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Abstract— In this paper, Shimizu-Morioka Chaotic System 

(SMCS) is modelled using Feed Forward Artificial Neural 

Network. In the realized network model, Log-Sigmoid and Purelin 

transfer functions have been used for hidden and output layer, 

respectively. 3-10-3 network structure is created using MATLAB. 

The model inputs are the state variables of SMCS. Outputs 

represent not only the outputs of SMCS but also iterative versions 

of these inputs. For the equations’ numeric solutions of describing 

SMCS, Runge Kutta 5 Butcher (RK-5-B) algorithm which is one 

of the differential equation solution methods, is used. Samples in 

the structure of described network, the created different numbers 

of samples using RK-5-B have been used as input data and 

performance analysis have been performed for these data. As a 

result, the paper shows that when the sample data numbers 

increase, network modeling performance gives more successful 

results. 

 
Index Terms—Artificial Neural Networks, Chaotic System, 

Numerical Algorithm, Modeling. 

 

I. INTRODUCTION 

HAOS has attracted the attention of scientists who work on 

nonlinear systems in recent years. Communication systems 

have become one of the most commonly used areas of chaos in 

engineering applications. Chaotic oscillators have frequently 

been used for the construction of such systems. There has been 

many researches exploiting chaotic oscillators in the areas of 

control, prediction, optimization, energy, cryptology and 

nanotechnology. 

Artificial Neural Network (ANN) is a complex system in 

Artificial Intelligence (AI) that simulates human brain 

capabilities such as learning and generalization. It is possible to 

use ANN in function estimation, classification, pattern 

recognition, signal processing and system modeling.  
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ANN have recently been used in many fields like prediction 

[1, 2], classification [3, 4], control [5, 6], optimization [7, 8], 

the analysis of complex problems and modeling of nonlinear 

systems [9, 10]. The usage of ANN in modeling of nonlinear 

systems has an important role in modeling chaotic oscillators 

using ANN. In the present work, the modeling of Shimizu-

Morioka Chaotic System (SMCS) using Feed Forward Neural 

Network (FFNN) is presented [11-13].  For the numeric 

solution of the system, Runge Kutta 5 Butcher (RK-5-B) 

algorithm which is one of the differential equation solution 

methods is used [14].  A detailed analysis of the modeling 

related to sample number is carried out and obtained results 

have been explained.  

II. BACKGROUND INFORMATION 

A. Artificial Neural Networks  

Nowadays, Fuzzy-Logic, Genetic Algorithms and ANN are 

among the AI technics that have been used in various areas [10, 

15]. ANN can be used not only in system identification but also 

in modeling of system. Artificial Neuron system can be 

performed in modeling and analyzing of chaotic systems with a 

great success [9]. Model structure of feed-forward ANN for 

SMCS was shown in Fig.  1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Model structure of Feed-Forward ANN for SMCS. 

  

ANN consists of inter-connected neurons which are 

organized in the form of layers [9]. The basic processing 

element of ANN is called artificial neuron (AN) as shown in 

Fig. 2. The ANN given in this figure has an input, denoted as p. 

The line connecting this input to the neuron is assigned a 

weight, denoted as w.  
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The neuron also includes an externally applied bias, denoted by 

bk. The activation, f, determines whether the neuron is to be 

fired or not [16].  
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Simple Neuron Structure [15]. 

 

This neuron has 3 functional operations. Firstly, p is 

multiplied with w to produce weighted input, denoted as wp in 

(1).  

 

                                  wp=w.p                  (1) 

 
Then, weighted input is summed with bias, denoted by b to 

produce net input, denoted by n in (2). 

 

                                  n=w.p+b                (2) 
 

Finally, the net output, denoted by a is obtained by applying 

transfer function to n. These three steps are called weight 

function, net input function and transfer function [10, 17]. 

There are various transfer functions used in neuron structure in 

literature [18]. The neuron output, a is given in (3) 

 

                                  a=f(wp +b) (3)

  

B. Shimizu-Morioka Chaotic System 

Shimizu-Morioka Chaotic System is defined by the simple 

three-dimensional autonomous system in (4) [11]. T. Shimizu 

and N. Morioka have found out this system by computer 

simulations in 1980. 

 

                            

2

x = y 

y = x - a y - x z

z = - b z + x

 



             (4) 

 

a = 0.85  and  b = 0.5  are the system pparameters of the 

SMCS.  x0=0.1, y0=0.1, and  z0=0.1  are the initial conditions of 

SMCS. The chaotic attractors obtained from these conditions 

using MATLAB software were given in Fig. 3.   

 
    (a) 

 

 
(b) 

 

 

(c) 
 

Fig. 3. The chaotic attractors of the Shimizu-Morioka Chaotic System for initial 

conditions x0=0.1, y0=0.1, z0=0.1 and system parameters a=085 and b=0.5,  

 a) x-y chaotic attractors,   b) x-z chaotic attractors and c) y-z chaotic attractor. 

III. MODELING OF THE SHIMIZU-MORIOKA CHAOTIC 

SYSTEM  

In this paper, Shimizu-Morioka Chaotic System has been 

modeled using FFNN having different data sets of 100, 1000 

and 10000 sample numbers. In the structure of modeled 

network, inputs represent the state variables and outputs 

represent the iterative versions of these inputs. As can be seen 

in Fig.  4, input layer has 3 inputs and output layer has 3 outputs. 

There are 10 neurons in hidden layer. LoSig (Logistic Sigmoid) 

transfer function has been used in hidden layer and Purelin 

transfer function has been used in output layer.  
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Fig. 4. View of ANN-based Shimizu-Morioka Chaotic System in MATLAB. 

 

The parameters related to ANN-based Shimizu-Morioka 

Chaotic System has been given in Table I.  

 
TABLE I 

MODEL PARAMETERS 

 

 

IV. PERFORMANCE RESULTS OF FFNN BASED SMCS  

In this work, it is clear to see that the SMCS has been 

successfully modeled for three different data sets. The 

performance results related to training have been presented in 

Fig.  5, Fig.  6 and Fig. 7.  

 

 

 

Fig. 5. Network performance results for data set of 100 samples. 

 

 

Fig. 6. Network performance results for data set of 1000 samples. 

 

 

TABLE II 

ANALYSIS OF MEAN SQUARE ERROR 

 

Mean Square Error (MSE) has been decreasing collaterally for 

each of training, validation and test data. Furthermore, the 

analysis results of MSE has been given in Table II.    

 

 

Fig. 7. Network performance results for data set of 10000 samples. 

 

V. CONCLUSIONS 

This paper presents the analysis of modeling performance effect 

of the network with respect to ANN model and sample data 

number to be used for modeling the dynamics of Shimizu-

Morioka Chaotic System. The numeric solutions of the 

equations describing the SMCS have been performed with RK-

5-B algorithm.  The obtained data sets having sample numbers 

of 100, 1000 and 10000 have been modeled by FFNN 

separately for the network parameters. The performance results 

have been presented for each of the data sets. As a result, it is 

seen that the increment of sample number has a positive effect 

on the modelling performance. In other words, when the sample 

number increases, the Mean Square Error will decrease.  
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