and new Ostrowski-type inequalities under various assumptions for the functions. For example, Dragomir and Wang gave
Ostrowski type results for functions whose first derivatives are elements of different Lebesgue spaces in [11] and [12]. Moreover, Barnett ve
Dragomir [3] established an Ostrowski type inequality for double integrals. After that, Ostrowski type inequalities for functions whose
partial derivatives are elements of Lebesgue p-norm were obtained by Dragomir et al. in [13].
There are problems where any-order derivatives of functions are required. Researchers working with such problems focused on Ostrowski
type inequalities for higher-order differentiable functions. For illustrate, some mathematicians derived different results of Ostrowski type
based on mappings whose higher-order derivatives are bounded ([23] and [2]). What’s more, Ostrowski type inequalities for higher-order
differentiable functions and their applications are presented by Cerone et al. in [7]. In addition, some researchers developed generalized
integral inequalities for functions whose derivatives of any order belong to the p-norm or the infinite norm in [37] and [39]. In [18], Erden
et al. improved weighted versions of inequalities involving higher-order derivatives, and they gave applications for moments of random
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demir2@gmail.com (C. Demir)



Konuralp Journal of Mathematics 63

variables using these inequalities. Also, some mathematicians examined the relationship between the real value and the approximate value
of an integral with effective quadrature formulas that arise when investigating inequalities given for higher order derivatives ([26], [32]
and [21]). In addition to all these studies, Ostrowski-type results for functions of two variables whose higher-order partial derivatives are
bounded also worked ([8], [25] and [38]).
Another important issue within the scope of the article is Riemann-Liouville fractional integrals. It is important to be reminded definitions of
Riemann-Liouville fractional integrals for one and two variables functions.

Definition 1.2. Assume that f ∈ L1[a,b]. The Riemann-Liouville integrals Jα
a+ f and Jα

b− f of order α > 0 with a≥ 0 are defined by

Jα
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt, x > a

and

Jα
b− f (x) =

1
Γ(α)

∫ b

x
(t− x)α−1 f (t)dt, x < b

respectively. Here, Γ(α) is the Gamma function and J0
a+ f (x) = J0

b− f (x) = f (x).

For more detailed information about fractional integrals, you can refer to the fındamental books written in this field ([24], [30]). It should be
noted that Hermite-Hadamard type inequalities involving Riemann-Liouville fractional integrals are firstly given by Sarikaya et al. in [33].
In addition, Dragomir attained Ostrowski-type inequalities for functions of bounded variation, Hölder continuous functions, Lipschitzian
functions, and absolutely continuous functions belonging to various Lebesgue norm spaces by means of identities equal to the sum of the
right- and left-sided Riemann-Liouville integrals in [14]-[16]. Dragomir also provided some Ostrowski and trapezoid type inequalities for the
Riemann-Liouville fractional integrals of absolutely continuous functions by using bounded derivatives in [17]. Whereupon, Montgomery
identity involving Riemann-Liouville fractional integrals and related Ostrowski type inequalities presented by Aglić Aljinović in [1]. In [31],
Qayyum et al. provided extended Ostrowski type inequalities including Rieamnn-Liouville fractional integrals for higher-order derivatives.
For more detailed studies on integral inequalities related to fractional calculus, the articles such as [22], [27], and [35] in the references can
also be consulted
Now, we give the definitions Riemann-Liouville fractional integrals of two variable functions:

Definition 1.3. [34] Let f ∈ L1([a,b]× [c,d]). The Riemann-Liouville fractional integrals Jα,β
a+,c+, Jα,β

a+,d−, Jα,β
b−,c+ and Jα,β

b−,d− are defined by

Jα,β
a+,c+ f (x,y) =

1
Γ(α)Γ(β )

x∫
a

y∫
c

(x− t)α−1 (y− s)β−1 f (t,s)dsdt, x > a, y > c,

Jα,β
a+,d− f (x,y) =

1
Γ(α)Γ(β )

x∫
a

d∫
y

(x− t)α−1 (s− y)β−1 f (t,s)dsdt, x > a, y < d,

Jα,β
b−,c+ f (x,y) =

1
Γ(α)Γ(β )

b∫
x

y∫
c

(t− x)α−1 (y− s)β−1 f (t,s)dsdt, x < b, y > c,

and

Jα,β
b−,d− f (x,y) =

1
Γ(α)Γ(β )

b∫
x

d∫
y

(t− x)α−1 (s− y)β−1 f (t,s)dsdt, x < b, y < d.

Hermite-Hadamard inequality and Ostrowski inequality for fractional integrals of two variable functions are obtained in [34] and [28],
respectively. Recently, Erden et al. [19] provided some Ostrowski type inequalities including Riemann-Liouville fractional integrals
for functions in class of functions Lp, L∞ and L1, respectively. There are several papers on fractional Hermite-Hadamard and fractional
Ostrowski type inequalities for two variable functions, you can find some of them in the references. For example, Sarıkaya developed
Ostrowski type results involving Riemann-Liouville fractional integrals by using co-ordinated convex functions in [36].
We also recall functions of bounded variation with two variables to present a more understandable article.Mappings of bounded variation
with two variables are defined as follows:

Definition 1.4. [9] Assume that f (x,y) is defined over the rectangle Q = [a,b]× [c,d]. Let P be a partition of Q with

P : a = x0 < x1 < ... < xn = b, and c = y0 < y1 < ... < ym = d;

and for all i, j let

∆11g(xi,y j) = g(xi−1,y j−1)−g(xi−1,y j)−g(xi,y j−1)+g(xi,y j).

The function f (x,y) is said to be of bounded variation if the sum

n−1

∑
i=0

m−1

∑
j=0

∣∣∆11 f (xi,y j)
∣∣

is bounded for all nets.
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Therefore, one can define the concept of total variation of a function of variables, as follows:

Let f be of bounded variation on Q = [a,b]× [c,d], and let ∑(P) denote the sum
n
∑

i=1

m
∑

j=1

∣∣∆11 f (xi,y j)
∣∣ corresponding to the partition P of Q.

The number

∨
Q
( f ) :=

d∨
c

b∨
a
( f ) := sup

{
∑(P) : P ∈ P(Q)

}
,

is called the total variation of f on Q.
There are many of papers on inequalities for functions of bounded variation of one variable, the cornerstone article that can be cited as an
example about this topic is the work done by Dragomir [10]. There are also some paper on inequalities for functions of bounded variation
with two variables ([4]-[6]). However there is a few papers fractional integral inequalities for functions of bounded variation with two
variables. As an example, Erden et al. presented recent fractional Ostrowski and Trapezoid type integral inequalities by using functions of
bounded variation with two variables in [20].
In this paper, Ostrowski type fractional integral inequalities for two variables functions that have higher order partial derivatives will be
examined. The fractional integral identities will be first established by means of higher-order derivatives. By integration by parts and
elementary analysis operations will be used to establish identities involving Riemann-Liouville fractional integrals. After that, the inequalities
involving fractional integrals for three different classes of functions consisting of bounded, bounded variation and L1 space will be given by
using equalities obtained in section 2.

2. Some Identities for Double Integrals

This section will present the identities needed to obtain the main results. First of all, some notations will be defined to make the expressions
more understandable as follows.

F(x, t,y,s) :=
∂ n+m f (t,s)

∂ tn∂ sm − ∂ n+m f (t,y)
∂ tn∂ym − ∂ n+m f (x,s)

∂xn∂ sm +
∂ n+m f (x,y)

∂xn∂ym , (2.1)

J ( f ) = (−1)n+m Jα,β
b−,d− f (a,c)+(−1)n Jα,β

b−c+ f (a,d)+(−1)m Jα,β
a+,d− f (b,c)+ Jα,β

a+,c+ f (b,d), (2.2)

Mn,m( f ) =
n−1

∑
k=0

m−1

∑
j=0

(b−a)k+α (d− c) j+β

Γ(k+α +1)Γ( j+β +1)

[
∂ k+ j f (a,c)

∂ tk∂ s j +(−1)n+k ∂ k+ j f (b,c)
∂ tk∂ s j +(−1)m+ j ∂ k+ j f (a,d)

∂ tk∂ s j +(−1)m+m+k+ j ∂ k+ j f (b,d)
∂ tk∂ s j

]
, (2.3)

Nn,m( f ) =
m−1

∑
j=0

(d− c) j+β

Γ( j+β +1)

[
(−1)n+m+ j Jα

b−
∂ j f (a,d)

∂ s j +(−1)n Jα
b−

∂ j f (a,c)
∂ s j +(−1)m+ j Jα

a+
∂ j f (b,d)

∂ s j + Jα
a+

∂ j f (b,c)
∂ s j

]

+
n−1

∑
k=0

(b−a)k+α

Γ(k+α +1)

[
(−1)n+m+k Jβ

d−
∂ k f (b,c)

∂ tk +(−1)n+k Jβ

c+
∂ k f (b,d)

∂ tk +(−1)m Jβ

d−
∂ k f (a,c)

∂ tk + Jβ

c+
∂ k f (a,d)

∂ tk

]
,(2.4)

Pn,m( f ) =
2(b−a)n+α

Γ(n+α +1)
×

m−1

∑
j=0

(d− c) j+β

Γ( j+β +1)

[
(−1)m+ j ∂ n+ j f (x,d)

∂xn∂ s j +
∂ n+ j f (x,c)

∂xn∂ s j

]

+
2(d− c)m+β

Γ(m+β +1)

n−1

∑
k=0

(b−a)k+α

Γ(k+α +1)

[
(−1)n+k ∂ k+m f (b,y)

∂ tk∂ym +
∂ k+m f (a,y)

∂ tk∂ym

]
(2.5)

and

L( f ) =
4(b−a)n+α

Γ(n+α +1)
(d− c)m+β

Γ(m+β +1)
∂ n+m f (x,y)

∂xn∂ym − 2(d− c)m+β

Γ(m+β +1)

(
(−1)n Jα

b−
∂ m f (a,y)

∂ym + Jα
a+

∂ m f (b,y)
∂ym

)
(2.6)

− 2(b−a)n+α

Γ(n+α +1)

(
(−1)m Jβ

d−
∂ n f (x,c)

∂xn + Jβ

c+
∂ n f (x,d)

∂xn

)
.

It is obtained two double integral identities involving Riemann-Liouville fractional integrals as follows. These equalities are the main
material of inequalities developed throughout the article.

Lemma 2.1. . Let f : [a,b]× [c,d] =: ∆⊂ R2→ R be an absolutely continuous function such that the partial derivatives ∂ k+l f (t,s)
∂ tk∂ sl exists

and are continuous on ∆ for k = 0,1,2, ...,n, l = 0,1,2, ...,m with n,m ∈ N+. Then, for any (x,y) ∈ ∆, we have

1
Γ(n+α)Γ(m+β )


b∫

a

d∫
c

[
(t−a)n+α−1 +(b− t)n+α−1

]
×
[
(s− c)m+β−1 +(d− s)m+β−1

]
F(x, t,y,s)dsdt

}
= J ( f )+Mk, j( f )−Nk, j( f )+Pk, j( f )+L( f ) (2.7)

where F(x, t,y,s), J ( f ), Mk, j( f ), Nk, j( f ), Pk, j( f ) and L( f ) are defined as in (2.1)-(2.6), respectively.
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Proof. There are four different integrals that need to be calculated. For the first integrals, by the definition of F(x, t,y,s) and fundamental
analysis operations, it is easy to see that

b∫
a

d∫
c

(t−a)n+α−1 (s− c)m+β−1

Γ(n+α)Γ(m+β )
F(x, t,y,s)dsdt =

b∫
a

d∫
c

(t−a)n+α−1 (s− c)m+β−1

Γ(n+α)Γ(m+β )

∂ n+m f (t,s)
∂ tn∂ sm dsdt (2.8)

−
b∫

a

(t−a)n+α−1

Γ(n+α)

∂ n+m f (t,y)
∂ tn∂ym dt

 d∫
c

(s− c)m+β−1

Γ(m+β )
ds


−

 b∫
a

(t−a)n+α−1

Γ(n+α)
dt

 d∫
c

(s− c)m+β−1

Γ(m+β )

∂ n+m f (x,s)
∂xn∂ sm ds

+
∂ n+m f (x,y)

∂xn∂ym

 b∫
a

(t−a)n+α−1

Γ(n+α)
dt

 d∫
c

(s− c)m+β−1

Γ(m+β )
ds

 .

It is observed that

1
Γ(n+α)

b∫
a

(t−a)n+α−1 ∂ n+m f (t,y)
∂ tn∂ym dt = (−1)n Jα

b−
∂ m f (a,y)

∂ym −
n−1

∑
k=0

(−1)n+k (b−a)k+α

Γ(k+α +1)
∂ k+m f (b,y)

∂ tk∂ym ,

1
Γ(m+β )

d∫
c

(s− c)m+β−1 ∂ n+m f (x,s)
∂xn∂ sm ds = (−1)m Jβ

d−
∂ n f (x,c)

∂xn −
m−1

∑
j=0

(−1)m+ j (d− c) j+β

Γ( j+β +1)
∂ n+ j f (x,d)

∂xn∂ s j

and
b∫

a

d∫
c

(t−a)n+α−1

Γ(n+α)

(s− c)m+β−1

Γ(m+β )

∂ n+m f (t,s)
∂ tn∂ sm dsdt =

b∫
a

(t−a)n+α−1

Γ(n+α)

 d∫
c

(s− c)m+β−1

Γ(m+β )

∂ n+m f (t,s)
∂ tn∂ sm ds

dt

=
(−1)m

Γ(β )

d∫
c

(s− c)β−1

 b∫
a

(t−a)n+α−1

Γ(n+α)

∂ n f (t,s)
∂ tn dt

ds

−
m−1

∑
j=0

(−1)m+ j (d− c) j+β

Γ( j+β +1)

b∫
a

(t−a)n+α−1

Γ(n+α)

∂ n+ j f (t,d)
∂ tn∂ s j dt

=
(−1)n+m

Γ(α)Γ(β )

b∫
a

d∫
c

(t−a)α−1 (s− c)β−1 f (t,s)dsdt

−
n−1

∑
k=0

(−1)n+k (b−a)k+α

Γ(k+α +1)
(−1)m

Γ(β )

d∫
c

(s− c)β−1 ∂ k f (b,s)
∂ tk ds

−
m−1

∑
j=0

(−1)m+ j (d− c) j+β

Γ( j+β +1)
(−1)n

Γ(α)

b∫
a

(t−a)α−1 ∂ j f (t,d)
∂ s j dt

+
n−1

∑
k=0

m−1

∑
j=0

(−1)n+m+k+ j (b−a)k+α (d− c) j+β

Γ(k+α +1)Γ( j+β +1)
∂ k+ j f (b,d)

∂ tk∂ s j .

Substituting the results of the above integrals in (2.8), owing to the definitions of Riemann Liouville fractional integrals, it is found that

b∫
a

d∫
c

(t−a)n+α−1 (s− c)m+β−1

Γ(n+α)Γ(m+β )
F(x, t,y,s)dsdt = (−1)n+m Jα,β

b−d− f (a,c)+
n−1

∑
k=0

m−1

∑
j=0

(−1)n+m+k+ j (b−a)k+α (d− c)β+ j

Γ(k+α +1)Γ(β + j+1)
∂ k+ j f (b,d)

∂ tk∂ s j

−
m−1

∑
j=0

(−1)m+n+ j (d− c)β+ j

Γ(β + j+1)
Jα

b−

(
∂ j f (a,d)

∂ s j

)

−
n−1

∑
k=0

(−1)m+n+k (b−a)k+α

Γ(k+α +1)
Jβ

d−

(
∂ k f (b,c)

∂ tk

)

− (d− c)m+β

Γ(m+β +1)

{
(−1)n Jα

b−

(
∂ m f (a,y)

∂ym

)
−

n−1

∑
k=0

(−1)n+k (b−a)k+α

Γ(k+α +1)
∂ k+m f (b,y)

∂ tk∂ym

}

− (b−a)n+α

Γ(n+α +1)

{
(−1)m Jβ

d−

(
∂ n f (x,c)

∂xn

)
−

m−1

∑
j=0

(−1)m+ j (d− c)β+ j

Γ(β + j+1)
∂ n+ j f (x,d)

∂xn∂ s j

}

+
(b−a)n+α

Γ(n+α +1)
(d− c)m+β

Γ(m+β +1)
∂ n+m f (x,y)

∂xn∂ym .
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If we similarly observe the other integrals and later we add all these identities side by side, then the desired equality can be attained.

Remark 2.2. Under the same assumption of Lemma 2.1 with n = m = 0, because the sum symbols disappear and n = m = 0 must be written
in the remaining expressions, one has the identity

1
Γ(n+α)Γ(m+β )


b∫

a

d∫
c

[
(t−a)n+α−1 +(b− t)n+α−1

]
×
[
(s− c)m+β−1 +(d− s)m+β−1

]
F(x, t,y,s)dsdt

 (2.9)

=
∣∣∣Jα,β

b−,d− f (a,c)+ Jα,β
b−,c+ f (a,d)+ Jα,β

a+,d− f (b,c)+ Jα,β
a+,c+− f (b,d) −2

(d− c)β

Γ(β +1)
[
Jα

b− f (a,y)+ Jα
a+ f (b,y)

]
−2

(b−a)α

Γ(α +1)

[
Jβ

d−, f (x,c)+ Jβ

c+, f (x,d)
]
+4

(b−a)α (d− c)β

Γ(α +1)Γ(β +1)
f (x,y)

∣∣∣∣∣
which was proved Erden et al. in [20].

Lemma 2.3. Let f : [a,b]× [c,d] =: ∆⊂ R2→ R be an absolutely continuous function such that the partial derivatives ∂ k+l f (t,s)
∂ tk∂ sl exists and

are continuous on ∆ for k = 0,1,2, ...,n+1, l = 0,1,2, ...,m+1 with n,m ∈ N+. Then, for any (x,y) ∈ ∆, we have

1
Γ(n+α)Γ(m+β )


b∫

a

d∫
c

[
(t−a)n+α−1 +(b− t)n+α−1

]
×
[
(s− c)m+β−1 +(d− s)m+β−1

] t∫
x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu

dsdt


= J ( f )+Mk, j( f )−Nk, j( f )+Pk, j( f )+L( f ) (2.10)

where J ( f ), Mk, j( f ), Nk, j( f ), Pk, j( f ) and L( f ) are defined as in (2.2)-(2.6), respectively.

Proof. Owing to the conditions of the Theorem, it is easy to see that

t∫
x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu =

∂ n+m f (t,s)
∂ tn∂ sm − ∂ n+m f (t,y)

∂ tn∂ym − ∂ n+m f (x,s)
∂xn∂ sm +

∂ n+m f (x,y)
∂xn∂ym

= : F(x, t,y,s).

The proof of this Lemma follows the same strategy which was used in the proof of the previous Lemma by considering the above equality.

Remark 2.4. Under the same assumption of Lemma 2.3 with n = m = 0, because the sum symbols disappear and n = m = 0 must be written
in the remaining expressions, one has the identity

1
Γ(n+α)Γ(m+β )


b∫

a

d∫
c

[
(t−a)n+α−1 +(b− t)n+α−1

]
×
[
(s− c)m+β−1 +(d− s)m+β−1

] t∫
x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu

dsdt


=

∣∣∣Jα,β
b−,d− f (a,c)+ Jα,β

b−,c+ f (a,d)+ Jα,β
a+,d− f (b,c)+ Jα,β

a+,c+− f (b,d) −2
(d− c)β

Γ(β +1)
[
Jα

b− f (a,y)+ Jα
a+ f (b,y)

]
(2.11)

−2
(b−a)α

Γ(α +1)

[
Jβ

d−, f (x,c)+ Jβ

c+, f (x,d)
]
+4

(b−a)α (d− c)β

Γ(α +1)Γ(β +1)
f (x,y)

∣∣∣∣∣
which was proved Erden et al. in [19].

3. Double Integral Inequalities for Functions of Bounded Variations

In this section, we present new Ostrowski type inequalities involving Riemann-Liouville Fractional integrals for functions of two variables
with bounded variation.

Theorem 3.1. Suppose that all the assumptions of Lemma 2.1 hold. If ∂ n+m f (t,s)
∂ tn∂ sm is of bounded variation on ∆, for any (x,y) ∈ ∆, then we

have the inequalities

∣∣J ( f )+Mk, j( f )−Nk, j( f )+Pk, j( f )+L( f )
∣∣ ≤ 1

Γ(n+α +1)Γ(m+β +1)
×

{
An(x)Cm(y)

x∨
a

y∨
c

(
f (n+m)

)
+An(x)Dm(y)

x∨
a

d∨
y

(
f (n+m)

)

+Bn(x)Cm(y)
b∨
x

y∨
c

(
f (n+m)

)
+Bn(x)Dm(y)

b∨
x

d∨
y

(
f (n+m)

)}
(3.1)

≤ 1
Γ(n+α +1)Γ(m+β +1)

[
(b−a)n+α +

∣∣(x−a)n+α − (b− x)n+α
∣∣]

×
[
(d− c)m+β +

∣∣∣(y− c)m+β − (d− y)m+β
∣∣∣] b∨

a

d∨
c

(
f (n+m)

)
where An(x), Bn(x), Cm(y) and Dm(y) are defined by

An(x) = (b−a)n+α − (b− x)n+α +(x−a)n+α ,
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Bn(x) = (b−a)n+α − (x−a)n+α +(b− x)n+α ,

Cm(y) = (d− c)m+β − (d− y)m+β +(y− c)m+β

and

Dm(y) = (d− c)m+β − (y− c)m+β +(d− y)m+β ,

respectively. Here, J ( f ), Mk, j( f ), Nk, j( f ), Pk, j( f ) and L( f ) are also defined as in (2.2)-(2.6).

Proof. If we take absolute value of both sides of the equality (2.7), owing to the well-known triangle inequality, we possess

∣∣J ( f )+Mk, j( f )−N j( f )+Pk( f )+L( f )
∣∣ ≤ 1

Γ(n+α)Γ(m+β )


b∫

a

d∫
c

[
(t−a)n+α−1 (s− c)m+β−1 (3.2)

(t−a)n+α−1 (d− s)m+β−1 +(b− t)n+α−1 (s− c)m+β−1

+(b− t)n+α−1 (d− s)m+β−1
]
|F(x, t,y,s)|dsdt

}
for any (x,y) ∈ ∆.

Seeing that ∂ n+m f (t,s)
∂ tn∂ sm is of bounded variation on [a,x]× [c,y] , it follows that

|F(x, t,y,s)| =

∣∣∣∣∂ n+m f (t,s)
∂ tn∂ sm − ∂ n+m f (t,y)

∂ tn∂ym − ∂ n+m f (x,s)
∂xn∂ sm +

∂ n+m f (x,y)
∂xn∂ym

∣∣∣∣
≤

x∨
a

y∨
c

(
f (n+m)

)
,

and similar inequalities can be formulated for other intervals. In this case, if the first integral in the right hand side of the statement (3.2) is
calculated by taking into account the above inequality, then we can easily conclude that

b∫
a

d∫
c

[
(t−a)n+α−1 (s− c)m+β−1 |F(x, t,y,s)|dsdt ≤

x∨
a

y∨
c

(
f (n+m)

) x∫
a

y∫
c

(t−a)n+α−1 (s− c)m+β−1 dsdt

+
x∨
a

d∨
y

(
f (n+m)

) x∫
a

d∫
y

(t−a)n+α−1 (s− c)m+β−1 dsdt

+
b∨
x

y∨
c

(
f (n+m)

) b∫
x

y∫
c

(t−a)n+α−1 (s− c)m+β−1 dsdt

+
b∨
x

d∨
y

(
f (n+m)

) b∫
x

d∫
y

(t−a)n+α−1 (s− c)m+β−1 dsdt.

And calculating the above four integrals, then one has the result

b∫
a

d∫
c

[
(t−a)n+α−1 (s− c)m+β−1 |F(x, t,y,s)|dsdt ≤ (x−a)n+α

n+α

(y− c)m+β

m+β

x∨
a

y∨
c

(
f (n+m)

)

+
(x−a)n+α

n+α

(d− c)m+β − (y− c)m+β

m+β

x∨
a

d∨
y

(
f (n+m)

)

+
(b−a)n+α − (x−a)n+α

n+α

(y− c)m+β

m+β

b∨
x

y∨
c

(
f (n+m)

)
+
(b−a)n+α − (x−a)n+α

n+α

(d− c)m+β − (y− c)m+β

m+β

b∨
x

d∨
y

(
f (n+m)

)
.

Should the other integrals are also observed by taking account of the fact that f : ∆→R is of bounded variation on [a,x]× [y,d] , [x,b]× [c,y]
and [x,b]× [y,d] , one can readily attain the first inequality in (3.1). The second inequality is obvious from the facts that

max{ac,ad,bc,bd} = max{a,b}max{c,d} , (3.3)

max{an,bn} = (max{a,b})n =

(
a+b+ |a−b|

2

)n

for a,b,c,d,n > 0. This completes the proof.
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Remark 3.2. If we choose n = m = 0 in the inequality (3.1), then, for any (x,y) ∈ ∆, we have∣∣∣Jα,β
b−,d− f (a,c)+ Jα,β

b−,c+ f (a,d)+ Jα,β
a+,d− f (b,c)+ Jα,β

a+,c+− f (b,d) −2
(d− c)β

Γ(β +1)
[
Jα

b− f (a,y)+ Jα
a+ f (b,y)

]
−2

(b−a)α

Γ(α +1)

[
Jβ

d−, f (x,c)+ Jβ

c+, f (x,d)
]
+4

(b−a)α (d− c)β

Γ(α +1)Γ(β +1)
f (x,y)

∣∣∣∣∣
≤

{
A0(x)C0(y)

x∨
a

y∨
c
( f )+A0(x)D0(y)

x∨
a

d∨
y
( f )+B0(x)C0(y)

b∨
x

y∨
c
( f )+B0(x)D0(y)

b∨
x

d∨
y
( f )

}

≤ 1
Γ(α +1)Γ(β +1)

[
(b−a)α +

∣∣(x−a)α − (b− x)α
∣∣]×[(d− c)β +

∣∣∣(y− c)β − (d− y)β
∣∣∣] b∨

a

d∨
c
( f )

which was given by Erden et al. in [20].

Corollary 3.3. Under the assumptions of Theorem 3.1 with x = a+b
2 and y = c+d

2 , we have the Midpoint inequality∣∣∣∣J ( f )+Mk, j( f )−Nk, j( f )+Pk, j

(
f
(

a+b
2

,
c+d

2

))
+L

(
f
(

a+b
2

,
c+d

2

))∣∣∣∣≤ (b−a)n+α (d− c)m+β

Γ(n+α +1)Γ(m+β +1)

b∨
a

d∨
c

(
f (n+m)

)
where Pk, j

(
f
(

a+b
2 , c+d

2

))
and L

(
f
(

a+b
2 , c+d

2

))
are defined by

Pk, j

(
f
(

a+b
2

,
c+d

2

))
=

2(b−a)n+α

Γ(n+α +1)

m−1

∑
j=0

(d− c) j+β

Γ( j+β +1)

(−1)m+ j
∂ n+ j f

(
a+b

2 ,d
)

∂ tn∂ s j +
∂ n+ j f

(
a+b

2 ,c
)

∂ tn∂ s j

 (3.4)

+
2(d− c)m+β

Γ(m+β +1)

n−1

∑
k=0

(b−a)k+α

Γ(k+α +1)

(−1)n+k
∂ k+m f

(
b, c+d

2

)
∂ tk∂ sm +

∂ k+m f
(

a, c+d
2

)
∂ tk∂ sm


and

L
(

f
(

a+b
2

,
c+d

2

))
=

4(b−a)n+α

Γ(n+α +1)
(d− c)m+β

Γ(m+β +1)

∂ n+m f
(

a+b
2 , c+d

2

)
∂ tn∂ sm − 2(d− c)m+β

Γ(m+β +1)

(−1)n Jα
b−

∂ m f
(

a, c+d
2

)
∂ sm + Jα

a+

∂ m f
(

b, c+d
2

)
∂ sm


− 2(b−a)n+α

Γ(n+α +1)

(−1)m Jβ

d−

∂ n f
(

a+b
2 ,c

)
∂ tn + Jβ

c+

∂ n f
(

a+b
2 ,d

)
∂ tn

 , (3.5)

respectively. Also, J ( f ), Mk, j( f ), Nk, j( f ) are defined as in (2.2), (2.3), (2.4), respectively.

By using similar methods, special results involving Riemann-Liouville fractional integals for partial derivatives of different orders and their
midpoint versions can be examined.

4. Double Integral Inequalities for L∞ [a,b]

We now examine how inequalities will come out when functions whose higher-order partial derivatives are bounded are considered.

Theorem 4.1. Suppose that all the assumptions of Lemma 2.3 hold. If the partial derivative of order n+m+2 of f exists and is bounded,
i.e.,∥∥∥ f (n+m+2)

∥∥∥
∞
= sup

(u,v)∈(a,b)×(c,d)

∣∣∣∣∂ n+m+2 f (u,v)
∂un+1∂vm+1

∣∣∣∣< ∞,

then, for any (x,y) ∈ ∆, one has the inequalities∣∣J ( f )+Mk, j( f )−Nk, j( f )+Pk, j( f )+L( f )
∣∣ ≤ 1

Γ(n+α +2)Γ(m+β +2)
×
{

Gα (a,b,x;n)Gβ (c,d,y;m)
∥∥∥ f (n+m+2)

∥∥∥
[a,x]×[c,y],∞

+Gα (a,b,x;n)Hβ (c,d,y;m)
∥∥∥ f (n+m+2)

∥∥∥
[a,x]×[y,d],∞

+Hα (a,b,x;n)Gβ (c,d,y;m)
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[c,y],∞

(4.1)

+Hα (a,b,x;n)Hβ (c,d,y;m)
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[y,d],∞

}
≤ 1

Γ(n+α +2)Γ(m+β +2)

∥∥∥ f (n+m+2)
∥∥∥
[a,b]×[c,d],∞[

(n+α−1)(b−a)n+α+1 +2(b− x)n+α+1 +2(x−a)n+α+1
]

×
[
(m+β −1)(d− c)m+β+1 +2(d− y)m+β+1 +2(y− c)m+β+1

]
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where

Gα (a,b,x;n) = (x−a)n+α+1 +(b− x)n+α+1 +(b−a)n+α [(n+α)(x−a)− (b− x)] ,

Hα (a,b,x;n) = (x−a)n+α+1 +(b− x)n+α+1 +(b−a)n+α [(n+α)(b− x)− (x−a)] ,

Gβ (c,d,y;m) = (y− c)m+β+1 +(d− y)m+β+1 +(d− c)m+β [(m+β )(y− c)− (d− y)] ,

and

Hβ (c,d,y;m) = (y− c)m+β+1 +(d− y)m+β+1 +(d− c)m+β [(m+β )(d− y)− (y− c)] .

Here, J ( f ), Mk, j( f ), Nk, j( f ), Pk, j( f ) and L( f ) are defined as in (2.2)-(2.6), respectively.

Proof. Taking modulus of both sides of the equality (2.10), on account of the triangle inequality, we find that

∣∣J ( f )+Mk, j( f )−N j( f )+Pk( f )+L( f )
∣∣ ≤ 1

Γ(n+α)Γ(m+β )


b∫

a

d∫
c

[
(t−a)n+α−1 +(b− t)n+α−1

]
(4.2)

×
[
(s− c)m+β−1 +(d− s)m+β−1

]∣∣∣∣∣∣
t∫

x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu

∣∣∣∣∣∣dsdt.

If the bounded function property is applied to each subinterval by taking into account the assumption of the function f in the theorem for the
first integral that needs to be calculated, then one has

b∫
a

d∫
c

(t−a)n+α−1 (s− c)m+β−1

∣∣∣∣∣∣
t∫

x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu

∣∣∣∣∣∣dsdt ≤
∥∥∥ f (n+m+2)

∥∥∥
[a,x]×[c,y],∞

x∫
a

y∫
c

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt

+
∥∥∥ f (n+m+2)

∥∥∥
[a,x]×[y,d],∞

x∫
a

d∫
y

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt

+
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[c,y],∞

b∫
x

y∫
c

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt

+
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[y,d],∞

b∫
x

d∫
y

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt

(4.3)

for any (x,y) ∈ ∆. Calculating integals in the right hand of the the inequality (4.3), it follows that

x∫
a

y∫
c

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt =
(x−a)n+α+1

(n+α)(n+α +1)
(y− c)m+β+1

(m+β )(m+β +1)
,

x∫
a

d∫
y

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt =
(x−a)n+α+1

(n+α)(n+α +1)
×

[
(d− c)m+β [(m+β )(d− y)− (y− c)]

(m+β )(m+β +1)
+

(y− c)m+β+1

(m+β )(m+β +1)

]
,

b∫
x

y∫
c

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt =
(y− c)m+β+1

(m+β )(m+β +1)
×

[
(b−a)n+α [(n+α)(b− x)− (x−a)]

(n+α)(n+α +1)
+

(x−a)n+α+1

(n+α)(n+α +1)

]

and

b∫
x

d∫
y

(t−a)n+α−1 (s− c)m+β−1 |t− x| |s− y|dsdt =

[
(b−a)n+α [(n+α)(b− x)− (x−a)]

(n+α)(n+α +1)
+

(x−a)n+α+1

(n+α)(n+α +1)

]

×

[
(d− c)m+β [(m+β )(d− y)− (y− c)]

(m+β )(m+β +1)
+

(y− c)m+β+1

(m+β )(m+β +1)

]

If results of these four integrals are substituted in the inequality (4.3), then the exact expression of the inequality (4.3) is found. If the other
three integrals deriving from the expression (4.2) are calculated by using similar methods, the desired inequalities (4.1) can be obtained.
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Remark 4.2. If we choose n = m = 0 in the inequali (3.1), then, for any (x,y) ∈ ∆, we have∣∣∣Jα,β
b−,d− f (a,c)+ Jα,β

b−,c+ f (a,d)+ Jα,β
a+,d− f (b,c)+ Jα,β

a+,c+− f (b,d) −2
(d− c)β

Γ(β +1)
[
Jα

b− f (a,y)+ Jα
a+ f (b,y)

]
−2

(b−a)α

Γ(α +1)

[
Jβ

d−, f (x,c)+ Jβ

c+, f (x,d)
]
+4

(b−a)α (d− c)β

Γ(α +1)Γ(β +1)
f (x,y)

∣∣∣∣∣
≤ 1

Γ(α +2)Γ(β +2)

{
Gα (a,b,x;0)Gβ (c,d,y;0)

∥∥∥ f (2)
∥∥∥
[a,x]×[c,y],∞

+Gα (a,b,x;0)Hβ (c,d,y;0)
∥∥∥ f (2)

∥∥∥
[a,x]×[y,d],∞

+Hα (a,b,x;0)Gβ (c,d,y;0)
∥∥∥ f (2)

∥∥∥
[x,b]×[c,y],∞

+Hα (a,b,x;0)Hβ (c,d,y;0)
∥∥∥ f (2)

∥∥∥
[x,b]×[y,d],∞

}
≤ 1

Γ(α +2)Γ(β +2)

[
(α−1)(b−a)α+1 +2(b− x)α+1 +2(x−a)α+1

]
×
[
(β −1)(d− c)β+1 +2(d− y)β+1 +2(y− c)β+1

]∥∥∥ f (2)
∥∥∥
[a,b]×[c,d],∞

which was provided Erden et al. in [19]. Here,
∥∥∥ f (2)

∥∥∥
∞

is defined by

∥∥∥ f (2)
∥∥∥

∞
= sup

(u,v)∈(a,b)×(c,d)

∣∣∣∣∂ 2 f (u,v)
∂u∂v

∣∣∣∣< ∞.

Corollary 4.3. Suppose that all the assumptions oftheorem 3.1 hold. If we take x = a+b
2 and y = c+d

2 , then we possess the midpoint
inequalities∣∣∣∣J ( f )+Mk, j( f )−Nk, j( f )+Pk, j

(
f
(

a+b
2

,
c+d

2

))
+L

(
f
(

a+b
2

,
c+d

2

))∣∣∣∣
≤ (b−a)n+α+1 (d− c)m+β+1

Γ(n+α +2)Γ(m+β +2)

[
1

2n+α
+

n+α−1
2

][
1

2m+β
+

m+β −1
2

]
×
{∥∥∥ f (n+m+2)

∥∥∥
[a, a+b

2 ]×[c, c+d
2 ],∞

+
∥∥∥ f (n+m+2)

∥∥∥
[a, a+b

2 ]×[ c+d
2 ,d],∞

+
∥∥∥ f (n+m+2)

∥∥∥
[ a+b

2 ,b]×[c, c+d
2 ],∞

+
∥∥∥ f (n+m+2)

∥∥∥
[ a+b

2 ,b]×[ c+d
2 ,d],∞

}
≤ 4

[
1

2n+α
+

n+α−1
2

][
1

2m+β
+

m+β −1
2

]
× (b−a)n+α+1 (d− c)m+β+1

Γ(n+α +2)Γ(m+β +2)

∥∥∥ f (n+m+2)
∥∥∥
[a,b]×[c,d],∞

where J ( f ), Mk, j( f ), Nk, j( f ), Pk, j

(
f
(

a+b
2 , c+d

2

))
and L

(
f
(

a+b
2 , c+d

2

))
are also defined as in (2.2), (2.3), (2.4), (3.4) and (3.5),

respectively.

5. Double Integral Inequalities for L1 [∆]

Some results based on fractional integrals for functions whose higher-order derivatives are elements of L1−norm are observed in this part.
Some special cases and midpoint versions of our main results are also given.

Theorem 5.1. Suppose that all the assumptions of Lemma 2.3 hold. If If the partial derivative of order n+m+2 of f exists and is element
of L1 [∆] , i.e.,

∥∥∥ f (n+m+2)
∥∥∥

1
=

b∫
a

d∫
c

∣∣∣∣∂ n+m+2 f (u,v)
∂un+1∂vm+1

∣∣∣∣dvdu < ∞

then, for any (x,y) ∈ ∆, we have the inequalities

∣∣J ( f )+Mk, j( f )−Nk, j( f )+Pk, j( f )+L( f )
∣∣ ≤ 1

Γ(n+α +1)Γ(m+β +1)

{
An(x)Cm(y)

∥∥∥ f (n+m+2)
∥∥∥
[a,x]×[c,y],1

(5.1)

+An(x)Dm(y)
∥∥∥ f (n+m+2)

∥∥∥
[a,x]×[y,d],1

+Bn(x)Cm(y)
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[c,y],1

+Bn(x)Dm(y)
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[y,d],1

}
≤

[
(b−a)n+α +

∣∣(x−a)n+α − (b− x)n+α
∣∣]

Γ(n+α +1)Γ(m+β +1)

×
[
(d− c)m+β +

∣∣∣(y− c)m+β − (d− y)m+β
∣∣∣]∥∥∥ f (n+m+2)

∥∥∥
[a,b]×[c,d],1

whereJ ( f ), Mk, j( f ), Nk, j( f ), Pk, j( f ) and L( f ) are defined as in (2.2)-(2.6), respectively.
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Proof. Taking modulus of both sides of the equality (??), due to the triangle inequality, we find that

∣∣J ( f )+Mk, j( f )−N j( f )+Pk( f )+L( f )
∣∣ ≤ 1

Γ(n+α)Γ(m+β )


b∫

a

d∫
c

[
(t−a)n+α−1 +(b− t)n+α−1

]
(5.2)

×
[
(s− c)m+β−1 +(d− s)m+β−1

]∣∣∣∣∣∣
t∫

x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu

∣∣∣∣∣∣dsdt.

Considering the first integral that needs to be calculated in the right hand side of the above inequality, seeing that the partial derivative of
order n+m+2 of f is element of L1 [∆] , it follows that

b∫
a

d∫
c

(t−a)n+α−1 (s− c)m+β−1

∣∣∣∣∣∣
t∫

x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu

∣∣∣∣∣∣dsdt ≤
∥∥∥ f (n+m+2)

∥∥∥
[a,x]×[c,y],1

x∫
a

y∫
c

(t−a)n+α−1 (s− c)m+β−1 dsdt

+
∥∥∥ f (n+m+2)

∥∥∥
[a,x]×[y,d],1

x∫
a

d∫
y

(t−a)n+α−1 (s− c)m+β−1 dsdt

+
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[c,y],1

b∫
x

y∫
c

(t−a)n+α−1 (s− c)m+β−1 dsdt

+
∥∥∥ f (n+m+2)

∥∥∥
[x,b]×[y,d],1

b∫
x

d∫
y

(t−a)n+α−1 (s− c)m+β−1 dsdt

for any (x,y) ∈ ∆.And so, we conclude that

b∫
a

d∫
c

(t−a)n+α−1 (s− c)m+β−1

∣∣∣∣∣∣
t∫

x

s∫
y

∂ n+m+2 f (u,v)
∂un+1∂vm+1 dvdu

∣∣∣∣∣∣dsdt ≤ (x−a)n+α

n+α

(y− c)m+β

m+β

∥∥∥ f (n+m+2)
∥∥∥
[a,x]×[c,y],1

+
(x−a)n+α

n+α

(d− c)m+β − (y− c)m+β

m+β

∥∥∥ f (n+m+2)
∥∥∥
[a,x]×[y,d],1

+
(b−a)n+α − (x−a)n+α

n+α

(y− c)m+β

m+β

∥∥∥ f (n+m+2)
∥∥∥
[x,b]×[c,y],1

+
(b−a)n+α − (x−a)n+α

n+α

(d− c)m+β − (y− c)m+β

m+β

∥∥∥ f (n+m+2)
∥∥∥
[x,b]×[y,d],1

.

In the same manner that we calculate the first integral, the other tree integrals that need to be calculated in the inequality (5.2) can be found.
If we substitute the results of these four integals in the inequality (5.2), the requaired expression (5.1) can be attained. The proof is thus
completed.

Remark 5.2. Taking n = m = 0 in the inequali (5.1), then, for any (x,y) ∈ ∆, one has the inequalities∣∣∣Jα,β
b−,d− f (a,c)+ Jα,β

b−,c+ f (a,d)+ Jα,β
a+,d− f (b,c)+ Jα,β

a+,c+− f (b,d) −2
(d− c)β

Γ(β +1)
[
Jα

b− f (a,y)+ Jα
a+ f (b,y)

]
(5.3)

−2
(b−a)α

Γ(α +1)

[
Jβ

d−, f (x,c)+ Jβ

c+, f (x,d)
]
+4

(b−a)α (d− c)β

Γ(α +1)Γ(β +1)
f (x,y)

∣∣∣∣∣
≤ 1

Γ(α +1)Γ(β +1)

{
A0(x)C0(y)

∥∥∥ f (2)
∥∥∥
[a,x]×[c,y],1

+A0(x)D0(y)
∥∥∥ f (2)

∥∥∥
[a,x]×[y,d],1

+B0(x)C0(y)
∥∥∥ f (2)

∥∥∥
[x,b]×[c,y],1

+B0(x)D0(y)
∥∥∥ f (2)

∥∥∥
[x,b]×[y,d],1

}
≤ (b−a)α (d− c)β

Γ(α +1)Γ(β +1)

∥∥∥ f (2)
∥∥∥
[a,b]×[c,d],1

where
∥∥∥ f (2)

∥∥∥
1

is defined by

∥∥∥ f (2)
∥∥∥

1
=

b∫
a

d∫
c

∣∣∣∣∂ 2 f (u,v)
∂u∂v

∣∣∣∣dvdu < ∞.

Corollary 5.3. Suppose that all the assumptions of Theorem 5.1 hold. If we choose x = a+b
2 and y = c+d

2 , we have the Midpoint inequality∣∣∣∣J ( f )+Mk, j( f )−Nk, j( f )+Pk, j

(
f
(

a+b
2

,
c+d

2

))
+L
(

f
(

a+b
2

,
c+d

2

))∣∣∣∣≤ (b−a)n+α (d− c)m+β

Γ(n+α +1)Γ(m+β +1)

∥∥∥ f (n+m+2)
∥∥∥
[a,b]×[c,d],1

(5.4)

where J ( f ), Mk, j( f ), Nk, j( f ), Pk, j

(
f
(

a+b
2 , c+d

2

))
and L

(
f
(

a+b
2 , c+d

2

))
are defined as in (2.2), (2.3), (2.4), (3.4) and (3.5), respectively.
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Remark 5.4. If we take x = a+b
2 and y = c+d

2 in the inequalities (5.3), then we possess

∣∣∣Jα,β
b−,d− f (a,c)+ Jα,β

b−,c+ f (a,d)+ Jα,β
a+,d− f (b,c)+ Jα,β

a+,c+− f (b,d) −2
(d− c)β

Γ(β +1)

[
Jα

b− f
(

a,
c+d

2

)
+ Jα

a+ f
(

b,
c+d

2

)]
−2

(b−a)α

Γ(α +1)

[
Jβ

d−, f
(

a+b
2

,c
)
+ Jβ

c+, f
(

a+b
2

,d
)]

+4
(b−a)α (d− c)β

Γ(α +1)Γ(β +1)
f
(

a+b
2

,
c+d

2

)∣∣∣∣∣
≤ (b−a)α (d− c)β

Γ(α +1)Γ(β +1)

∥∥∥ f (2)
∥∥∥
[a,b]×[c,d],1

.
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