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 

Abstract—Induction motors are frequently used in industrial 

processes. Failure of these machines may cause economic, quality 

and safety losses. In this paper, the mathematical methods used in 

detection of mechanical and electrical faults of these motors are 

reviewed together with theory and application examples on the 

current and vibration data which is acquired during performance 

tests of the motors followed by accelerated aging.  

 
Index Terms—Induction motor, fault detection, aging, signal 

processing 

1. INTRODUCTION 

NDUCTION motors are widely used electrical drives in  

industrial processes due to their wide power range, simple 

and rugged structure. When the motor ages or a fault occurs in 

the motors, these may cause losses in their efficiency, economic 

and safe operation of industrial processes. The faults can be 

categorized into as being mechanical or electrical faults. 

According to the statistical surveys performed on motors 

revealed that 41% of failures are resulted from bearing faults, 

37% of them are from stator faults, 10% is from rotor faults, 

and 12% are from other faults such as unbalanced phase supply, 

soft foot, asymmetries in the magnetic circuits etc. (1-7)  

 

    This paper addresses fault detection methods in induction 

motors together with theory and applications on experimental 

data acquired during performance test of the motors subjected 

to accelerated aging (6-7). Detection of eccentricity fault (7-9), 

bearing fault (10-18), and stator insulation fault (19-20) is 

considered. Applications of statistical methods, power spectral 

density analysis, coherence analysis, continuous and discrete 

wavelet transform, autoregressive modeling method, adaptive 

neuro-fuzzy inference system, artificial neural network is 

presented by means of the experimental data.  
   

2. MATHEMATICAL METHODS 

    This section includes mathematical methods used in signal 

analysis for fault detection and diagnosis studies. These are 

frequency domain methods, time-frequency/scale domain 

methods, stochastic methods, and soft computing methods. 
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2.1. FREQUENCY DOMAIN METHODS 

    Since different fault types generate different frequency 

spectrum distributions, the diagnosis results are based on 

frequency features of signals. Frequency content of a signal at 

frequency mf can be found by Fourier transform given as 

below (21-22) 

 

𝑋(𝑚∆𝑓) = ∑ 𝑥(𝑘∆𝑡) exp (−
𝑗2𝜋𝑘𝑚

𝑁
)

𝑁−1

𝑘=0
 (1) 

 

where N is the number of samples, f is the frequency 

resolution, m is integer number and t is the data-sampling 

interval. The auto-power spectral density (APSD) of x(t) is 

estimated as 

 

𝑆𝑥𝑥(𝑓) =
1

𝑁
|𝑋(𝑚∆𝑓)|2  ,     𝑓 = 𝑚∆𝑓 (2) 

 

    The cross power spectral density (CPSD) between x(t) and 

y(t) is similarly estimated. The statistical accuracy of the 

estimate in Equation (2) increases as the number of data points 

or the number of blocks of data increases. 

    The cause and effect relationship between two signals or the 

commonality between them is generally estimated using the 

coherence function. The coherence function is given by 

 

𝛾𝑥𝑦(𝑓) =
|𝑆𝑥𝑦(𝑓)|

√𝑆𝑥𝑥(𝑓) 𝑆𝑦𝑦(𝑓)
  ,     0 < 𝛾𝑥𝑦 < 1 (3) 

 

where Sxx and Syy are the APSD’s of x(t) and y(t), respectively, 

and Sxy is the CPSD between x(t) and y(t). A value of coherence 

close to unity indicates highly linear and close relationship 

between the two signals. 
   

2.2. TIME-FREQUENCY/SCALE DOMAIN METHODS 

    To find time localization of the frequency content of the 

signal short-time Fourier transform (STFT) can be used which 

is defined as (23-24) 

 

𝑆𝑇𝐹𝑇(𝜏, 𝑓) = ∫ 𝑥(𝑡) 𝑔(𝑡 − 𝜏) exp[−2𝜋𝑓𝑡]  𝑑𝑡
∞

−∞
. (4) 
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    In STFT, the signal x(t) is first windowed using different type 

of window functions g(t) such as triangular window, 

rectangular window, Gaussian window etc. centered at time 

location . Then Fourier Transform of resulting windowed 

signal is taken. This gives the STFT of signal for particular 

time. As window slides along time axis, so basically STFT 

maps input signal x(t) into two dimensional function in a time-

frequency plane with fixed resolution. 

 

    Wavelet transform can be used to separate the signal into 

frequency bands and to get variable resolution which is good 

time resolution for rapidly changing signals and good frequency 

resolution for slowly changing signals. The continuous wavelet 

transform is defined as 

 

𝑊𝑓(𝑎, 𝑏) = ∫ 𝑥(𝑡) 
𝑎,𝑏

(𝑡) 𝑑𝑡

∞

−∞

 (5) 

 

where  

 


𝑎,𝑏

(𝑡) =
1

√|𝑎|
  (

𝑡 − 𝑏

𝑎
)  ;       𝑎, 𝑏 ∈ 𝑅 ; 𝑎 ≠ 0 (6) 

 

 is called the mother wavelet. The dilation parameter a 

controls the scale or frequency of wavelet, and the translation 

parameter b controls the position of the wavelet in time. The 

parameters a and b are defined as 𝑎 = 𝑎0
𝑗
 , 𝑏 = 𝑛𝑏0𝑎0

𝑗
 where 

𝑛, 𝑗 ∈ 𝑍, 𝑎0 > 1, and 𝑏0 > 0, the Discrete Wavelet 

Transformation (DWT) is given as 

 

𝐷𝑊𝑇[𝑗, 𝑘] =
1

√𝑎0
𝑗

∑ 𝑥[𝑛]

𝑛

  [
𝑘 − 𝑛𝑏0𝑎0

𝑗

𝑎0
𝑗

]  
(7) 

 

    S. Mallat introduced an efficient algorithm to perform the 

DWT known as the Multi-Resolution Analysis (MRA). The 

MRA is similar to a two-channel sub-band coder used in high-

pass and low-pass filters, from which the original signal can be 

reconstructed. 

    The frequency decomposition of the signal is shown 

schematically (Fig.1).  The low-frequency sub-band is referred 

to as approximation ai and the high-frequency sub-band by 

detail di.  Thus, at the second stage the signal may be 

reconstructed as  

𝑆 = 𝑎2 + 𝑑1 + 𝑑2 (8) 

 

 

 

 

 

 

 

 

 

 

Fig.1. Signal decomposition at the second stage. 
   

2.3. STOCHASTIC METHODS 

    This section gives statistical methods and time series 

modeling methods. 
 

2.3. 1. STATISTICAL METHODS 

    Several statistical parameters, calculated in the time domain, 

are generally used to define average properties of machinery 

data.  The two basic parameters are the mean value  and the 

standard deviation .  For a given data set {xi} these are defined 

as follows (25): 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (9) 

 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 (10) 

 

where N is the number of the data points. For the Gaussian 

(normal) probability distribution, two parameters that reflect 

the departure from the normal distribution are skewness (c) and 

kurtosis (k).  These are calculated as follows. 

 

𝑐 =
[

1
𝑁

∑ (𝑥𝑖 − 𝜇)3𝑁
𝑖=1 ]

𝜎3
 

(11) 

 

𝑘 =
[

1
𝑁

∑ (𝑥𝑖 − 𝜇)4𝑁
𝑖=1 ]

𝜎4
 

(12) 

 

    For a perfect normal distribution, c is equal to zero.  A 

negative value is due to skewness towards lower values while a 

positive value indicates non-symmetry towards higher values.  

For small data sets, one often gets values that differ from zero.  

The kurtosis or flatness k, is very close to unity for a normal 

distribution.  These statistical parameters may be used to 

perform a quick check of the changes in the statistical behaviour 

of a signal. 
 

2.3. 2. TIME SERIES MODELING METHODS 

    In time series analysis the autoregressive (AR) modeling 

method is used commonly due its simplicity and ability to show 

sharp peaks in the frequency domain. The AR method establish 

the mathematical model for regression and forecast, hence the 

AR coefficients of the model represent the signal features, and 

can be used for fault detection purposes (16,26). 

    AR modeling is a parametric method and represents the 

signal as a linear combination of its previous values plus an 

error term. AR model of order p for the signal x(n) is given as  

 

𝑥(𝑛) + ∑ 𝑎𝑘  𝑥(𝑛 − 𝑘)
𝑝

𝑘=1
= 𝑣(𝑛) (13) 

 

 
S 

a1 d1 

d2 a2 
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where ak for k = 0,1,…, p are AR coefficients and v(n) is the 

white noise with variance 𝜎𝑣
2. The filter coefficients are 

determined using the autocorrelation sequence of the AR 

process which satisfies the Yule-Walker equations given by 

 

𝑟𝑥(𝑘) + ∑ 𝑎𝑙  𝑟𝑥(𝑘 − 𝑙)
𝑝

𝑙=1
=  𝜎𝑣

2𝛿(𝑘)   ;     𝑘 ≥ 0 (14) 

 

where (k) is the unit sample sequence. Thus given the 

autocorrelations rx(k) for k = 0,1,…, p these equations can be 

solved for the AR coefficients ak and 𝜎𝑣. In most applications 

rx(k) is unknown and estimated from a sample realization of the 

process. Given x(n) for 0  n  N, where N is the number of 

samples, rx(k) is estimated using the sample autocorrelation 

 

𝑟̂𝑥(𝑘) =
1

𝑁
∑ 𝑥(𝑛)𝑥(𝑛 − 𝑘)

𝑁−1

𝑛=0
 (15) 

 

    Order selection is important in terms of to get less error 

between signal and its AR model. And also there must be 

enough number of coefficients, but not too much, to diagnose 

faults conveniently. Akaike’s Information Criteria (AIC) can be 

used for order selection and given as follows  

 

𝐴𝐼𝐶(𝑝) = 𝑁 𝑙𝑛( 𝜎𝑣
2) + 2𝑝 (16) 

 

2.4. SOFT COMPUTING METHODS 

    The relation matrix between fault types and fault features 

extracted from vibration, current, temperature signals can be 

too complicated to determine fault types by this matrix with 

human inference. Intelligent methods like artificial neural 

networks (ANN) and adaptive neuro-fuzzy inference system 

(ANFIS) can be used for classification and pattern recognition.  
 

2.4.1. ARTIFICIAL NEURAL NETWORKS 

    ANN is an interconnection of computational elements known 

as neurons (27). Each neuron has multi inputs from other neurons 

with assigned weights. The output of a neuron is computed by 

summing of all the weighted inputs and then passing it through 

a function. ANN consists of one or more layers of neurons in 

interconnected topology (Fig.2).  

 

 
Fig.2. Topology of a feed forward neural network with three layers. 

 

    The backpropagation learning algorithm is widely used to 

determine input-output relationship of a system. It is an iterative 

gradient search algorithm which adjust each weight in a 

multilayer network so as to reduce the error in the outputs. It 

works by propagating errors backward from the output layer. 

For a three layer ANN with I inputs, one hidden layer with J 

neurons and K outputs neurons, the error function is 

 

𝐸 =
1

2
∑ ∑ (𝑦𝑘𝑝 − 𝑑𝑘𝑝)2

𝐾

𝑘=1

𝑃

𝑝=1
 (17) 

 

where ykp and dkp are the actual and desired outputs of the 

pattern respectively. Individual weight adjustment between the 

hidden layer and the output layer for pattern p are computed by  

∆𝜔𝑘𝑗 = −𝜂
𝜕𝐸𝑝

𝜕𝜔𝑘𝑗

 (18) 

 

where j=1,2,…J and η is a constant learning rate. The weights 

between hidden and output layers are adjusted using the 

recursive formula given as  

 

𝜔𝑘𝑗(𝑛 + 1) = 𝜔𝑘𝑗(𝑛) + 𝜂∆𝜔𝑘𝑗  (19) 

 

where n is the iteration number. Similar weight adjustment 

formulas can be obtained between the input and output layers 

by changing the indices from k to i. 
 

2.4.2. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

    Adaptive neuro-fuzzy inference system (ANFIS) is an 

implementation of a fuzzy logic inference system with the 

architecture of a five-layer feed-forward network (18,19,27,28). 

With this way ANFIS uses the advantages of learning capability 

of neural networks and inference mechanism similar to human 

brain provided by fuzzy logic. The architecture of ANFIS with 

two inputs, one output  and two rules is given (Fig.3). Here x, y 

are inputs, f is output, the circles represent fixed node functions 

and squares represent adaptive node functions. This is a 

Sugeno-type fuzzy system, where the fuzzy IF-THEN rules 

have the following form: 

 

Rule 1: If x is A1 and y is B1 then f1 = p1 x + q1 y + r1 

Rule 2: If x is A2 and y is B2 then f2 = p2 x + q2 y + r2 

 

 
 

Fig.3. ANFIS architecture with two rules. 

 

    The operation of each layer is as follows: 
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    Layer 1 called fuzzification layer and it fuzzify the values of 

the input variables according to a membership function. This 

layer forms the antecedents of the fuzzy rules (IF part). 

Generalized bell membership function (Fig.4) is popular for 

specifying fuzzy sets because of their smoothness and concise 

notation. The parameters {ai, bi, ci} of the membership function 

are called as premise parameters where i denotes the node 

number.  

 
 

Fig.4. Generalized bell function. 

 

    Layer 2 is rules layer and performs fuzzy AND operation at 

the nodes. Thus the output is the product of all incoming signals 

and represents the firing strength of each rule. Layer 3 is 

normalization layer. Layer 4 is fuzzy inference or consequent 

layer which estimates the rule’s output (THEN part). The 

parameters {pi, qi, ri} of each rule’s output are referred as 

consequent parameters. Layer 5 is called defuzzification layer 

and calculates the sum of the outputs of all the rules. Learning 

of ANFIS is done using hybrid learning procedure given in 

Table 1. This algorithm combines backpropagation gradient 

descent and least squares method for identification of premise 

and consequent parameters in such a way that ANFIS output 

matches the training data. 

 
Table 1. Hybrid learning procedure. 

 Forward pass Backward pass 
Premise parameters Fixed Gradient descent 
Consequent parameters Least squares Fixed 
Signals Node outputs Error signals 

 

3. CASE STUDIES 

    In this section example applications of mathematical 

methods on experimental data for detection of mechanical and 

electrical faults in induction motors are given. Detection of 

eccentricity fault, bearing fault, and insulation fault is 

considered. For this purpose 5 HP, three phases, four poles 

induction motor is subjected to bearing damage and winding 

insulation damage as well as thermal and chemical aging (6-7).  

After each aging cycle the data is collected at 12 kHz sampling 

frequency under 100 % load condition. Seven aging cycle is 

performed until the motor is broken down.  
 

3.1. MECHANICAL FAULTS AND THEIR DETECTION 

    Airgap eccentricity (Non-uniform air gap): 

   Air gap eccentricity may be the consequence of bearing, wear 

or bearing failure, bad motor assembly with rotor unbalance or 

a rotor which is not perfectly centered (4,8-9). This eccentricity 

causes anomalies in the air gap flux density and creates 

frequency side bands at around the supply frequency of the 

stator current signal for each phase. The side-band frequencies 

caused by the dynamic eccentricity are given as 

 

𝑓𝑒𝑐𝑐 = 𝑓𝑒 [1 ∓ 𝑘 (
1 − 𝑠

𝑝/2
)] = |𝑓𝑒 ∓ 𝑘𝑓𝑟|  ,   𝑘

= 1, 2, 3, … 

(20) 

 

where fe is the electrical supply frequency, s is the per unit slip, 

p is the number of poles, and fr is the rotor speed in Hz.  Slip s 

= (fs – fr)/fs, where fs is the synchronous frequency. 

 

    The side-band effects of the motor current signals both of the 

healthy  and faulty cases  by means of their power spectral 

density variations at around supply frequency 60 Hz is shown 

in (Fig.5a) and (Fig.5b). 

 
(a) APSD for healthy case. 

 

(b) APSD for aged case. 

Fig.5. APSD variations of current signals 

 

    The big amplitudes defined as side-band frequencies 

(Fig.5b), which are appeared at around the fundamental 

frequency 60 Hz with difference of 4 Hz, indicate the rotor 

eccentricity.  Here the side-band frequencies (fsb) can be defined 

by the following equation 

 

𝑓𝑠𝑏 = 𝑓𝑒(1 ∓ 2𝑘𝑠) (21) 

 

where k is an integer. In this application fr=1800/60=30 Hz and 

fr=1742/60=29.03 Hz. Taking k=1,2 and s=0.032, from the Eq. 

(21), all side-band frequency values can be found at 52, 56, 64 

and 68 Hz (Fig.5b). Also, comparing the Fig.5a and Fig.5b the 
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other important frequency components can be determined at 31 

Hz and 89 Hz. These are the rotor eccentricity frequencies and 

they can be defined between the rotational frequency (fr) and 

fundamental frequency (fe) by Equation (20).  

 

    Bearing faults: 

    One cause of premature bearing failure is the passage of 

electrical current through the bearing and it is known as 

electrical discharge machining or fluting (1-3). A severe damage 

is a source of audible bearing noise. The surface degradation of 

bearing races and rolling elements results in extreme vibration 

levels and eventual bearing failure.  

 

    Statistical properties of vibration signal can be investigated 

for detecting the fault (10-11). The deviation between statistical 

parameters for the healthy and the faulty cases are compared as 

given in Table 2. The healthy and faulty vibration signals in 

time domain and their amplitude probability density functions 

(histograms) is shown in (Fig.6). These results indicate that the 

signals have a normal distribution and the overall standard 

deviation has increased by a factor of about 6, showing the 

damage. 

 
Table 2. Statistical parameters of vibration signal 

 Healthy Faulty 

Mean 0.0016 0.0030 

Standard Deviation 0.1135 0.6040 

Skewness 0.0591 -0.0060 

Kurtosis 2.9266 3.0093 

 

 

 
Fig.6. Accelerometer signal waveforms: (a) Baseline. (b) Final aged cycle.  

(c) Probability density functions of a) and b). 

 

    Bearing faults can be diagnosed by frequency domain 

analysis of vibration signals (12-14). When a fault occurs in any 

bearing components, this creates vibrations at characteristic 

frequencies defined by the bearing geometry. These 

characteristic fault frequencies can be calculated by using either 

the bearing geometry or approximate formulas for the bearings 

which have the number of balls between six and twelve as 

below: 

Cage Frequency: fc = 0.4 fr   

Ball Pass Frequency of the Outer Race (BPFO): fo = 0.4 Nb fr 

Ball Pass Frequency of the Inner Race (BPFI): fi = 0.6 Nb fr 

Ball Spin Frequency (fb) is calculated using the bearing data 

provided by the bearing manufacturer. Here fr is the rotor 

frequency and Nb is the number of balls. In this study, the motor 

speed is 1742 min-1 and then the rotor frequency is calculated 

as fr = 1742/60 = 29.03 Hz. The number of balls in the bearing 

is Nb = 9. The characteristic frequencies are calculated as fc = 

11.6 Hz, fo = 104.5 Hz, and fi = 156.7 Hz. Ball Spin Frequency 

is calculated as fb = 136.9 Hz for the given rotational speed. 

 

    The characteristic bearing frequencies and its harmonics 

occur when the bearing has a fault. The variations that are 

produced by the air gap eccentricity due to bearing defect 

generate stator currents that are related to these characteristic 

bearing frequencies ( fv ) 

 

𝑓𝑏𝑛𝑔 = |𝑓𝑒 ∓ 𝑚𝑓𝑣| ,   𝑚 = 1, 2, 3, … (22) 

 

where fv is one of the characteristic bearing frequencies namely 

fc , fo , fi , fb . 

 

    The characteristic bearing frequencies are remarkable when 

the bearings have single point defects. If the defects are 

scattered on the bearing components, an increase is seen in the 

high frequency region of the vibration spectrum. From the 

power spectral density (Fig.7) of vibration signals for the 

healthy and faulty case, it is clear that there is an increase in the 

signal energy for the frequency ranges 1.5-4 kHz are due to 

frosting on the surface of bearing elements, caused by material 

removal by pitting. Data acquisition system has a low-pass filter 

with the cutoff frequency at 4 kHz. 
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Fig.7. Power spectral densities of vibration signals (a) healthy, (b) aged cases. 

    The coherence function (Fig.8) indicates that the most 

dominant frequency values, where motor current and vibration 

signals are correlated, are located at 234 Hz and 469 Hz (8-9). 

The side-band frequency due to the dynamic eccentricity is 

 

fecc = 60 + 6(29.03) = 234 Hz. 

 

The gap eccentricity generated current due to the bearing defect 

is 

fbng = 60 + 3(136.9) = 470.7 Hz. 

 
(a) 

 
(b) 

Fig.8. The coherences for healthy (a) and faulty (b) cases. 

 

    The coherence function between the motor current and 

accelerometer signals at the 234 Hz and 470.7 Hz has increased 

by a factor of 2.5 in the 200-500 Hz frequency range. The 

coherence between the motor current and vibration signals 

indicates that rotor eccentricity and bearing faults are reflected 

in the motor current spectrums. Also the location of bearing 

fault is balls in the bearing as a result of coherence analysis. 

 

    In order to determine precisely which frequency band reflects 

the bearing fluting damage, the sub-band or the MRA of the 

faulty signals was performed by dividing them into eight sub-

bands in the frequency range 0-6 kHz (7,12,14). These are given in 

Table 3 in terms of details (di) and approximations (ai).  

 

Table 3. Frequency sub-bands of the vibration signal 
Approxi- Sub-bands  Details Sub-bands  

mations (Hz)  (Hz) 

a1 0 – 3000 d1 3000      – 6000 

a2 0 – 1500 d2 1500      – 3000 

a3 0 – 750 d3 750        – 1500 

a4 0 – 375 d4 375        – 750 

a5 0 – 187.5 d5 187.5     – 375 

a6 0 – 93.75 d6 93.75     – 187.5 

a7 0 – 46.875 d7 46.875   – 93.75 

a8 0 – 23.4375 d8 23.4375 – 46.875 

 

    MRA implementation is shown in (Fig.9) and (Fig.10). 

According to these results, 3-6 kHz frequency band, which is 

named as first detail (d1) in MRA, is the most dominant band in 

terms of the similarity. The ratio, which can be calculated 

between the RMS (root-mean-square) values of vibration 

measurement and the RMS values of (d1), increases as the 

motor bearing degrades toward failure.  If looked at other sub-

bands of the vibration measurement, a good trend cannot be 

seen.  For this reason, high frequency vibrations, which take 

place between 3 kHz and 6 kHz, are very affective in bearing 

fluting. Hence, a feature extraction from considered data could 

be very effectively realized by using the multi-resolution 

wavelet analysis technique.   

 

(a) 

 

(b) 

Fig.9. Details and approximations of vibration signal (s) after final aging 

cycle. (a) Detail sub bands (d1-d8) vibration signal (s) for aged case.  

(b) Approximation sub bands (a1-a8) vibration signal (s) for aged case. 
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Fig.10. RMS values of vibration signal and two sub-bands (d1 and d2) after 

final aging cycle. 

 

    And also, short-time Fourier transformation (STFT) (Fig.11) 

of the first detail (d1) shows that the observed frequency band 

is between 2 and 4 kHz because of the usage low-pass filter 

which has a cut-off frequency at 4 kHz during the data 

acquisition process.  

 

 
Fig.11. STFT presentation of the sub-band (d1) related to bearing damage. 

 

    The fundamental feature, which is indicated (Fig.11) in the 

frequency range 2-4 kHz, denotes the bearing damage as a 

result of the bearing fluting test procedures. At this point, we 

want to ask the question how to detect this before it becomes 

severe. To answer this, the continuous wavelet transform 

(Fig.12) is recommended to reveal the potential existence of the 

bearing damage in early case using only healthy case data. 

 

 

 

 

 

 

 

 

 

 
Fig.12. Absolute values of continuos wavelet transform coefficients for scales 

1, 2, 4, 8, 16, 32, 64, 128, 256 of  vibration signals for healthy case. 

 

    If the first scale variation is taken outside to plot it 

individually (Fig.13), it gives the high frequency components 

which are represented by very small amplitudes, to indicate the 

origin of the bearing damage as a potential defect. 

 

 
Fig.13. First scale spectrum of vibration signals in healthy case as a potential 

defect. 

 

    AR method is used to model vibration signals parametrically 

and to determine how the model parameters changes with the 

aging (15). The sixtieth order model is chosen to construct AR 

models of vibration signals. The first AR coefficient and 

variance of white noise input to drive the AR model is increased 

with the aging (Fig.14 and Fig.15).  
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Fig.14. Variation of first 10 AR coefficients (left) and the 𝑎1 coefficient 

(right) with aging cycles. 

 
Fig.15. Variance of white noise input to drive the AR models. 

 

    Except from vibration and current signals, bearing 

temperature gives valuable information about the health of the 

bearings (17) since temperature is an important factor for 

lubricant. High temperatures reduce the viscosity of lubricant 

inside of the bearing, and cause early bearing failure. From the 

relationship between bearing surface temperature and aging 

(Fig.16), it is seen that the bearing temperature increase with 

the degradation of the motor. The temperature rise is at most 

5C for M8 by comparing the temperature values of the healthy 

motors which is cycle #0 and faulty motors which is cycle #7. 

The increase in temperature give information about anomaly, 

but it is not enough for precise decision on the severity of the 

fault. 
 

 
Fig.16. Process-end bearing surface temperature. 

    ANFIS is used to combine information from several sensors 

to perform automatic fault detection of bearing failure (Fig.17). 

The inputs of ANFIS are current, vibration and temperature as 

given in Table 4, and the output is motor’s condition labeled as 

healthy (H) or faulty (F).  

 

 
 

Fig.17. ANFIS based fault detection structure. 

 
Table 4. Inputs used in ANFIS. 

 Input # Frequency band intervals 

Vibration 
1 0 – 732 Hz 

2 2199 – 2930 Hz 

3 2931 – 4028 Hz 

Current 
4 0 – 53 Hz 

5 123 – 234 Hz 

6 240 – 352 Hz 

Temperature 7 - 

 

    The classification performance of ANFIS as healthy or faulty 

condition is calculated by taking a threshold value of 0.5. Hence 

97.8% of test data is classified correctly (Fig.18).  

 
Fig.18. Training and test results for ANFIS.  

H: Healthy, F: Faulty, T: Threshold 
 

3.2. ELECTRICAL FAULTS AND THEIR DETECTION 

    Stator winding insulation faults are also a common source of 

failure of electric motors. Especially the use of motor drives 

creates some undesirable effects with the eventual failure of 

motors (20). In this section, detection of stator winding insulation 

fault of main-fed induction motor is addressed.  

    Stator current imbalances based upon the stator insulation 

damage act on the stator magneto motor force (mmf) and cause 

motor vibrations. In this sense the cross spectral approach 

which is the calculation of coherence function between the 

motor current and vibration signals for the initial and aged cases 

(Fig.19) is used to detect the insulation damage. 
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Fig.19. Coherence variation between motor current and vibration signal. 

 

    By comparing the initial and aged cases (Fig.19), the even 

harmonics of line frequency between 4th and 16th in the range 

0-1000 Hz, namely the frequencies 240, 360, 480, 600, 720, 

840, and 960 Hz appear due to insulation aging. 

    A neuro-detector is designed for the automatic fault detection 

using the coherence approach to determine the even harmonic 

effects, which characterize the stator insulation damage. The 

artificial neural network topology has an auto-associative 

structure, which uses the same input-output pairs in the 

frequency domain. Each input-output pairs obtained by 

coherence approach cover the frequency band of 0-1000Hz, 

which contains the most effective even harmonics, and they are 

defined as training patterns of the training data set of the neural 

structure. The feed forward neural structure has 50 nodes in 

terms of the input and output nodes, while number of the hidden 

nodes is 10. At the first step, the neural network is trained for 

the normal condition that is healthy stator insulation case using 

a learning algorithm. After that, the aged case is asked to it as 

an unknown case. In this case, the neural network produces 

different responses at the output nodes with a big error changes 

(Fig.20). Even harmonic values related to the insulation 

degradation can be detected looking through the error change. 

 
Fig.20. Testing result of the neural network for the aged case. 

 

4. CONCLUSIONS AND DISCUSSIONS 

    In this paper fault detection and diagnosis in induction 

motors using mathematical methods are discussed with theory 

and example applications. Eccentricity detection, bearing fault 

detection and stator winding insulation faults are considered.  

    Eccentricity is detected by spectrum of stator current and 

coherence between current and vibration signals.  

    The statistical analysis of vibration signals give information 

about the anomaly. Power spectral analysis of vibration signal 

give the features of bearing fault as an increase of energy in the 

high frequency region of spectrum The most dominant 

frequency band is determined by multi-resolution wavelet 

analysis of vibration signals. Potential bearing fault is detected 

using continuous wavelet transform. Coherence calculation 

revealed the location of fault in bearing. AR modeling give the 

first coefficient of model can be used as a feature of bearing 

fault. ANFIS application helps to make decision about the 

condition of motor using spectral features of current and 

vibration signals, and bearing temperature.  

    Features for stator winding insulation fault is determined as 

even harmonics between 4th and 16th in coherence function. A 

neuro-detector can be used to detect the changes of these 

harmonics.  
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