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1. INTRODUCTION 

 

A number of very interesting problems arising in the theories of inventory, stock control, queuing theory, 

reliability, mathematical insurance, stochastic finance and so on can be expressed by the help of renewal 

processes, renewal – reward processes, random walk processes and modifications of these kind of 

processes.  

 

There are important theoretical results about this object in the literature: ([1] – [6], etc.). Theoretical 

results on these processes (renewal processes, renewal – reward processes, random walk processes, etc.) 

have complex mathematical structures and are not practical for application purposes. Previous research is 

concentrated on two areas in order to simplify the complexity proposed by the theory. One of these areas 

is the simulation method which helps to find numerical results with the use of computer. The other one is 

asymptotic method that assists to obtain closed approximations for better use in application, which is the 

method employed in this study. The literature exhibits many important studies on asymptotic methods: 

([4], [7], [8], [9], [10], etc.). The most efficient one of these approaches is to use the asymptotic methods 

and find approximated results that are close to exact expressions. In this study, three-term asymptotic 

expansions are used. 

 

The first and most important specialty of this study is using a model with an asymmetric triangular 

distributed interference of chance. [9] and [10] investigated a similar model with a symmetric triangular 

distributed interference of chance. Under the case of symmetric distribution, the mode and middle point 

of the distribution coincide and is equal to 0.5(S + s) where S is the maximum stock level and s is the 

stock control level. However for many examples it is not a realistic assumption to keep the stock level at 
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the middle point of distribution. An immediate implication of this assumption is that the stock finishes 

quickly and it is needed to refill the stock frequently, which leads to various types of costs such as 

transportation, warehouse rent, etc. and loss of customer reputation. In order to overcome this adversity, it 

is better to use a model with an asymmetric triangular distributed interference of chance.  

 

As second specialty, we assumed that the delay time (lead time) has positive value. Until now in most of 

the studies, there was an assumption about taking lead time as zero [9] and [10]. On the other hand, it is 

not a valid assumption for all problems, since in real world problems it is not possible to refill a depot 

immediately in every time. For example, this delay time may be due to transportation, trying to provide 

demands from suppliers, etc. Furthermore, it must be mentioned that this lead time is not deterministic 

because of variability of delivery time. With respect to this variability, in this study lead time is a random 

variable and can have arbitrary distribution.  

 

Now, let us express the model as follows. 

 

The model: X(t) is the stock level in a depot at time t. As an assumption, the stock level X(t) at time t = 

0 is X(0) = z ∈ [s, S] where 0 ≤ s < 𝑆 < ∞. Stock level decreases according to demand quantities 

ηn , n = 1, 2,… at random times Tn, n = 1, 2, … until the stock level falls below to control level s. Random 

variables θn, n = 1, 2, … express the waiting time (lead time) after the stock level decreases below to s. 
The change of the stock level over time can be shown as: X(Tn) = z − Yn. Here, Tn = ∑ ξi

n
i=1 , Yn =

∑ ηi
n
i=1 , n = 1,2,3,…, ξn and ηn are interpreted as inter – arrival time and demand quantity respectively. 

 

When the stock level falls below the control levels at time τ1, stock level remains stable at s for lead time 

θ1 (delay time) which is random. After the lead time θ1 the stock level is instantaneously brought to 

random level ζ1 ∈ [s; S]. Then, the first period has been completed. The second period starts from initial 

stock level ζ1 at the time γ1 = τ1 + θ1. Next demand quantities fall from new starting level ζ1 until stock 

level decreases below to control levels at time τ2 and then stock level remains same until time γ2 = τ2 +
θ2 where θ2 is the lead time. At the time γ2, the stock level is again immediately brought to random level 

ζ2. Then, the second period has been completed. Afterwards the process continues in similar manner. 

Here, random variables ζn, n = 1, 2, …express the discrete interference of chance and have asymmetric 

triangular distribution on [s, S].  
 

[9] and [10] considered a similar model with a symmetric triangular distributed interference of chance. [9] 

proved the weak convergence theorem for the ergodic distribution of the process. Meanwhile [10] 

investigated the process with same interference of chance and found three term asymptotic expansions for 

the ergodic moments. The reason why a triangular distributed interference of chance is chosen for these 

types of models is explained in [10]. According to this explanation, it is needed that ζn  takes values close 

to s and S with a low probability and takes its main values from inside of the interval (s, S) with higher 

probability. Triangular distribution provides these qualifications. For these reasons, [9] and [10] 

investigated similar model with symmetric triangular distributed interference of chance. However, using 

an assumption such that the discrete interference of chance has symmetric triangular distribution may not 

be adequate for modeling some real world problems. That’s why we consider a stock model with an 

asymmetric triangular distributed interference of chance. Our motivation for this study is to find more 

adequate solution for the following real world problem which is given in [10]: 

 

The real model: A company operating in the energy sector produces, stores, fills, and distributes 

liquefied petroleum gas (LPG). Domestic LPG distribution is carried out pipelines and carried from the 

LPG production center (a city in Turkey) to the 30 dealers by tankers with the capacities of 22 m3 

(approximately 10-11 tons) and 35 m3(approximately 17 − 18 tons). The tankers are kept under 

surveillance with the GPS 24 h a day and 7 days a week. After delivering the needed amount of gas to the 

dealer, if more than 10% of the capacity of the tanker is left over, the tanker waits in its position until the 

next order of any dealer. Each dealer has a storage capacity of S = 30 m3. Random amounts of LPG (ηn) 
are sold from these storage tanks at random times (ξn). When at random moments  τn, n ≥ 1, the level of 

LPG in the tank of the dealer falls below the control level s = S 5,⁄  a demand signal is automatically sent 
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online to the production center. As a response to demand, the nearest tanker to the dealer is directed to the 

demanding dealer. If there is no tanker near to the dealer, a full tanker is sent from the production center. 

 

For safety concerns (in order not to allow the gas pressure to reach its maximum value), the dealers 

usually fill about 85% of the capacity (S) of their tanks. However, with a low probability, by taking a risk 

the dealers fill their tanks to the full capacity when the need arises. On the other hand, even if the amount 

of gas in the tanker does not meet 85% of the dealer's tank, the existing amount of gas in the tanker is 

loaded into the dealer's tank. Summarizing the working principle mentioned above, after each filling, 

85% of the tank of each dealer is most probably filled. 

 

The concept of filling the depot approximately 85% indicates us using an asymmetric triangular 

distributed interference of chance for modeling this problem. Therefore, in our opinion, the process that 

expresses the working principle of the depot can be considered as a stochastic process with an asymmetric 

triangular distributed interference of chance. 

 

The aim of this study is to construct the stochastic process mathematically, which expresses the above 

mentioned model, and to obtain asymptotic expansions with three terms for the nth ergodic moments of 

this process.  

 

The rest of the paper is built as follows. In the following section, we give the mathematical construction 

of the process X(t). The ergodicity of the process X(t) is proved in Section 3. In Section4 and Section 5, 

exact expressions of ergodic distribution and moments are derived and also asymptotic expansions for the 

moments of the ergodic distribution of the process X(t) are obtained respectively. In Section 6, we 

investigated a real world problem about semi-Markovian inventory model of type (s, S) as an example to 

check the closeness of the asymptotic results with exact ones. Finally, the last section is devoted to the 

concluding remarks and future research directions. 

 

2. MATHEMATICAL CONSTRUCTION OF THE PROCESS 𝐗(𝐭) 
 

Let {ξn,  ηn, ζn,  θn}, n = 1, 2, 3… be a sequence of random variables defined on the same probability 

space (Ω, ℱ, P), such that variables in each sequences are independent and identically distributed. 

Suppose that ξn, ηn, ζn and θn can take only non-negative values. Denote the distribution functions of 

 ξn, ηn, ζn, θn by 

Φ(t) = P{ξ1 ≤ t}, F(x) = P{η1 ≤ x}, π(z) = P{ζ1 ≤ z},H(t) = P{θ1 ≤ t}, 
respectively. Define the renewal sequences {Tn} and {Yn} with the help of sequences {ξn} and {ηn} as 

follows: 

T0 = Y0 = 0; Tn =∑ξi; 

n

i=1

Yn =∑ηi; 

n

i=1

n = 1,2,3,… 

and a sequence of integer valued random variables {Nn}, n = 0, 1, 2, … as: 

N0 = 0;N1 = N1(z) = inf{k ≥ 1: z − Yk < 𝑠} ; z ∈ [s, S], 
Nn+1 = Nn+1(ζn) = inf{k ≥ Nn + 1: ζn − (Yk − YNn) < 𝑠} ; n = 1,2,3,… 

Here inf(∅) = +∞ is stipulated. Put 

τ0 = 0; τ1 = τ1(z) = TN1(z) = ∑ ξi

N1(z)

i=1

;  γ1 = τ1 + θ1; 

τn = τn(ζn−1) = TNn =∑ξi

Nn

i=1

; γn = τn + θn; n = 2,3,… 

and define ν(t) as  ν(t) = max{n ≥ 0: Tn ≤ t}, t > 0. 

 

Now let construct the stochastic process X(t): 
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X(t) = ∑max{s, ζn − (Yν(t) − YNn)} I[γn;γn+1)(t).

∞

n=0

 

Here indicator function IA(t) of the set A is defined as follows: 

IA(t) = {
1, t ∈ A
0, t ∉ A

. 

Process X(t) is known as “Renewal-reward process with discrete interference of chance” in literature. 

Throughout this study, it is assumed that the random variable ζ1 has asymmetric triangular distribution 

with parameters (s,m, S). For this reason, the process can be called “Renewal-reward process with an 

asymmetric triangular distributed interference of chance”. A sample trajectory of this process is shown in 

Figure 1. 

 

 
Figure 1.A sample path of the process 𝑋(𝑡). 

 

3. ERGODICITY OF THE PROCESS 𝐗(𝐭) 
 

For investigating the stationary characteristics of the process, it is essential to prove the ergodicity of the 

process X(t). Because of the calculation of n fold integrals, it is quite hard to do required evaluations 

about finite dimensional distributions. To compute stationary characteristics of the process partially 

removes the mentioned adversities. For this aim, first of all, we will discuss the ergodicity of the process. 

 

Proposition 3.1: Let the initial sequence of the random variables {ξn, ηn, ζn, θn} satisfy the following 

supplementary conditions:  

1) 0 < 𝐸(ξ1) < +∞,  

2) 0 < 𝐸(θ1) < +∞,  

3) E(η1) > 0, 

4) η1 is a non-arithmetic random variable,  

5) Random variable ζ1 has asymmetric triangular distribution with parameters (s,m, S). 
 

Then the process X(t) is ergodic and the following relation is true with probability 1 for every bounded 

and measurable function f(x) (f: [0;+∞) → R): 

lim
t→∞

1

t
∫ f(X(u))du

t

0

=
1

E(γ1)
∫∫∫ f(v)Pz{γ1 > 𝑡; X(t) ∈ dv}dtdπ(z)

∞

0

S

s

.

S

s

                                                        (1) 

Proof: The process X(t) belongs to a wide class of stochastic processes known as "Processes with a 

discrete interference of chance". This notion is firstly introduced to literature by A. N. Kolmogorov. For 

this class, the general ergodic theorem of type Smith's ‘key renewal theorem’ exists in the literature ([6]). 

According to this theorem, to prove the ergodicity of the processes with a discrete interference of chance, 

it is sufficient to show that the following two assumptions are hold. 
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Assumption 1. Choosing a sequence of ascending random times is required such that the values of the 

process X(t) at these times form an embedded Markov chain that is ergodic. For this purpose, it is 

sufficient to consider the sequence of random times {γn}, n ≥ 0, defined in Section 2, which are the 

stopping times. The values of the process X(t) at these times are equal to ζn = X(γn), n ≥ 1 which form 

an embedded Markov chain. In our case, the embedded Markov chain {ζn}, n ≥ 1 is ergodic with a 

stationary distribution π(z) = limn→∞ P{ζn ≤ z} = P{ζ1 ≤ z} because the random variables ζn, n =
1, 2, … are independent and identically distributed random variables in the interval [s, S]. Therefore, the 

first assumption of the general ergodic theorem ([6]) is satisfied. 

 

Assumption 2. The expected value of the times between successive stopping times {γn}, n = 1,2,3,… 

should be finite, that is E(γn − γn−1) < ∞, 𝑛 = 1,2, … For this aim, it is sufficient to show that: 

E(γ1(z)) = E(τ1(z) + θ1) = E(τ1(z)) + E(θ1) = E(ξ1)E(N1(z)) + E(θ1) < ∞;                                     (2) 

E(γn − γn−1) = E(γ1(ζ1)) = E(τ1(ζ1) + θ1) = E(ξ1)E(N1(ζ1)) + E(θ1) < ∞;  𝑛 ≥ 2, 3, …                 (3) 
 

By the conditions of Proposition 3.1, E(θ1) < ∞ and E(ξ1) < ∞. Therefore, to satisfy the inequalities in 

Eq. (2) and Eq. (3), the inequalities E(N1(z)) < ∞ and E(N1(ζ1)) < ∞ should be hold. Note that, 

E(N1(z)) ≡ Uη(z − s) < ∞ for each z ∈ [s, S] (see, [5], p.185). Here Uη(x) is renewal function, 

generated by the sequence of the random variables {ηn}.  
 

At the same time, the renewal function Uη(x) is a nondecreasing function. Therefore, for each z ∈

[s, S], Uη(z − s) ≤ Uη(S − s) < ∞ is provided. Hence, we have: 

E(N1(ζ1)) ≡ ∫E(N1(z))dπ(z)

S

s

= ∫Uη(z − s)dπ(z)

S

s

≤ Uη(S − s) < ∞. 

Thereby,E(γ1(z)) < ∞ and E(γn − γn−1) < ∞, 𝑛 = 2, 3, … are provided.This shows that the Assumption 

2 is also satisfied. So, the process X(t) is ergodic and the relation in Eq. (1) is hold. This concludes the 

proof of Proposition 3.1.∎ 

 

4. EXACT EXPRESSIONS FOR ERGODIC DISTRIBUTION OF  𝐗(𝐭) AND ITS MOMENTS 

 

In section 3, the ergodicity of the process X(t) is proved under the conditions of Proposition 3.1. Then, 

QX(x) is the ergodic distribution function of the process X(t), i.e. 

QX(x) = lim
t→∞

P{X(t) ≤ x}, x ∈ [s, S]. 

With the help of Eq. (1), the exact formula for the ergodic distribution QX(x) of the process X(t) can be 

obtained.  

 

Theorem 4.1. Let the conditions of Proposition 3.1 be satisfied. The ergodic distribution function QX(x) 
of the process X(t) can be written as follows for each x ∈ [s, S]: 

QX(x) = 1 −
E(Uη(ζ1 − x))

E (Uη(ζ1 − s)) + K
 , x ∈ [s, S]. 

Here, K = E(θ1)/E(ξ1); E (Uη(ζ1 − x)) ≡ ∫ Uη(z − x)dπ(z)
S

s
; π(z) = P{ζ1 ≤ z}; 

π′(x) ≡ pζ(x) =

{
 
 

 
 2(x − s)

(m − s)(S − s)
,   s ≤ 𝑥 ≤ 𝑚

2(S − x)

(S − m)(S − s)
,   m < 𝑥 ≤ 𝑆

. 

 

Proof. Ergodic distribution function of the process X(t) is as follows: 

QX(x) = lim
t→∞

P{X(t) ≤ x} ;   x ∈ [s, S]. 

Define indicator function: 

f(v) ≡ fx(v) = I[s,x](v) = 1, if  v ∈ [s, x]; and I[s,x](v) = 0  if v ∉ [s, x], x ∈ [s, S]. 



179 Zulfiye HANALIOGLU, Tahir KHANIYEV / GU J Sci, 31(1): 174-187(2018) 

 

Substituting the expressed indicator function instead of function f(v) in Eq. (1), the following expression 

can be obtained for the ergodic distribution (QX(x))of the process X(t), for each x ∈ [s, S]: 

QX(x) =
1

E(γ1)
∫ ∫Pz{γ1 > 𝑡; 𝑋(t) ≤ x}dtdπ(z).

S

s

∞

t=0

                                                                                            (4) 

For simplicity we introduce the following notation: 

G(t, x, z) ≡ Pz{γ1 > 𝑡; 𝑋(t) ≤ x}. 
The function G(t, x, z) can be written as follows: 

G(t, x, z) = G1(t, x, z) + G2(t, x, z).                                                                                                                           (5) 
Here G1(t, x, z) ≡ Pz{t < τ1; X(t) ≤ x}; G2(t, x, z) ≡ Pz{τ1 ≤ t < γ1; X(t) ≤ x}.  
 

Let us calculate the function G1(t, x, z), where x ∈ [s, S]: 

G1(t, x, z) = Pz{t < τ1; X(t) ≤ x} = ∑Pz{ν(t) = n; τ1 > 𝑡; 𝑋(𝑡) ≤ 𝑥}

∞

n=0

.                                                       (6) 

Here, ν(t) = max{n ≥ 0; Tn ≤ t}. Taking into account the notations Tn = ∑ ξi
n
i=1  and Yn = ∑ ηi

n
i=1  in the 

Eq.(6), we have: 

G1(t, x, z) = ∑ P{Tn ≤ t < Tn+1}P{z − Yn > 𝑠;  𝑧 − Yn ≤ x}

∞

 n=0

 

=∑(Φn(t) − Φn+1(t))(Fn(z − s) − Fn(z − x)).

∞

n=0

                                                                                            (7) 

Here, Φn(t) = P{Tn ≤ t} and Fn(z) = P{Yn ≤ z}.  
Now, compute the function G2(t, x, z), when  x ∈ [s, S]: 

G2(t, x, z) = ∫∑P{z − Yn−1 ≥ s;  z − Yn < 𝑠}P{Tn ∈ du}P{θ1 > 𝑡 − 𝑢}

∞

n=1

t

0

. 

On the other hand, P{z − Yn−1 ≥ s;  z − Yn < 𝑠} = Fn−1(z − s) − Fn(z − s).  
 

In summary, the function G2(t, x, z) can be written as follows: 

G2(t, x, z) = ∑[Fn−1(z − s) − Fn(z − s)][Φn(t) − H(t) ∗ Φn(t)]

∞

n=1

, x ∈ [s, S].                                            (8) 

Here, H(t) ∗ Φn(t) = ∫ H(t − u)
t

0
dΦn(u).  

 

Applying Laplace transform to Eq.(7) with respect to parameter t the following expression is derived: 

G̃1(λ, x, z) = ∑[Fn(z − s) − Fn(z − x)]
φn(λ)(1 − φ(λ))

λ

∞

n=0

.                                                                            (9) 

Here, φ(λ) ≡ ∫ e−λtdΦ(t)
∞

0
= E(e−λξ1);   λ > 0. 

 

Because E(ξ1) is finite, limλ→0
1−φ(λ)

λ
= E(ξ1). Therefore by taking limit of Eq. (9) when λ goes to zero, 

we obtain: 

G̃1(0, x, z) ≡ lim
λ→0

G̃1(λ, x, z) =∫ G1(t, x, z)dt

∞

0

= E(ξ1)[Uη(z − s) − Uη(z − x)].                                       (10) 

In the same content, applying Laplace transform to Eq. (8) with respect to parameter t, the following 

expression is derived: 

G̃2(λ, x, z) ≡ ∫ e−λt  G2(t, x, z)dt =

∞

0

∑[Fn−1(z − s) − Fn(z − s)]
(1 − H∗(λ))φn(λ)

λ

∞

n=1

.                          (11) 

Here, H∗(λ) ≡ ∫ e−λtdH(t)
∞

0
=  E(e−λθ1). 
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Because E(θ1) is finite, limλ→0
(1−H∗(λ))

λ
= E(θ1). Therefore by taking limit of Eq. (11) when λ goes to 

zero, we have: 

G̃2(0, x, z) ≡ lim
λ→0

G̃2(λ, x, z) = E(θ1)∑[Fn−1(z − s) − Fn(z − s)]

∞

n=1

= E(θ1), z ∈ [s, S].                         (12) 

Therefore, by considering Eq. (10), Eq. (12) and Eq. (5), the following equation is derived for each 

x ∈ [s, S] and z ∈ [s, S]: 

G̃(0, x, z) = G̃1(0, x, z) + G̃2(0, x, z)= E(ξ1)[Uη(z − s) − Uη(z − x)] + E(θ1).                                          (13) 

Hence, substituting Eq. (13) in Eq. (4) we have: 

QX(x) =
1

E(γ1)
∫ G̃(0, x, z)dπ(z)

S

s

=
1

E(γ1)
∫ {E(ξ1) [E (Uη(ζ1 − s)) − E (Uη(ζ1 − x))] + E(θ1)}

S

s

dπ(z) 

(14) 
Using Wald identity, the following equation can be obtained: 

E(τ1) ≡ ∫E(τ1(z − s))dπ(z)

S

s

= E(ξ1)E (Uη(ζ1 − s)) 

On the other hand,  

E(γ1) = E(τ1 + θ1) = E(ξ1)E (Uη(ζ1 − s)) + E(θ1) = E(ξ1) {E (Uη(ζ1 − s)) + K}.                            (15) 

Here,K = E(θ1)/E(ξ1)  is the delay coefficient. 

 

Taking into account Eq. (15) in Eq. (14), we finally have: 

QX(x) = 1 −
E(Uη(ζ1 − x))

E (Uη(ζ1 − s)) + K
 , x ∈ [s, S]. 

This concludes the proof of Theorem 4.1.∎ 

 

It is possible to obtain some important results from Theorem 4.1. Two of them are given with following 

corollaries. Put X̃(t) ≡ X(t) − s and ζ̃1 = ζ1 − s and state the following results. 

 

Corollary 4.1. Let the conditions of Proposition 3.1 be satisfied. Then the process X̃(t) is ergodic and the 

ergodic distribution function can be presented as follows: 

QX̃(y) ≡ lim
t→∞

P{X̃(t) ≤ y} = 1 −
E(Uη(ζ̃1 − y))

K + E(Uη(ζ̃1))
 ,   y ∈ [0, S − s].                                                              (16) 

Let E(X̃n) is the nth order moment of the process X̃(t), i.e. 

E(X̃n) ≡ lim
t→∞

E (X̃n(t)) = ∫xndQX̃

S

s

(x), n = 1, 2, …   

 

Corollary 4.2. Let the conditions of Proposition 3.1 be satisfied. The exact expression for the nth order 

moment E(X̃n), n = 1,2,… of the ergodic distribution of the process X̃(t) can be written as follows: 

E(X̃n) =
n

K + E(Uη(ζ̃1))
∫ yn−1E(Uη(ζ̃1 − 𝑦)) dy

S−s

0

, n = 1,2,…                                                               (17) 

Here, ζ̃1 is a random variable having triangular distribution with parameters (0,m − s, S − s). 
 

Remark 4.1. As it can be seen from Corollary 4.2, the right hand side of Eq. (17) depends on the renewal 

function Uη(x). Except some special, finding the simple and obvious expression of the renewal function 

is quite hard. For this aim, an alternative expression for E(X̃n) is found in the following theorem. 
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Theorem 4.2. Let the conditions of Proposition 3.1 be satisfied. The exact expression of the nth order 

ergodic moment of the process X̃(t) can be presented as follows:  

E(X̃n) =
nE (Un(ζ̃1))

K + E(Uη(ζ̃1))
, n = 1,2,3,…                                                                                                               (18) 

Here, E (Un(ζ̃1)) = ∫ Un(y)dπ̃(y); Un(y) ≡ y
n−1 ∗ Uη(y) = ∫ tn−1Uη(y − t)dt

y

0

S−s

0
 

and π̃(y) = P(ζ̃1 ≤ y) = π(s + y), y ∈ [0, S − s]. 
 

Proof: Calculate the integral in the Eq.(17): 

In ≡ ∫ yn−1E(Uη(ζ̃1 − y)) dy

S−s

0

= ∫ yn−1 {∫ Uη(z − y)p̃(z)dz)

S−s

y

}dy

S−S

0

 

= ∫ p̃(z) {∫yn−1Uη(z − y)dy)

z

0

} dz

S−s

0

= ∫ Un(z)dπ̃(z)

S−s

0

= E(Un(ζ̃1)).                                                    (19) 

Here, p̃(z) = π̃′(z) = {

z

β2(1+α)
, 0 < 𝑧 ≤ 𝑚 − 𝑠

(2β−z)

β2(1−α)
, 𝑚 − 𝑠 < 𝑧 ≤ 𝑆 − 𝑠 

,  

β =
S−s

2
, α =

m−a

β
∈ [−1, 1], and a =

S+s

2
 is the middle point. Note that, we call α as the asymmetry 

coefficient and when α = 0 the asymmetry returns to symmetry. Substituting Eq. (19) in Eq. (17), Eq. 

(18) is obtained. This concludes the proof of Theorem 4.2. ∎ 

 

5. ASYMPTOTIC EXPANSIONS FOR THE ERGODIC MOMENTS OF THE PROCESS �̃�(𝐭) 
 

The main aim of this section is to obtain asymptotic expansions for nth order moment of the ergodic 

distribution of the process X̃(t). For this purpose, some required preliminary information is given by 

following propositions. 

 

Proposition 5.1. Let A(z) = ∫ Uη(y)dy
z

0
 and V(z) = ∫ yUη(y)dy

z

0
. Then, the Laplace transforms Ã(λ) 

and Ṽ(λ) of the function A(z) and V(z) can be written as follows: 

Ã(λ) =
1

λ2(1 − φ(λ))
; Ṽ(λ) =

1 − φ(λ) − λφ′(λ)

λ3(1 − φ(λ))2
.                                                                                         (20) 

Here  φ(λ) = E(exp(−λη1)), λ > 0. ∎ 

 

Using Tauber – Abel theorem for the Laplace transforms in Eq.(20), we can give the following 

proposition. 

 

Proposition 5.2. If m3 < ∞, then the following asymptotic expansions for A(z) and V(z) can be written, 

when z → ∞: 

A(z) =
1

2m1
z2 +

m2

2m1
2 z +

A

m1
+ o(1);  V(z) =

1

3m1
z3 +

m2

4m1
2 z

2 + o(z).                                                 (21) 

Here A = m21
2 −

1

2
m31;mk1 =

mk

km1
, mk = E(η1

k), k = 1,2,3.  ∎ 

 

Lemma 5.1. Let the conditions of Proposition 3.1 be satisfied and additionally m3 = E(η1
3) < +∞. Then 

three term asymptotic expansion for E (Uη(ζ̃1)) can be written as follows, when β → ∞: 

E (Uη(ζ̃1)) =
3 + α

3m1
β +

m2

2m1
2 + o(

1

β
).                                                                                                                (22) 

 

Proof. By definition of ζ̃1, the following equation can be written: 



182 Zulfiye HANALIOGLU, Tahir KHANIYEV / GU J Sci, 31(1): 174-187(2018) 

 

E (Uη(ζ̃1)) = ∫ Uη(z)dπ̃(z)

S−s

0

= ∫ Uη(z)dπ̃(z)

m−s

0

+ ∫ Uη(z)dπ̃(z)

S−s

m−s

.                                                      (23) 

Now, let us calculate the first integral in Eq.(23): 

I1 ≡ ∫ Uη(z)dπ̃(z)

m−s

0

 =
1

β2(1 + α)
∫ z

β(1+α )

0

Uη(z)dz =
1

β2(1 + α)
 V(β(1 +  α)).                                  (24) 

Taking account the expansion for V(z) from Eq.(23) into Eq.(24), the following expansion is derived: 

I1 =
1

β2(1 + α)
{
1

3m1
(β(1 +  α))

3
+
m2

4m1
2 (β(1 +  α))

2
+ o(β(1 +  α))} 

=
(1 + α)2

3m1
β +

m2(1 + α)

4m1
2 + o(

1

β
).                                                                                                                     (25) 

Now, calculate the second integral in Eq. (23): 

I2 ≡ ∫ Uη(z)dπ̃(z)

S−s

m−s

=
1

β2(1 − α)
[D(2β) − D(β(1 + α))].                                                                        (26) 

Here, D(x) = ∫ Uη(z)(2β − z)dz.
x

0
 By applying Proposition 5.2, we can obtain the following expansion 

for the integral D(2β), as β → ∞: 

D(2β) = 2β A(2β) − V(2β) =
(2β)3

6m1
+
m2

4m1
2
(2β)2 +

A

m1

(2β) + o(β).                                                     (27) 

In a similar way, the following asymptotic expansion can be also obtained for D(β(1 + α)), as β → ∞: 

D(β(1 + α)) = 2β A(β(1 + α)) − V(β(1 + α)) 

=
2(1 + α)(2 + α − α2)

6m1
β3 +

m2(3 + 2α − α
2)

4m1
2 β2 +

2A

m1
β + o(β)                                                            (28) 

where, A = m21
2 −

1

2
m31;  mk1 =

mk

km1
;  mk = E(η1

k), k = 1, 2, … 

 

Substituting expansions Eq. (27) and Eq. (28) into Eq.(26), the following expansion is derived, as β → ∞: 

I2 =
1

β2(1 − α)
[D(2β) − D(β(1 + α))] =

(2 − α − α2)

3m1
β +

m2(1 − α)

4m1
2 + o(

1

β
).                                  (29) 

Considering the expansions Eq. (25) and Eq. (29) in Eq. (23), the Eq. (22) is obtained. 

 

Therefore, the Lemma 5.1 is proved.∎ 

 

Now let us investigate the asymptotic behavior of the function Un(y) = y
n−1 ∗ Uη(y). 

Proposition 5.3 ([10]). Let the condition E(η1
3) < ∞ be satisfied. Then, the following asymptotic 

expansion can be written, as z → ∞ 

Un(y) ≡
yn+1

n(n + 1)m1
+
m2y

n

2nm1
2 +

A

nm1
+ o(yn−1), n = 1,2…                                                                        (30) 

where A = m21
2 −

1

2
m31. ∎ 

 

Put An(y) = ∫ Un(z)dz
y

0
. 

 

Proposition 5.4. Let the condition E(η1
3) < ∞ be satisfied. Then, for each n = 1,2,3… the following 

asymtotic expansion can be written, as z → ∞: 

An(z) =
1

n(n + 1)(n + 2)m1
zn+2 +

m2

2n(n + 1)m1
2 z

n+1 +
A

nm1
zn + o(zn).                                            (31) 

 

Proof. The Laplace transform Ãn(λ) of An(z) has the following form: 
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Ãn(λ) =
1

λ
(Ũn(λ)) =

(n − 1)!

λn+2(1 − φ(λ))
,                                                                                                              (32) 

where φ(λ) = E(e−λη1), λ > 0. Using Taylor expansion of functions φ(λ) and φ′(λ) as λ → 0 and 

applying Tauber-Abel theorem to Eq. (32), the expansion in Eq.(31) can be obtained. 

 

This concludes the proof of Proposition 5.4. ∎ 

 

Put Vn(z) = ∫ yUn(y)dy
z

0
. 

 

Proposition 5.5. Let the condition E(η1
3) < ∞ be satisfied. Then, for each n = 1,2,3… the following 

asymptotic expansion can be written, as z → ∞: 

Vn(z) =
zn+3

n(n + 1)(n + 3)m1
+

m2z
n+2

2n(n + 2)m1
2 +

Azn+1

(n + 1)m1
+ o(zn+1).                                                     (33) 

 

Proof. The Laplace transform Ṽn(λ) of Vn(z) has the following form: 

Ṽn(λ) =
(n − 1)! {(n + 1)(1 − φ(λ)) − λφ′(λ)}

λn+3(1 − φ(λ))
2 .                                                                                            (34) 

Using Taylor expansion of function φ(λ) as λ → 0 and applying Tauber-Abel theorem to Eq. (34), the 

expansion in Eq.(33) can be obtained.  

 

This concludes the proof of Proposition 5.5. ∎ 

 

Lemma 5.2. Let the conditions of Proposition 3.1 be satisfied and additionally E(η1
3) < +∞. Then the 

three – term asymptotic expansion for E (Un(ζ̃1)) can be written as follows, when β → ∞: 

E (Un(ζ̃1)) = A1nβ
n+1 + A2nβ

n + A3nβ
n−1 + o(βn−1).                                                                                (35) 

Here, 

A1n =
(1 + α)n+2

n(n + 1)(n + 3)m1
+
2(n + 3)Cn+2(α) − (n + 2)Cn+3(α)

n(n + 1)(n + 2)(n + 3)m1
; 

A2n =
m2(1 + α)

n+1

2n(n + 2)m1
2 +

m2{2(n + 2)Cn+1(α) − (n + 1)Cn+2(α)}

2n(n + 1)(n + 2)m1
2 ; 

A3n =
A(1 + α)n

(n + 1)m1
+
A{2(n + 1)Cn(α) − nCn+1(α)}

n(n + 1)m1
; 

Cn(α) =
2n−(1+α)n

1−α
, A = m21

2 −
1

2
m31,mk1 =

mk

km1
,  and mk = E(η1

k), k = 1,2,3,… 

 

Proof. Write E (Un(ζ̃1)) in the following form: 

E (Un(ζ̃1)) = ∫ Un(z)d

m−s

0

π̃(z) + ∫ Un(z)dπ̃(z)

S−s

m−s

.                                                                                        (36) 

Using expansion in Eq. (33), the first integral in Eq.(36) can be presented as follows: 

In1(β) ≡ ∫ Un(z)dπ̃(z) =  

m−s

0

1

β2(1 + α)
∫ zUn(z)dz

β(1+α)

0

=
1

β2(1 + α)
Vn(β(1 + α)) 

=
(1 + α)n+2

n(n + 1)(n + 3)m1
βn+1 +

m2(1 + α)
n+1

2n(n + 2)m1
2 β

n +
A(1 + α)n

(n + 1)m1
βn−1 + o(βn−1).                                      (37) 

Using expansion in Eq. (31) and Eq. (33), the second integral in Eq.(36) can be written as follows: 

In2(β) ≡
1

β2(1 − α)
∫ Un(z)(2β − z)dz

2β

β(1+α)
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=
1

β2(1 − α)
{2β[An(2β) − An(β(1 + α))] − [Vn(2β) − Vn(β(1 + α))]} 

=
1

(1 − α)
{
[2n+2 − (1 + α)n+2]

n(n + 1)(n + 2)m1
βn+1 +

m2[2
n+1 − (1 + α)n+1]

2n(n + 1)m1
2 βn 

+
A[2n − (1 + α)n]

nm1
βn−1} −

1

(1 − α)
{
[2n+3 − (1 + α)n+3]

n(n + 1)(n + 3)m1
βn+1 

+
m2[2

n+2 − (1 + α)n+2]

2n(n + 2)m1
2 βn +

A[2n+1 − (1 + α)n+1]

(n + 1)m1
βn−1} + o(βn−1).                                                 (38) 

For simplicity, introduce the notation Cn(α) =
2n−(1+α)n

1−α
 and substitute it in Eq. (38): 

In2(β) =
2(n + 3)Cn+2(α) − (n + 2)Cn+3(α)

n(n + 1)(n + 2)(n + 3)m1
βn+1 

+
2(n + 2)m2Cn+1(α) − (n + 1)m2Cn+2(α)

2n(n + 1)(n + 2)m1
2 βn 

+
2(n + 1)ACn(α) − nACn+1(α)

n(n + 1)m1
βn−1 + o(βn−1).                                                                                           (39) 

Here, A = m21
2 −

1

2
m31,  mk1 =

mk

km1
 and mk = E(η1

k), k = 1,2,3,… 

By substituting expansions Eq. (37) and Eq. (39) into Eq. (36), we get the asymptotic expansion in Eq. 

(35). This concludes the proof of Lemma 5.2. ∎ 

 

Finally the following theorem establishes the main result of our study. 

 

Theorem 5.1. Let the conditions of Proposition 3.1 be satisfied and additionally E(η1
3) < +∞. Then, the 

following asymptotic expansions for nth order ergodic moments of the process X̃(t) can be written, when 

β → ∞: 

E(X̃n) = D1n(α)β
n + D2n(α)β

n−1 + D3n(α)β
n−2 + o(βn−2).                                                                      (40) 

Here, 

D1n(α) =
6Cn+2(α)

(3 + α)(n + 1)(n + 2)(n + 3)
, 

D2n(α) =
3m2Cn+1(α)

m1(3 + α)(n + 1)(n + 2)
−

9(2Km1
2 +m2)Cn+2(α)

m1(3 + α)
2(n + 1)(n + 2)(n + 3)

, 

D3n(α) =
6ACn(α)

(3 + α)(n + 1)
−
9m2(2Km1

2 +m2)Cn+1(α)

2m1(3 + α)
2(n + 1)(n + 2)

 

+
27(2Km1

2 +m2)
2Cn+2(α)

2m1
2(3 + α)3(n + 1)(n + 2)(n + 3)

, 

β =
S − s

2
, α =

m− a

β
, a =

S + s

2
, Cn(α) =

2n − (1 + α)n

1 − α
, n = 1, 2, … , K = E(θ1)/E(ξ1) 

and m is the mode of the distribution of random variable ζ1. 

 

Proof. We get the exact form of E(X̃n) in the Theorem 4.2 as follows: 

E(X̃n) =
nE(Un(ζ̃1))

K + E(Uη(ζ̃1))
.                                                                                                                                         (41) 

We obtained the asymptotic expansions for E (Uη(ζ̃1)) and E (Un(ζ̃1)) in the Lemma 5.1 and Lemma 

5.2, respectively. Using Lemma 5.1 we can write the following asymptotic expansion, as β → ∞: 

1

K + E(Uη(ζ̃1))
= (K +

3 + α

3m1
β +

m2

2m1
2 + o(

1

β
))

−1

 

=
3m1

(3 + α)β
[1 −

3m1

(3 + α)β

(2Km1
2 +m2)

2m1
2 +

9m1
2

(3 + α)2β2
(2Km1

2 +m2)
2

4m1
4 + o(

1

β2
)].                               (42) 
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Substituting Eq. (35) and Eq. (42) into Eq. (41), we have: 

E(X̃n) =
6Cn+2(α)

(3 + α)(n + 1)(n + 2)(n + 3)
βn 

+[
3m2Cn+1(α)

m1(3 + α)(n + 1)(n + 2)
−

9(2Km1
2 +m2)Cn+2(α)

m1(3 + α)
2(n + 1)(n + 2)(n + 3)

] βn−1 

+

[
 
 
 
 

6ACn(α)

(3 + α)(n + 1)
−
9m2(2Km1

2 +m2)Cn+1(α)

2m1(3 + α)
2(n + 1)(n + 2)

+
27(2Km1

2 +m2)
2Cn+2(α)

2m1
2(3 + α)3(n + 1)(n + 2)(n + 3) ]

 
 
 
 

βn−2 + o(βn−2) 

This concludes the proof of Theorem 5.1. ∎ 

 

6. COMPARISON OF THE EXACT AND THE ASYMPTOTIC RESULTS 

 

The obvious drawback of exact formulas is their complex mathematical structures which poses difficulty 

in dealing with real world problems. In particular we are faced with n-fold convolutions of series, which 

can be approximated by closed form formulas that have better use in application. We apply asymptotic 

methods to get three – term asymptotic expansions. In order to evaluate the precision of the asymptotic 

results, it is important to compare the obtained formulas with exact ones. A real world example from 

Section 1 is used to check the efficiency of the formulas. Our study has specialties such that having 

asymmetric triangular interference of chance and delay. Therefore an appropriate problem is designed to 

fit the assumptions of the model as follows: 

 

Suppose that the random variable ζ1 follows asymmetric triangular distribution with parameters (s,m, S) 
where s is the control level, S is the maximum stock level and m is the mode of the distribution. 

Moreover the random variable η1 has exponential distribution with parameter λ = 1. Besides, assume that 

the stock control level is s = 0 and m = 0,85S. Here the mode m is computed with the contribution of 

α = 0,7 which is the degree of asymmetry of triangular distribution. So, we can reach the real world 

problem’s needs because, dealers who are mentioned in problem usually want to fill about 85% of the 

capacity (S) of their tanks. When we change the value of α, we can obtain different m values for other 

problems. By computing m with contribution of α, our study becomes a generalization of previous studies 

about triangular distributed interference of chance. As another difference from other studies, there is a 

delay time θ1. We assume that delay time θ1 has the same distribution with inter-arrival times between 

demands ξ1in this problem. So, the delay coefficient (K = E(θ1)/E(ξ1)) is equal to 1. When η1 has 

exponential distribution with a parameter λ = 1, the renewal function is Uη(x) = x + 1 which provides 

convenience in calculation. By the aid of this information, the exact formulas for the first two initial 

ergodic moments of the process X̃(t) that are found by Eq. (18) are as follows: 

E(X̃) =
0.8575β2 + 1.23332β

1.23332β + 2
,    E(X̃2) =

0.84976β3 + 1.715β2

1.23332β + 2
. 

In addition, the approximations for the first two initial moments of the process X̃(t) that are obtained from 

Eq. (40) by omitting the reminder term are as follows: 

E (X̂̃) = 0.69527027β − 0.127465303 +
0.2067004915

β
, 

E (X̂̃2) = 0.689β2 + 0.273243242β − 0.4409715. 

In order to control the realization of our study, we denote exact expression values as E(X̃) and E(X̃2) and 

the approximated values as E (X̂̃) and E (X̂̃2). And then, we computed the error term ∆k by taking 

difference of exact and approximated values that is ∆k= |E(X̃
k) − E (X̂̃k)| , k = 1, 2. By using ∆k, we 

calculated relative error term percentage  δk(%) that is δk =
∆k

E(X̃k)
100%, k = 1, 2 and calculated 

accuracy percentage (APk = 100 − δk, k = 1, 2)  that gives the closeness of formulas. ∆k, δk(%) and 

APk(%) values are computed for different β = (S − s)/2 values given in Table 1 and Table 2 as follows: 
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Table 1.Comparison of the exact and the approximated values for the 1𝑠𝑡 ergodic moment. 

β E(X̃) E (X̂̃) ∆1 δ1(%) AP1(%) 

20 13.7876 13.7883 0.0006 0.0047 99.9953 

15 10.3141 10.3154 0.0013 0.0122 99.9878 

10 6.8431 6.8459 0.0028 0.0414 99.9586 

5 3.3801 3.3902 0.0101 0.2989 99.7011 

4 2.6904 2.7053 0.0149 0.5536 99.4464 

3 2.0031 2.0272 0.0242 1.2066 98.7934 

2 1.3202 1.3664 0.0463 3.5052 96.4948 

 

Table 2.Comparison of the exact and the approximated values for the 2𝑛𝑑 ergodic moment. 

β E(X̃2) E (X̂̃2) ∆2 δ2(%) AP2(%) 
20 280,-.6578 280.6218 0.0360 0.0128 99.9872 

15 158.7253 158.6806 0.0448 0.0282 99.9718 

10 71.2518 71.1893 0.0625 0.0877 99.9123 

5 18.2568 18.1481 0.1087 0.5952 99.4048 

4 11.8018 11.6739 0.1279 1.0838 98.9162 

3 6.7332 6.5776 0.1555 2.3098 97.6902 

2 3.0578 2.8594 0.1984 6.4890 93.5110 

 

Remark 6.1: Observing Table 1 and Table 2, one can easily realize the efficiency of the asymptotic 

results. For instance, for the first initial moment, even if the β value is equal to 3 the accuracy percentage 

is near to %98.8. For the second initial moment, even if the β value is equal to 3 the accuracy percentage 

is near to %97.7. Moreover, when β value is greater than 5, the accuracy percentages are close to %99 

for both of the initial moments. Note that, when we are applying asymptotic method, we assume that 

β → ∞. However, considering calculated accuracy percentages, we notice that it is not a strict 

requirement to take β as infinity. Valuable results can be obtained for even small values for β too. 

 

7. CONCLUSION 

 

In the study [10], a renewal-reward process with symmetric triangular distributed interference of chance 

is investigated and obtained asymptotic expansions for the moments of the process. Its results are 

interesting not only for theoretical aspect but also by the means of application usage. Nevertheless it does 

not address all of the features of a more realistic model. To model most of real world problems, processes 

with an asymmetric triangular distributed interference of chance are more applicable and useful (see, 

Section 1). That’s why we considered such a process in this study with an asymmetric triangular 

distributed interference of chance on one hand and the case with positive lead time on other hand. Under 

these two assumptions, the ergodicity of the process is proved. The exact formulas and the asymptotic 

expansions for the ergodic moments of the process are found. The closeness of the approximated 

formulas and the exact formulas is tested by an example. It is observed that these formulas are sufficiently 

near to each other with high accuracy percentages even the parameter β takes small values. The studies in 

the literature ([9], [10], etc.) became a special case of our study, when the degree of asymmetry α = 0 

and delay coefficient K = 0. As future studies, the proof of weak convergence theorem for our process 

which is important for application and the investigation of similar results for random walk processes can 

be carried out. Also, as an improvement to our study, backordering and shortage in the stock as well as 

imperfect stock quality can be allowed in the future research. 
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