

YENİ 3-(3-KLOROBENZİL)-4-(3-SİNNAMOİLOKSİBENZİLİDENAMİNO)-4,5-DİHİDRO-1*H*-1,2,4-TRİAZOL-5-ON BİLEŞİĞİNİN GAUSSİAN PROGRAMI KULLANILARAK SPEKTROSKOPİK ÖZELLİKLERİNİN İNCELENMESİ

Murat Beytur¹, Haydar Yüksek¹

¹Kafkas Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü 36100-Kars muratbeytur83@gmail.com

Abstract

3-(3-chlorobenzyl)-4-(3-cinnamoyloxybenzylideneamino)-4,5-dihydro-1H-1,2,4-triazol-5-one were synthesized by the reaction of 3-(3-chlorobenzyl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-one with 3-sinnamoiloksibenzaldehid.

In this study, 3-(3-chlorobenzyl)-4-(3-sinnamoiloksibenzilidenamino)-4,5-dihydro-1H-1,2,4-triazol-5one molecule has been optimized using B3LYP/631G (d) and HF/631G (d) basis set. Starting from this optimized structure with ¹H-NMR and ¹³C-NMR and IR spectral data values according to GIAO method was calculated using the method of Gaussian G09W program package in gas phase. Theoretically and experimentally values were plotted according to exp = a + b. δ calc Eq. a and b constants regression coefficients with a standard error values were found using the SigmaPlot program. Theoretically calculated IR data are multiplied with appropriate adjustment factors and the data obtained according to HF and DFT method are formed using theoretical infrared spectrum. The identification of calculated IR data was used in veda4f program. Experimentally and theoretically UV-vis values in ethanol were calculated and compared. Additionally, molecules of the bond angles, bond lengths, dipole moments, the HOMO-LUMO energy and total energy of the molecule with formal charges from both methods were found.

Keywords: 4,5-dihydro-1H-1,2,4-triazol-5-on, Gaussian 09W, GIAO, B3LYP, HF, 631G(d) basic set

Giriş

Günümüzde kullanılan teorik yöntemler ile moleküllerin birçok özellikleri deney yapmaya gerek kalmadan hesaplanmaya başlanmıştır. Hatta bu hesaplamalar ile şimdiye kadar elde edilmemiş veya edilememiş bileşikler için kolayca uygulanabilmekte ve istenen sonuçlar alınabilmektedir [1].

Kimyasal araştırmalarda bilgisayar kullanılarak yapılan kimyasal hesaplamalar, deneysel yöntemlerle elde edilen birçok maddenin; ¹H-NMR ve ¹³C-NMR spektral verileri, IR frekans değerleri, UV-vis değerleri, bağ açıları, bağ uzunlukları, formal yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri gibi çok sayıda özelliğinin daha kısa sürede ve daha güvenilir bir şekilde elde edilmesini sağlar [1].

Hidroklorürleri (1) halinde kullanılan, iminoesterlerin sentezi için çeşitli metotlar geliştirilmiştir. Bu metotlara amidlerden, ortoesterlerden, karbonil bileşiklerinden,

iminoklorürlerden ve bazı doymamış sistemlerden başlayan yöntemler [2] örnek olarak verilebilirse de 3 tipi bileşiklerin sentezinde kullanılan en uygun yöntem olan Pinner Yöntemi [3] çalışmada kullanılmıştır. Bu yöntemde bir nitril, bir mutlak alkol (genellikle mutlak etanol) ile susuz bir çözücü içinde HCl gazı ile soğukta muamele edilir (Denklem 1).

$$R-C\equiv N + R'OH + HCl(g) \xrightarrow{R} \begin{array}{c} R \\ \downarrow \\ C = NH_2Cl \\ OR' \\ 1 \end{array}$$
(1)

1 Tipi bileşiklerin Pinner yöntemine göre sentezlendiği reaksiyonun muhtemel mekanizması, asidik ortamda protonlanmış nitrile bir alkolün nükleofilik katılması üzerinden yürümektedir (Denklem 2) [4].

$$R-C\equiv N \implies R-C\equiv \stackrel{\oplus}{NH} \iff R-\stackrel{C}{=} NH \stackrel{R}{\longleftarrow} R-\stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R} \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\overset{i=0}{\longleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\underset{i=0}{\longleftarrow}} ongleftarrow}} R' \qquad : \stackrel{R}{\underset{i=0}{\underset{$$

3 Tipi bileşiklerin sentezi için en uygun olan ve çalışmada da kullanılan yöntemde ise, 1 tipi iminoester hidroklorürler (alkil imidat hidroklorürler) in soğuk mutlak etanollü ortamda etil karbazat ile muamelesinden elde edilen [5-11] ester etoksikarbonilhidrazonlar (2) hidrazin hidrat ile kaynar sulu ortamda muamele edilmişlerdir (Denklem 3 ve 4) [7-13].

Çalışmanın orjinal bölümünde, 3-hidroksibenzaldehidin trietilaminli ortamda soğukta sinnamoil klorür ile reaksiyonundan sentezlenen 3-sinnamoiloksi benzaldehid (4) elde edilmiştir (Denklem 5).

3-sinnamoiloksi benzaldehid (4) ile 3-*m*-klorobenzil-4-amino-4,5-dihidro-1H-1,2,4triazol-5-onun (3) reaksiyonundan yeni 5 tipi heterosiklik bileşik olan 3-*m*-klorobenzil-4-(3sinnamoiloksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on bileşiği sentezlenmiştir (Denklem 6).

Deneysel Çalışmalar ve Bulgular

3-*m*-Klorobenzil-4-(3-sinnamoiloksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5on molekülünün ¹H-NMR ve ¹³C-NMR, UV-Vis değerleri ve infrared spektral verileri deneysel ve teorik olarak, bağ açıları, bağ uzunlukları, formal yükleri, homo-lumo enerjileri, dipol momentleri ve enerjileri ise teorik olarak bilgisayar ortamında Becke tipi 3-parametreli Yoğunluk Fonksiyon Teorisi ve Hartree-Fock Öz Uyumlu Alan Teorisi setleri kullanılarak incelenmiştir. Çalışmada öncelikle bileşikler DFT/631G(d) ve HF/631G(d) metoduna göre optimize edilmiştir [14]. Optimize işleminden sonra ¹H- NMR ve ¹³C-NMR isotropik kayma değerleri Gaussian G09W paket programı kullanılarak GIAO metoduna göre hesaplanmıştır [15]. Deneysel ve teorik olarak bulunan değerler $\delta \exp=a+b$. δ calc. eşitliğine göre grafikler oluşturulacak ve regresyon analizi yapılmıştır. IR frekans değerleri yine B3LYP ve HF metodlarının 631G(d) temel seti kullanılarak gaz fazında hesaplanmıştır. Teorik olarak hesaplanan ir verilerinin tanımlanmasında veda4f programından yararlanılmıştır [16]. Çalışmada ayrıca molekülün teorik olarak, bağ açıları, bağ uzunlukları, formal yükleri, HOMO-LUMO enerjileri, dipol momentleri ve enerjileri aynı metodlar ve aynı set kullanılarak hesaplanmış ve tablolar halinde verilmiştir.

Sentez

3-m-klorobenzil-4-(3-sinnamoiloksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5on bileşiğinin Sentezi: Yuvarlak dipli bir balonda 3-m-kloro-4-amino-4,5-dihidro-1H-1,2,4triazol-5-on (3) (2.245 g, 10 mmol) bileşiğinin 20 ml asetik asitteki çözeltisine 3sinnamoiloksibenzaldehidin (4) (2.52 g, 10 mmol) ilave edilerek geri soğutucu altında 1,5 saat kaynatılmıştır. Balon içeriği soğutulduktan sonra saf su ilavesi ile çöktürülmüştür. Daha sonra, çöken ham ürün süzülerek, saf su ile yıkanmış, desikatörde CaCl₂ üzerinde vakumda kurutulmuş ve DMSO-su (1:3) den kristallendirilmiştir. Ele geçen kristaller (4.51 g, % 98.29 verim) aynı karışımdan birkaç kez daha kristallendirilip vakumda kurutulduktan sonra 5 bileşiği olarak tanımlanmıştır. E.n. 223°C. IR: 3160 (NH), 1719, 1696 (C=O), 1591 (C=N), 1233 (COO), 762 ve 681 (1,3-disubstitue aromatik halka) cm⁻¹. ¹H-NMR (DMSO-d₆): δ 4.11 (s, 2H, CH₂Ph), δ 6.94 (d, 1H, =CH; J=16.00 Hz), δ 7.28-7.37 (m, 3H, ArH), δ 7.38-7.41 (m, 1H, ArH), δ 7.45-7.46 (m, 1H, ArH), δ 7.49-7.50 (m, 3H, ArH), δ 7.59 (t, 1H, ArH; J=8.00 Hz), δ 7.65-7.66 (m, 1H, ArH), δ 7.70-7.73 (m, 1H, ArH), δ 7.84-7.86 (m, 2H, ArH), δ 7.93 (d, 1H, =CH; *J*=16.00 Hz), δ 9.75 (s, 1H, N=CH), δ 12.06 (s, 1H, NH). ¹³C-NMR (DMSO-d₆): δ 30.74 (CH₂Ph), δ 117.01; 120.10; 124.96; 125.88; 127.11; 157.57; 128.07; 128.70 (2C); 129.02; 129.09; 130.23; 130.97; 132.93; 133.83; 135.12; 138.14; 145.74; 146.72; 151.14 (Ar-C+CH=CH), δ 149.91 (Triazol C₃), δ 150.92 (N=CH), δ 152.34 (Triazol C₅), δ 164.81 (COO). UV [Etanol, λ_{max} , nm (ϵ , L.mol⁻¹.cm⁻¹)]: 294 (20079), 286 (20156), 222 (14782).

Şekil 1.5 bileşiğinin gausview görünümü

No	Deneysel	DFT 631d	Fark	HF 631d	Fark	No	Deneysel	DFT 631d	Fark	HF 631d	Fark
C1	149,91	151,29	-1,38	145,13	4,78	H26	12,06	6,94	5,12	6,15	5,91
C2	152,34	151,58	0,76	145,23	7,11	H27	9,75	10,15	-0,40	9,63	0,12
C3	150,92	155,38	-4,46	149,13	1,79	H28	7,66	7,87	-0,21	7,31	0,35
C4	135,12	139,27	-4,15	130,16	4,96	H29	7,28	7,26	0,02	7,15	0,13
C5	124,96	131,75	-6,79	125,91	-0,95	H30	7,41	7,58	-0,17	7,39	0,02
C6	151,14	155,35	-4,21	144,26	6,88	H31	7,73	8,30	-0,57	8,13	-0,40
C7	125,88	126,69	-0,81	121,38	4,50	H32	6,94	6,73	0,21	6,20	0,74
C8	130,23	132,65	-2,42	125,42	4,81	H33	7,93	8,07	-0,14	7,97	-0,04
С9	120,10	124,57	-4,47	119,15	0,95	H34	7,84	7,60	0,24	7,36	0,48
C10	164,81	166,17	-1,36	156,84	7,97	H35	7,50	7,73	-0,23	7,36	0,14
C11	117,01	119,84	-2,83	108,12	8,89	H36	7,49	7,71	-0,22	7,42	0,07
C12	146,72	152,84	-6,12	147,83	-1,11	H37	7,50	7,72	-0,22	7,40	0,10
C13	133,83	137,64	-3,81	128,08	5,75	H38	7,86	8,19	-0,33	7,95	-0,09
C14	129,09	137,94	-8,85	130,19	-1,10	H39	4,11	4,24	-0,13	3,45	0,66
C15	128,70	132,52	-3,82	124,55	4,15	H40	4,11	4,16	-0,05	3,43	0,68
C16	130,97	134,68	-3,71	128,14	2,83	H41	7,41	7,41	0,00	7,17	0,24
C17	128,70	132,27	-3,57	124,32	4,38	H42	7,32	7,42	-0,10	7,18	0,14
C18	129,02	129,30	-0,28	123,05	5,97	H43	7,46	7,56	-0,10	7,38	0,08
C19	30,74	44,05	-13,31	28,60	2,14	H44	7,36	7,42	-0,06	7,16	0,20
C20	138,14	139,77	-1,63	131,26	6,88						
C21	132,93	134,84	-1,91	127,66	5,27						
C22	145,74	146,84	-1,10	134,24	11,50						
C23	127,11	131,34	-4,23	124,51	2,60						
C24	128,07	132,58	-4,51	125,80	2,27						
C25	127,57	132,41	-4,84	125,85	1,72						

Tablo 1. 5 Tipi bileşiğin TMS'ye göre ¹³C ve ¹H Deneysel ve Teorik (B3LYP ve HF) NMR Kimyasal Kayma Değerleri (δ/ppm)

N.	Descent	DFT	Dl-	HF	E l-	NI-	D	DFT	E l-	HF	Essile
INO	Deneysei	631d	F ark	631d	Fark	INO	Deneysei	631d	Fark	631d	Fark
C1	149,91	152,97	-3,06	147,45	2,46	H26	12,06	7,38	4,68	6,54	5,52
C2	152,34	152,33	0,01	145,97	6,37	H27	9,75	10,09	-0,34	9,59	0,16
C3	150,92	155,70	-4,78	149,58	1,34	H28	7,66	7,86	-0,20	7,43	0,23
C4	135,12	138,81	-3,69	129,77	5,35	H29	7,28	7,49	-0,21	7,41	-0,13
C5	124,96	130,97	-6,01	125,29	-0,33	H30	7,41	7,93	-0,52	7,68	-0,27
C6	151,14	155,05	-3,91	143,51	7,63	H31	7,73	8,42	-0,69	8,29	-0,56
C7	125,88	127,66	-1,78	122,20	3,68	H32	6,94	6,89	0,05	6,38	0,56
C8	130,23	133,83	-3,60	126,38	3,85	H33	7,93	8,10	-0,17	8,02	-0,09
С9	120,10	124,94	-4,84	119,76	0,34	H34	7,84	7,76	0,08	7,56	0,28
C10	164,81	167,57	-2,76	158,66	6,15	H35	7,50	7,90	-0,40	7,54	-0,04
C11	117,01	119,19	-2,18	107,37	9,64	H36	7,49	7,92	-0,43	7,66	-0,17
C12	146,72	154,14	-7,42	149,22	-2,50	H37	7,50	7,91	-0,41	7,60	-0,10
C13	133,83	136,87	-3,04	127,05	6,78	H38	7,86	8,37	-0,51	8,16	-0,30
C14	129,09	138,44	-9,35	130,78	-1,69	H39	4,11	4,40	-0,29	3,66	0,45
C15	128,70	132,85	-4,15	124,55	4,15	H40	4,11	4,32	-0,21	3,63	0,48
C16	130,97	136,03	-5,06	129,37	1,60	H41	7,41	7,55	-0,14	7,34	0,07
C17	128,70	132,75	-4,05	124,43	4,27	H42	7,32	7,57	-0,25	7,35	-0,03
C18	129,02	129,90	-0,88	123,62	5,40	H43	7,46	7,80	-0,34	7,54	-0,08
C19	30,74	43,55	-12,81	28,16	2,58	H44	7,36	7,67	-0,31	7,45	-0,09
C20	138,14	140,54	-2,40	131,84	6,30		1	I		1	1
C21	132,93	134,54	-1,61	127,42	5,51						
C22	145,74	145,47	0,27	132,53	13,21						
C23	127,11	131,53	-4,42	124,74	2,37	1					
C24	128,07	133,48	-5,41	126,47	1,60						
C25	127,57	133,35	-5,78	127,00	0,57						

Tablo 2. 5 Tipi bileşiğin TMS'ye göre ¹³C ve ¹H Deneysel ve Teorik (B3LYP ve HF) NMR (DMSO) Kimyasal Kayma Değerleri (δ/ppm)

		Deneysel	skalalı	skalalı hf
			dft	~
1	τ CNNC (25), τ CCCN (17)		6	5
2			9	/
3	$\frac{\delta \text{COC} (18), \tau \text{CCOC} (31)}{20000}$		13	9
4	$\frac{\tau \text{ CCCC (10), } \tau \text{ COCC (18)}}{\tau \text{ COCC (18)}}$		16	13
5	τ CNNC (36), τ CCCC (15)		20	19
6	$CCN (11), \tau CCOC (10)$		29	23
7	δ COC (18)		38	34
8	τ CCCC (12), τ COCC (27)		45	40
9	τ CCNN (28)		59	57
10	δ CCN (13), τ CCCC (21)		73	73
11	δ CCC (13)		80	83
12	τ СССС (25), τ ССОС (30)		92	92
13	τ CNNC (12),τ NNCC (19),τ NCNC (11)		109	101
14	τ СССС (10)		132	120
15	τ CNNC (16),τ CCCC (11),τ CCCN (14)		153	140
16	δ NCC (16)		165	156
17	τ CCCC (25), τ CICCC (43)		180	183
18	δ NCN (16)		187	186
19	CC (11), τ CCCC (13)		212	206
20	δ CCC (11),δ CICC (23)		216	211
21	τ CCCN (15)		230	218
22	δ ССО, τ СССС		232	232
23	δ CCO (12), δ CCC (10)		243	242
24	τ HNNC (24),τ HCCC (10),τ CNNC (13),τ NNCC (23)		265	268
25	τ CCCC (25),τ CCOC (10)		272	271
26	τ СССС (22), τ ССОС (16)		280	278
27	δ COC (18)		309	307
28	τ CCCN (11),τ CCNN (31)		336	339
29	δ CCC (21),δ CICC (32)		367	369
30	δ OCN (13),δ NCN (11),δ NNC (12),δ COC (15)		370	381
31	τ CCCC (25)	396	397	402
32	δ ClC (45), δ CCC (25)		400	404
33	δ ССС		422	431
34	τ HCCC (18),τ CCCC (48),τ CICCC (11)		429	433
35	τ HNNC (43),τ ONNC (12), τ NCNC (13)		431	435
36	τ HCCC (10), τ CCCN (10), τ OCCC (11)	435	446	448
37	τ ΗССС, τ СССΝ, τ ОССС		451	457
38	τ HCCC (17),τ CCCC (22)	466	481	484
39	τ СССС (16),τ СІССС (23)	485	505	511
40	δ OCO (10),δ CCC (29),δ CCO (16)	504	542	538
41	δ OCN (15),δ CCC (12)		551	556
42	τ CCCN (10),τ OCCC (16)	553	569	569
43	τ ΟССС (12)	573	580	580
44	δ CCC (17)	597	599	601
45	δ OCN (14)		609	607
46	δ CCC (27)		610	614
47	τ ΗΝΝC (15), τ ΝΝCC (12),τ ΝCNC (42)		629	642
48	τ ΗССС (13), τ СССС (53)	641	663	672
49	τ CCCC (11), τ OCOC (22)		665	673
50	τ HCCC (29),τ CCCC (12)		671	676
51	ν CIC (13), δ CCC (33)		672	680
52	τ ΗССС (14),τ ОСОС (39)	681	689	713
53	τ ONNC (78)		693	715
54	δ CCC (14), τ HCCC (19)	706	711	738

Tablo 3. 5 Tipi bileşiğin Deneysel ve Teorik (B3LYP ve HF) IR Değerleri (cm⁻¹)

55	δ ΟCΟ (30),δ COC (11)		730	748
56	τ HCCC (26)	737	746	759
57	τ ΗССС (30),τ ОСОС (16)		751	771
58	v NC (17), δ CNN (35)	763	772	781
59	τ ΗССС (14)		780	802
60	τ HCCC (17)		786	809
61	$\frac{\delta \operatorname{NCN}(12) \delta \operatorname{CCN}(11)}{\delta \operatorname{NCN}(12) \delta \operatorname{CCN}(11)}$		818	828
62	$\frac{\tau \operatorname{HCC}(40)}{\tau \operatorname{HCC}(40)}$		821	833
63	$\frac{\delta CCC (11)}{\delta CCC (11)}$		83/	850
64	ν CC (11) ν ClC(11) δ CCC (10) τ HCCC (11)	824	8/17	852
65	τ HCCC (22)	024	850	885
03	т несе (33)		850	001
67	τ HCCC (24)		859	901
0/	- HCCC (44)	961	800	910
60		804	002	922
<u>69</u>	t HCCC (49)		889	922
70	$\frac{tHCCC(49)}{NCCC(21)}$		898	926
71	δ HCC (28), τ HCCC (31)		916	935
72	v CC (10),v OC (17), 8 CCC (13)		924	935
73	$\frac{\tau \text{ HCCC (55)}}{\tau \text{ HCCC (55)}}$		932	973
74	τ ΗССС (56), τ СССС (14)	925	939	973
75	τ ΗССС (59)		945	973
76	τ ΗССС (38),τ СССС (11)		961	976
77	v CC (12),v OC (20)		964	983
78	ν CC (22), δ CCC (58)		977	993
79	ν CC (22), δ CCC (16)		977	996
80	ν CC (16), δ CCC (28)		979	1007
81	τ HCCN (87)	978	980	1010
82	τ ΗССС (48)		999	1023
83	<u>δ NNC (36)</u>		1000	1025
84	ν CC (30), δ HCC (19)		1017	1026
85	v NC (12),v NN (38)	1058	1064	1062
86	ν CC (22), δ HCC (26)		1067	1065
87	ν CC (17), δ HCC (21)		1072	1066
88	ν CC (23), δ HCC (25)		1073	1076
89	ν CC (24), δ HCC (40)		1083	1086
90	v CC (15),v OC (14), 8 OCO (13)	1233	1117	1091
91	ν OC (16), δ HCC (41)		1139	1096
92	ν CC (10), δ HCC (41)		1149	1099
93	v CC (15), HCC (30)		1152	1136
94	δ HCC (64)		1157	1165
95	δ HCC (25)		1169	1167
96	τ HCCC (44), τ HCCC (27)		1169	1170
97	v NC (20), v NN (16), δ OCN (10)		1176	1174
98	$v CC (17), \delta HCC (16), \tau HCCC (10)$		1187	1186
99	v CC (11), δ HCC (29)		1193	1191
100	v CC (11),v OC (12)		1229	1205
101	δ HCCC (15)		1247	1210
102	CC (14), 8 HCC (13), 8 CCC (10)		1274	1213
103	8 HCC (21)	1202	1277	1249
104	V CC (10), δ HCC (48)	1293	1281	1274
105	<u>ο HCU (26), τ HCUU (16)</u>		1290	1293
106	0 HUU (32)		1300	1380
107	V CC (20), δ HCC (27)		1304	1301
108	v CC (41), ð HCC (22)		1317	1317
109	V CC (42), ð HCC (23)	1005	1320	1328
110	0 HUU (4/)	1326	1324	1533
111	V NU (10),0 HNN (62)		1348	13/6
112	δ HNN (12), δ HCN (36), τ HCCC (12)		1361	1388

113	v CC (15),v NC (15)		1406	1419
114	ν CC (33), δ HCC (19)		1419	1425
115	ν CC (14), δ HCN (15),δ HCC (10)		1428	1443
116	v CC (15), δ HCC (24)		1440	1447
117	δ HCH (90)		1444	1452
118	δ HCC (25),δ CCC (15)		1469	1478
119	δ HCC (26),δ CCC (13)		1480	1489
120	ν CC (12), δ HCC (31),δ CCC (10)		1487	1493
121	δ CCC (10)		1570	1589
122	ν CC (41), δ CCC (14)		1571	1591
123	v NC (10), v CC (15)		1574	1603
124	v NC (31)		1589	1614
125	v NC (10),v CC (16)		1592	1614
126	v CC (16)		1596	1620
127	v CC (21)		1596	1660
128	v NC 842)	1591	1614	1673
129	ν CC (21), δ HCC (10)	1638	1631	1702
130	v OC (85)	1696	1740	1763
131	v OC (74), v NC (12)	1719	1755	1788
132	v CH (99)		2937	2890
133	v CH (99)		2966	2922
134	v CH (36)		3053	2999
135	v CH (45)		3062	3003
136	v CH (40)	3041	3066	3005
137	v CH (57)		3066	3011
138	v CH (55)		3067	3013
139	v CH (34)		3074	3016
140	v CH (46)		3076	3020
141	v CH (76)	3066	3082	3025
142	v CH (38)		3084	3026
143	v CH (29)		3088	3029
144	v CH (54)		3091	3031
145	v CH (47)		3096	3033
146	v CH (49)		3098	3040
147	v CH (47)		3102	3040
148	v CH (38)		3105	3046
149	v CH (27)	3117	3119	3048
150	v NH (100)	3160	3539	3518

Şekil 3. 5 Tipi bileşiğin teorik (Deneysel, B3LYP ve HF) UV-vis Spektrumları ve Değerleri (cm⁻¹)

	Bağ Açıları	B3LYP	HF		Bağ Açıları	B3LYP	HF
1	C(1)-N(46)-N(45)	104.46	104.91	45	C(4)-C(5)-C(6)	119.46	119.67
2	C(1)-N(47)-N(48)	121.11	121.05	46	H(28)-C(5)-C(6)	120.28	119.59
3	C(1)-N(47)-C(2)	108.32	108.11	47	C(5)-C(6)-O(50)	122.94	120.68
4	C(1)-C(19)-C(20)	113.47	113.45	48	C(5)-C(6)-C(7)	120.95	121.06
5	C(1)-C(19)-H(39)	108.28	108.04	49	O(50)-C(6)-C(7)	115.99	118.15
6	C(1)-C(19)-H(40)	108.29	108.04	50	C(6)-C(7)-H(29)	119.11	119.52
7	H(39)-C(19)-H(40)	105.39	105.90	51	C(6)-C(7)-C(8)	119.39	119.20
8	H(39)-C(19)-C(20)	110.44	110.48	52	H(29)-C(7)-C(8)	121.50	121.29
9	H(40)-C(19)-C(20)	110.61	110.60	53	C(7)-C(8)-H(30)	119.49	119.51
10	C(19)-C(20)-C(21)	120.14	120.16	54	C(7)-C(8)-C(9)	120.50	120.51
11	C(19)-C(20)-C(25)	120.72	120.71	55	H(30)-C(8)-C(9)	120.02	119.98
12	C(20)-C(21)-H(41)	120.50	120.54	56	C(8)-C(9)-H(31)	120.93	120.57
13	C(20)-C(21)-C(22)	119.72	119.82	57	C(8)-C(9)-C(4)	119.94	119.91
14	H(41)-C(21)-C(22)	119.78	119.64	58	H(31)-C(9)-C(4)	119.13	119.52
15	C(21)-C(22)-CI(52)	119.14	119.21	59	C(9)-C(4)-C(5)	119.76	119.65
16	C(21)-C(22)-C(23)	121.49	121.36	60	C(6)-O(50)-C(10)	121.04	120.01
17	CI(52)-C(22)-C(23)	119.37	119.43	61	O(50)-C(10)-O(51)	121.01	123.43
18	C(22)-C(23)-H(42))	120.25	120.28	52	O(50)-C(10)-C(11)	109.30	110.27
19	C(22)-C(23)-C(24)	118.56	118.67	63	O(51)-C(10)-C(11)	126.69	126.30
20	H(42)-C(23)-C(24)	121.19	121.05	64	C(10)-C(11)-H(32)	116.81	116.53
21	C(23)-C(24)-H(43)	119.46	119.53	65	C(10)-C(11)-C(12)	119.88	119.67
22	C(23)-C(24)-C(25)	120.57	120.52	66	H(32)-C(11)-C(12)	123.32	123.80
23	H(43)-C(24)-C(25)	119.97	119.96	67	C(11)-C(12)-H(33)	116.30	116.75
24	C(24)-C(25)-H(44)	119.88	119.72	68	C(11)-C(12)-C(13)	127.80	127.70
25	C(24)-C(25)-C(20)	120.52	120.50	69	H(33)-C(12)-C(13)	115.90	115.55
26	H(44)-C(25)-C(20)	119.59	119.73	70	C(12)-C(13)-C(14)	118.54	118.38
27	C(25)-C(20)-C(21)	119.14	119.13	71	C(12)-C(13)-C(18)	128.19	123.13
28	N(46)-C(1)- N(47)	111.53	111.32	72	C(13)-C(14)-H(34)	119.06	119.44
29	N(46)-N(45)- H(26)	120.15	120.66	73	C(13)-C(14)-C(15)	121.05	120.99
30	N(46)-N(45)- C(2)	114.65	113.86	74	H(34)-C(14)-C(15)	119.89	119.58
31	N(46)-C(1)-C(19)	126.26	126.73	75	C(14)-C(15)-H(35)	119.86	119.86
32	H(26)-N(45)-C(2)	125.20	125.47	76	C(14)-C(15)-C(16)	119.93	119.89
33	N(45)-C(2)-N(47)	101.04	101.81	77	H(35)-C(15)-C(16)	120.21	120.25
34	N(45)-C(2)-O(49)	130.04	129.50	78	C(15)-C(16)-H(36)	120.17	120.18
35	O(49)-C(2)-N(47)	128.92	128.70	79	C(15)-C(16)-C(17)	119.76	119.77
36	C(2)-N(47)-N(48)	130.57	130.83	80	H(36)-C(16)-C(17)	119.07	120.04
37	N(47)-C(1)-C(19)	122.21	121.96	81	С(16)-С(17)-Н(37)	119.99	120.00
38	N(47)-N(48)-C(3)	118.86	119.84	82	C(16)-C(17)-C(18)	120.30	120.26
39	N(48)-C(3)-H(27)	122.07	122.37	83	H(37)-C(17)-C(18)	119.71	119.74
40	N(48)-C(3)-C(4)	120.06	120.31	84	C(17)-C(18)-H(38)	119.43	119.17
41	H(27)-C(3)-C(4)	117.87	117.32	85	C(17)-C(18)-C(13)	120.70	120.61
42	$\frac{C(3)-C(4)-C(5)}{C(2)-C(4)-C(5)}$	117.85	117.93	86	H(38)-C(18)-C(13)	119.88	120.22
43	C(3)-C(4)-C(9)	122.39	122.42	87	C(18)-C(13)-C(14)	118.27	118.49
44	C(4)-C(5)-H(28)	120.26	120.74				

Tablo 4. 5Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan Bağ Açıları (A⁰)

Ba	ğ Uzunlukları	B3LYP	HF	Bağ Uzunlukları		B3LYP	HF
1	C(1)-N(46)	1.299	1.268	29	C(5)-H(28)	1.083	1.074
2	C(1)-N(47)	1.389	1.380	30	C(5)-C(6)	1.394	1.383
3	C(1)-C(19)	1.500	1.499	31	C(6)-O(50)	1.391	1.378
4	C(19)-H(39)	1.097	1.084	32	C(6)-C(7)	1.393	1.376
5	C(19)-H(40)	1.097	1.084	33	C(7)-H(29)	1.085	1.074
6	C(19)-C(20)	1.515	1.513	34	C(7)-C(8)	1.398	1.390
7	C(20)-C(21)	1.399	1.387	35	C(8)-H(30)	1.086	1.075
8	C(20)-C(25)	1.399	1.388	36	C(8)-C(9)	1.390	1.379
9	C(21)-H(41)	1.086	1.074	37	C(9)-H(31)	1.084	1.073
10	C(21)-C(22)	1.393	1.382	38	O(50)-C(10)	1.379	1.344
11	C(22)-CI(52)	1.761	1.745	39	C(10)-O(51)	1.212	1.187
12	C(22)-C(23)	1.393	1.382	40	C(10)-C(11)	1.472	1.476
13	C(23)-H(42)	1.085	1.073	41	C(11)-H(32)	1.085	1.072
14	C(23)-C(24)	1.395	1.385	42	C(11)-C(12)	1.347	1.328
15	C(24)-H(43)	1.086	1.075	43	C(12)-H(33)	1.089	1.076
16	C(24)-C(25)	1.394	1.384	44	C(12)-C(13)	1.462	1.473
17	C(25)-H(44)	1.087	1.076	45	C(13)-C(14)	1.407	1.392
18	N(45)-N(46)	1.380	1.370	46	C(13)-C(18)	1.409	1.396
19	N(45)-H(26)	1.008	0.992	47	C(14)-H(34)	1.087	1.076
20	N(45)-C(2)	1.371	1.347	48	C(14)-C(15)	1.393	1.386
21	C(2)-O(49)	1.222	1.202	49	C(15)-H(35)	1.086	1.075
22	N(47)-C(2)	1.419	1.387	50	C(15)-C(16)	1.395	1.383
23	N(47)-N(48)	1.372	1.366	51	C(16)-H(36)	1.087	1.075
24	N(48)-C(3)	1.289	1.260	52	C(16)-C(17)	1.399	1.389
25	C(3)-H(27)	1.088	1.074	53	С(17)-Н(37)	1.087	1.075
26	C(3)-C(4)	1.466	1.476	54	C(17)-C(18)	1.390	1.380
27	C(4)-C(5)	1.403	1.387	55	C(18)-H(38)	1.086	1.074
28	C(4)-C(9)	1.406	1.395				

Tablo 5. 5 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan Bağ Uzunlukları (A⁰)

	DFT	HF		DFT	HF			
C1	0.556	0.620	C19	-0.437	-0.406	H36	0.139	0.210
C2	0.825	1.058	C20	0.182	0.055	H37	0.139	0.209
C3	0.038	0.097	C21	-0.168	-0.189	H38	0.137	0.212
C4	0.117	-0.033	C22	-0.065	-0.131	H39	0.186	0.222
C5	-0.199	-0.229	C23	-0.128	-0.184	H40	0.186	0.222
C6	0.350	0.405	C24	-0.128	-0.192	H41	0.152	0.229
C7	-0.159	-0.222	C25	-0160	-0.205	H42	0.155	0.230
C8	-0.142	-0.204	H26	0.358	0.420	H43	0.141	0.214
С9	-0.154	-0.190	H27	0.214	0.291	H44	0.135	0.210
C10	0.618	0.812	H28	0.168	0.237	N45	-0.519	-0.659
C11	-0.215	-0.348	H29	0.146	0.225	N46	-0.320	-0.327
C12	-0.146	-0.120	H30	0.140	0.214	N47	-0.420	-0.629
C13	0.166	0.016	H31	0.150	0.232	N48	-0.313	-0.319
C14	-0.186	-0.215	H32	0.153	0.222	O49	-0.537	-0.653
C15	-0.131	-0.203	H33	0.171	0.247	O50	-0.548	-0.707
C16	-0.122	-0.192	H34	0.143	0.216	051	-0.479	-0.569
C17	-0.131	-0.204	H35	0.140	0.211	CI52	-0.027	-0.006
C18	-0.169	-0.202						

Tablo 6. 5 Tipi bileşiğin Atomlarının B3LYP ve HF Yöntemlerine Göre Hesaplanan Formal Yük Değerleri

E_{HOMO} (B3LYP) : -0,25096 Hatree

E_{LUMO} (B3LYP) : -0,07405 Hatree

E_{HOMO} (HF) : -0,31875 Hatree

E_{LUMO} (HF) : 0,06901 Hatree

Şekil 4. 5 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan HOMO-LUMO Enerjileri

Tablo 7. 5 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan Dipol Moment Değerleri

Dipol Moment	B3LYP	HF
μ _x	3.0562	4.4290
μ_{y}	1.9774	2.8851
μ _z	4.7484	6.0350
μ _{Toplam}	5.9831	8.0226

Tablo 8. 5 Tipi bileşiğin B3LYP ve HF Yöntemlerine Göre Hesaplanan Enerji

	Enerji	B3LYP	HF	
_	(a.u.)	-1868.951	-1859.621	_

Sonuç ve Tartışma

Spektral verileri incelenenen bileşiğin teorik ve deneysel ¹³C-NMR ve ¹H-NMR değerleri Tablo 1.'de verilmiştir. En küçük kareler yöntemine göre (teorik hesaplanan değerler/deneysel hesaplanan değerler) bulunan R değerleri arasında yakın bir ilişki bulunmuştur. R değerleri arasında bireysel ilişki değerlendirildiğinde; B3LYP/631G(d) için; ¹³C: 0.9955, ¹H: 0.6871, HF/631G(d) icin; ¹³C: 0,9915, ¹H: 0, 6372, B3LYP/631G(d) (DMSO) icin; ¹³C: 0,9952, ¹H: 0.7207, HF/631G(d) (DMSO) icin; ¹³C: 0.9890, ¹H: 0.6576 şeklinde bir ilişki olduğu görülmüştür. Bulunan standart hata oranı δ calc=a δ exp + b formülüne göre hesaplanmış ve bu oranlar Tablo 8'de gösterilmiştir. Teorik ve deneysel karbon ve proton kimyasal kayma oranları arasında a, b ve R değerine göre doğrusal bir protonları hariç korelasyon gözlenmiştir. N-H B3LYP/631G(d), HF/631G(d), B3LYP/631G(d) (DMSO) ve HF/631G(d) (DMSO) metodlarına göre incelenen tüm bileşikler için hesaplanan ve deneysel olarak elde edilen değerler arasında bir uyum görülmüştür (Şekil 5 ve 6). Buna karşın, N-H protonları için hesaplanan değerler ile deneysel değerler arasında beklenenden daha yüksek bir fark ortaya çıkmıştır. Bunun nedeni olarak da 4,5-dihidro-1H-1,2,4-triazol-5-on halkasındaki N-H protonunun asidik özellik taşıması gösterilebilir (Denklem 7).

4,5-Dihidro-1*H*-1,2,4-triazol-5-on halkasındaki protonun asidik karakteri, NaOH gibi bir baz eşliğinde koparılabilmesi ve dimetilsülfatın metil grubu ile yer değiştirmesinden kolaylıkla anlaşılabilmektedir. Bu durum yapılan potansiyometrik titrasyon ile de desteklenmektedir. Nitekim, tuz oluşumu üzerinden N-alkil-1,2,4-triazol türevlerinin elde edildiği bilinmektedir [7, 17-19].

Rilesik		B3LY	P	HF					
No	R	SE(Standart	я	h	R	SE(Standart	ล	h	
110		Hata)	ta)		Ň	Hata)	u	~	
¹³ C	0,9955	2,3155	-15,1032	1,0841	0,9915	3,1844	1,7299	1,0194	
¹ H	0,6871	1,2432	1,1158	0,8676	0,6372	1,3187	2,3883	0,7309	

Tablo 9. 5 Molekülünün B3LYP, HF, B3LYP(DMSO) ve HF(DMSO) Metodlarına göre hesaplanmış ¹³C-NMR ve ¹H-NMR'ı için bulunan R, standart hata, a ve b değerleri

Rilesik		B3LYP D	OMSO	HF DMSO					
No	R	SE(Standart	9	h	R	SE(Standart	9	h	
110		Hata)	Hata)	D	K	Hata)	a		
¹³ C	0,9952	2,4016	-13,7986	1,0716	0,9890	3,6292	3,4682	1,0031	
¹ H	0,7207	1,1863	0,4801	039321	0,6576	1,2891	1,9459	0,7728	

Şekil 5. 5 Molekülünün B3LYP/631(d) ve HF/631(d) yöntemleri kullanılarak Göre ¹³C ve ¹H Deneysel ve Teorik NMR Kimyasal Kayma Değerlerinin karşılaştırılması

Şekil 6. 5 Molekülünün B3LYP/631(d) (DMSO) ve HF/631(d) (DMSO) yöntemleri kullanılarak Göre ¹³C ve ¹H Deneysel ve Teorik NMR Kimyasal Kayma Değerlerinin karşılaştırılması

Hesaplamalar sonucunda B3LYP modeli ile hesaplanan bağ uzunluklarının HF modelindekinden daha büyük olduğu görüldü. Bilindiği gibi HF modeli elektron korelasyonunu içermediğinden bağ uzunluklarını daha kısa hesaplar (merkez karbon atomları). B3LYP modeli elektron korelasyonunu göz önüne aldığından halkalar üzerinde bulunan π -elektronları etkileşimi nedeni ile merkez karbon atomları arasındaki bağ uzunluğunu daha kısa hesaplar [20]. Düzlem açıları, B3LYP modelinde HF modeline göre daha büyüktür. Düzlem açısı moleküllerin geometrisinde önemli bir faktördür, çünkü düzlem açısı moleküldeki etkileşen iki kuvvetin denge durumunda oluşmaktadır.

Teşekkür

Bu çalışma Bilimsel Araştırma Projeleri Koordinatörlüğü (2014-FEF 24) tarafından desteklenmiştir.

Kaynaklar

 Eydemir, H. "Biyolojik Aktif Bazı Maddelerin Teorik Olarak İncelenmesi", Yüksek Lisans Tezi, Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir (2010).

- 2. Roger, R., Neilson, O. G., Chem. Rev., 61: 179-211 (1961).
- 3. Pinner, A., "Die imidoäther und ihre derivate", 1. Auflage, Oppenheim, Berlin (1892).
- 4. Sykes, P., "A guidebook to mechanizm in organic chemistry", Fourth Edition, Great Britain (1977).
- 5. Pesson, M., Dupin, S., Antoine, M., Bull. Soc. Chim. France, 1364-1371 (1962).
- 6. Ün, R., İkizler, A., Chim. Acta Turc., 3: 113-132 (1975).
- 7. Yüksek, H., "3-Alkil(aril)-4-amino-4,5-dihidro-1,2,4-triazol-5-on'ların Bazı Reaksiyonlarının İncelenmesi", Doktora Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1992).
- 8. İkizler, A. A., Yüksek, H., Org. Prep. Proced. Int., 25: 99-105 (1993).
- **9.** Karabacak, E., "3-m-Klorobenzil-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on ve bazı türevlerinin sentezi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1998).
- Karabacak, M., "3-p-metoksibenzil-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on üzerine bir çalışma", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (1998).
- **11.** Kara, E., "3-Siklopropil-4-amino-4,5-dihidro-1H-1,2,4-triazol-5-on bileşiğinin sentezi ve bazı reaksiyonlarının incelenmesi", Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, Trabzon (2000).
- İkizler, A. A., "3-Substitue-4-amino-Δ²-1,2,4-triazolin-5-on'ların ester karbetoksi-hidrazon'lardan elde edilmeleri ve reaksiyonlarının incelenmesi", Doçentlik Tezi, İstanbul Üniversitesi Kimya Fakültesi, İstanbul (1975).
- 13. İkizler, A. A., Ün, R., Chim. Acta Turc., 7: 269-290 (1979).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R., Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Jr.Vreven, T.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, N.; Staroverov, V.N.; Kobayashi, R.; Normand, J., Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin; L.R.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; and Fox, D.J. Gaussian Inc., Wallingford, CT., 2009.
- 15. Wolinski, K., Hilton, J.F., Pulay, P. J., Am. Chem. Soc., 112, 512, (1990).
- **16.** Jamróz, M.H. Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw, (2004).
- 17. Bahçeci, S., Yüksek, H., Ocak, Z., Köksal, C., Özdemir, M., Acta Chim. Slov., 49 (4): 783-794 (2002).
- 18. Yüksek, H., Demirbaş, A., Ikizler, A., Johansson, C. B., Çelik, C., Ikizler, A. A., *Arzneim.-Forsch/Drug Res.*, 47 (4): 405-409 (1997).
- Bahçeci, S., Yüksek, H., Ocak, Z., Azaklı, I., Alkan M., Ozdemir, M., *Collect. Czech. Chem. Commun.*, 67 (8): 1215-1222 (2002).
- **20.** Lee, S.Y., Bull. Korean chem. Soc., 19(1), 93-98, (1998).