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Robust ECG data compression method based on ε-insensitive Huber loss function 
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Abstract 

Electrocardiogram (ECG) signals are continuously monitored for early diagnosis of heart diseases. 
However, a long-term monitoring generates large amounts of data at a level that makes storage and 
transmission difficult. Moreover, these records may be subject to different types of noise distributions 
resulting from operating conditions. Therefore, an effective and reliable data compression technique is 
needed for ECG data transmission, storage and analysis without losing the clinical information content. 
This study proposes the ε-insensitive Huber loss based support vector regression for the compressing of 
ECG signals. Since the Huber loss function is a mixture of quadratic and linear loss functions, it can 
properly take into account the different noise types in the data set. Compression performance of the 
proposed method has been assessed using ECG records from the MIT-BIH arrhythmia database. 
Experimental results demonstrate that the proposed loss function is an attractive candidate for compressing 
ECG data. 
Keywords: Data Compression, Electrocardiogram, Huber loss function, Support Vector Regression 

 

 

1. INTRODUCTION 

ElectroCardioGram (ECG) plays a very important 
role in the diagnosis and analysis of heart diseases 
in patient. In order to detect any heart diseases in 
advance, the ECG signals are continuously 
recorded, stored and transmitted over digital 
communication networks. However, these types of 
records produce large amounts of data that will 
make storage and transmission difficult. 
Moreover, such records may be subject to 
unknown complex noise due to environment. The 
above-mentioned problems can be overcome by 
effectively compressing ECG signals while 
preserving the clinical information content in the 
reconstructed signal.  

Until now, many algorithms have been proposed 
for compressing ECG signals. Existing data 
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compression algorithms can be roughly classified 
into three classes: (i) direct, (ii) parameter 
extraction, and (iii) transform-based methods [1]. 
Direct data compression methods, also known as 
time domain techniques, attempt to remove 
redundancies in the actual samples of ECG signal. 
However, it fails to achieve a high data rate in 
terms of preserving clinically important contents. 
Some of the techniques for this category are 
amplitude zone time coding (AZTEC) algorithm 
[2], turning point (TP) algorithm [3], coordinate 
reduction time system (CORTES) algorithm [4]. 
Parameter extraction methods are based on 
extracting some dominant parameters (features) 
from the raw signal for use in the reconstruction 
process. Typical examples of this category can be 
shown as Linear Prediction (LP) based algorithm 
[5], vector quantization (VQ) based algorithm [6], 
and template matching (TM) based algorithm [7]. 

Sakarya University Journal of Science, 22(4): 1142-1151, 2018.

1142



Robust ecg data compression method based on ε-insensitive huber loss function 

However, since parameter extraction methods are 
irreversible they are therefore do not have 
widespread use in practice [8]. In transform-based 
compression methods, the raw signal is expressed 
as the weighted sum of basis functions. The 
weights (coefficients) of these basis functions are 
properly coded and transmitted instead of the 
original signal [9]. Transform-based techniques 
are usually preferred for ECG data compression 
since they achieve higher compression gain and 
are more insensitive to noise in the original ECG 
signals. The most important examples in this 
category can be listed as Discrete Cosine 
Transform (DCT) [10], Fourier Transform (FT) 
[11], Wavelet Transform (WT) [12]. For a detailed 
review of these methods, see [13-15]. 

Wavelet transform-based techniques have recently 
attracted considerable interest owing to some 
important features such as time frequency 
localization, and energy compression [13]. 
However, in wavelet transform-based techniques, 
there is a proportional relationship between block 
size and compression ratio. As the block size 
increases, the compression ratio increases for a 
specific error criterion; but the computation time 
and storage requirements of adaptive wavelet 
coding schemes will also increase in the same way. 
For these reasons, how to determine the block size 
in wavelet transform is still a fundamental problem 
[13]. 

More recently, unlike the existing transform-based 
compression methods, Karal [16] has shown that 
ECG data can be compressed optimally according 
to the given error tolerance using Support Vector 
Regression (SVR) method. In addition, it is noted 
that the proposed SVR technique performs better 
than the well-known FT, DCT, and WT 
techniques.  

In SVR theory, loss functions play an important 
role because they represent the properties of the 
error distribution in the data set [17]. According to 
the Bayesian approach, there is a powerful 
relationship between loss functions and error 
distributions. If the error distribution in the data set 
is known, the corresponding optimal loss function 
can be derived using the Bayesian approach. For 
example, square loss function is optimal for 
Gaussian error distribution. Therefore, different 
loss functions lead to the creation of different 

optimization costs [17]. Classical SVR method 
[16] uses ε-insensitive Laplacian (called as 
Vapnik) loss function which is optimal for ε-
insensitive Laplacian noise distribution. However, 
ECG recordings may be subject to different noise 
distributions resulting from operating conditions. 
In this case, classical SVR method will not be 
optimal. To address the aforementioned problems, 
this study proposes the ε-insensitive Huber loss 
based SVR for the compressing of ECG signals. 
This loss function is known as a robust loss 
function in the literature [18] since it is a mixture 
of square and linear loss functions. 

The presented ε-insensitive Huber loss function 
has a significant advantage because it can properly 
take into account different noise distributions in 
terms of robustness. It also provides sparsity 
(compression) in the solution presentation by 
ignoring small noisy training samples falling into 
the ε-insensitive region. The compressed signal is 
expressed as the weighted sum of basis functions. 
Unlike other transformation-based compression 
methods, the number, position, and shape of these 
functions are automatically determined by the 
SVR algorithm, which is based on the solution of 
the quadratic optimization problem. 

Rest of this paper is organized as follows. In 
section 2, the ε-insensitive Huber loss based SVR 
formulation is explicitly given. In section 3, the 
experimental results get from the compression of
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Figure 1. In the SVR method, the training samples represented by nonlinear regression in the input space are expressed by 

linear regression in the high dimensional feature space using nonlinear basis functions.

ECG data with Huber-SVR are shown. In the last 
section, evaluations are made on the results 
obtained from the experiments. 

2. SUPPORT VECTOR REGRESSION 

Support vector regression (SVR) provides a good 
generalization ability since it tries to minimize 
both the empirical risk minimization and the 
structural risk minimization principle. Therefore, 
SVR has been used in many fields such as 
biomedical [19-21], time series forecasting [22-
24], and renewable energy [25-27]. 

Given N pairs of training samples
) }{( 1,,s sD s Ny  x ⋯ , in which n

s Rx is the sth 

input vector, and sy R  is the actual output for the 

input sx . In the classical SVR formulation, 

training samples are moved to a high dimensional 
space by means of nonlinear function 

( ) : n mφ R R   and then a linear model is applied 

(see Figure 1). 

( ), ( )Tf b x xw w     (1) 

where ( )f   is the estimation of sy , mRw is the 

model parameter (weight) vector, and b is a 
threshold to be determined in the function. The 
SVR optimization problem consists of two parts: 
minimizing errors (represented as a loss function 

(( ), )s sL fy x ) and minimizing the model 

parameters (weights, w) representing the model. 
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where,  C R is a positive number user defined 
parameter, and ε) ( )( )( s s sL y fL e  x  is the ε 

insensitive loss function which is symmetric 
convex. It also has two discontinuities at ε 0   in 
the first derivative and is zero in the predetermined 
ε value. Small noisy training samples falling into 
the ε-insensitive zone of the loss function are not 
included in the solution presentation. Therefore, 
SVR yields sparse (compressed) model in the 
solution representation. 

There are many choices for the loss function. The 
classical SVR method uses the ε-insensitive 
Laplace (Vapnik) loss function, which is called the 
ε-insensitive absolute loss function (3). Vapnik’s 
loss function ignores the errors lower than the user 
specified ε value (see Figure 2). The mathematical 
definition of it is given as follows. 
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Figure 2 ε insensitive Laplace (Vapnik) loss function. 

From Bayesian perspective, Vapnik’s loss 
function is optimal for the ε-insensitive Laplace 
noise distribution. However, in some practical 
applications, the observed data may be subject to 
different noise distributions depending on the 
operating conditions. In order to deal with 
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different error distributions, this paper introduces 
the ε-insensitive Huber loss function for the 
compressing of ECG signals. It is defined as 
follows [18]. 
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where,  s and '
s are called slack variables to deal 

with positive and negative errors outside the 
epsilon-insensitive zone, respectively. The value 
of the slack variables is considered to be quadratic 
if it is between ε and μ, while it is considered linear 
if it is greater than μ (see Figure 3). 

 
Figure 3. ε-insensitive Huber loss function 

To solve primal optimization problem under the 
constraints in (5), the Lagrange function is 
constructed as in the following.  
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where, the positive variables *,  s s   and *,  s s   are 

Lagrange multipliers (dual variables) associated to 
each training sample. To find optimal solution of 
the unconstraint optimization problem in (7), 
Karush-Kuhn-Tucker conditions are applied and 
then saddle points of Lagrangian function are 
determined as shown in the following. 
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If the equations (8) - (11) are substituted in (7), the 
primal variables '( ), , ,s sb  w are removed and the 

dual optimization problem is obtained in terms of 
Lagrange multipliers '( ,  )s s  . 
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where, K denotes the kernel matrix whose entries 
are the kernel functions K ,s r(x x )  as described as 

the inner product of two samples ( )s x  and ( )r x  

in the kernel space. 
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The optimization problem in (12) is a quadratic 
programming problem, so its solution gives a 
global (unique) minimum. After solving of (12), 
the optimal Lagrange multipliers (support vectors, 

s  and *
s ) are obtained, and then the optimal 

model parameter w (9) can be written as follow.  
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The linear model in (1) for the test sample x can be 
expressed as 
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where, SV is the set of training samples 
corresponding to * 0s s    (called a support 

vector). w does not need to be explicitly calculated 
when evaluating ( )f x . As seen from (16), the 

operations needed for SVR model can be carried 
out directly in the primal space with the kernel 
matrix without mapping the training samples from 
the primal space to the high dimensional space 
with the help of nonlinear functions. This process 
is known as the “kernel trick” in the literature [28]. 
It considerably reduces calculation time needed for 
solving optimization problem. 

3. EXPERIMENTAL RESULTS 

In this section, various experimental results are 
presented for the ε-insensitive Huber loss function 
in the SVR framework. Furthermore, the 
performance of the proposed ε-insensitive Huber 
loss is compared with the Vapnik loss under the 
SVR framework. These experiments are 
performed in Matlab 2016a environment installed 
on a personal computer with Intel Core I5 

processor 3.0 GHz, 10 GB RAM and 64 bit 
Windows 10 operating system. As a kernel 
function, Radial Basis Function (RBF) 

2 2
2

K( , ) exp( 2 )s s   x x x x  is chosen. The user 

defined optimal parameters (ε, µ, σ, and C) are 
determined from the sets {0.01, 0.012, 0.014, 
0.015, 0.016, 0.018, 0.02, 0.025, 0.03}, {15, 10, 5, 
2, 1, 0.5, 0.25, 0.125, 0.1, 0.05, 0.025}, {0.01, 
0.011, 0.012, 0.013, 0.014, 0.015}, {1, 2, 4, 8, 16, 
32, 64, 128, 256} and respectively, using 5-fold 
cross validation technique. The performance of the 
learned SVR networks is evaluated by the three 
important metrics i.e., compression ratio (CR), 
reconstruction quality (Root Mean Square Error 
(RMSE) and Percent Root Mean Square 
Difference (PRMSD)). Their definitions are given 
as 

#TSROS
CR=

#SVNCS
     (17) 

where, #TSROS denotes the number of training 
samples required for the original signal and 
#SVNCS specifies the number of support vectors 
needed for the compressed signal. 

[(
1

2( )]
PRD 10

[(
0

)
1

2]

N
s

N

y fs s

yss








  x
  (18) 

1 2RMSE ( ( ))
1

N
y fs s

s
N

 


x   (19 

In the experiments, ECG signals selected from 48 
half-hour excerpts of two-channel ambulatory 
ECG recordings in the MIT-BIH database were 
used [29]. These recordings were digitized at 360 
samples per second per channel. In order to 
visualize compressing ECG signal, a period ECG 
signal (normal sinus rhythm, see Figure 4) is 
extracted from the ECG recordings. 

To indicate that the proposed ε-insensitive Huber 
loss function is suitable for different noise models, 
the ECG data set is contaminating with Gaussian

( ) 2 21 2 ( ( ) 2 )exp x  - -  and Cauchy noise 

2( )1 1 x   + - distributions with the mean μ=0 

and the variance τ=0,01.  
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Figure 4. ε-insensitive Huber loss function Original ECG signal (dark blue), the Gaussian noise added ECG signal (magenta 

dots) and the P, QRS and T wave forms (violet rectangles) that make up the original ECG signal 

 

 
Figure 5. ECG (dark blue) signal compressed by ε-insensitive Huber loss based SVR. The areas separated by the red dashed 

line below and above the compressed ECG signal show the ε-insensitive regions. The '+' signs in the black color represent the 
training samples, and the '+' signs in the green circles represent the support vectors (the training samples that yield the 

compressed ECG signal). 

Figures 5 shows the compressed version of the 
ECG (dark blue) signal contaminated with Gauss 
noise, using the ε-insensitive Huber loss function 
with parameters (ε = 0.012, C = 16 and µ = 0.25).  

As shown in Figure 5, the examples (200 black ‘+’ 
signs) in the ε-insensitive regions of the Huber loss 
function are not considered and are therefore not 

included in the solution. In other words, only 
samples outside the ε-insensitive regions of the 
Huber loss function (68 support vectors, black '+' 
signs in green circles) appear in the solution 
presentation. Thus, the reconstructed ECG signal 
contains fewer samples than the original signal, 
which results in a sparse (compressed) solution. 
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Table 1. Experimental results of ε-insensitive Huber loss-based SVR for compressing ECG signals polluted with Gaussian 
noise distribution 

Model Parameters #TS #SV w RMSE PRD CR 

ε=0.010 

C=16 
σ=0.012 
µ=0.25 

268 

82 0,81 0,017 13,83 3,26 

ε=0.012 68 0,77 0,018 14,81 3,94 

ε=0.015 55 0,79 0,021 17,33 4,87 

ε=0.020 43 0,76 0,026 21,47 6,23 

ε=0.025 37 0,75 0,032 26,12 7,24 

ε=0.030 32 0,73 0,038 30,70 8,37 

Table 2. Experimental results of ε-insensitive Huber loss-based SVR for compressing ECG signals polluted with Cauchy noise 
distribution 

Model Parameters #TS #SV w RMSE PRD CR 

ε=0.010 

C=256 
σ=0.012 
µ=0.025 

268 

73 0,95 0,028 22,11 3,67 

ε=0.012 60 0,97 0,028 22,72 4,46 

ε=0.014 48 0,96 0,029 23,64 5,58 

ε=0.016 40 0,91 0,031 24,72 6,70 

ε=0.018 37 0,99 0,033 25,40 7,24 

ε=0.020 27 0,99 0,034 27,26 9,92 

 

The user-defined ε parameter provides us to 
control the selection of samples (support vectors) 
that are directly related to sparseness. In terms of 
the number of training samples (#TS), the number 
of support vectors (#SV), the smoothness (w), root 
mean square error (RMSE), percent root mean 
square difference (PRD), and compression ratio 
(CR), detailed analysis results of the compressed 
versions of ECG signals contaminated with Gauss 
and Cauchy noises for various ε values are listed 
in Table 1 and Table 2, respectively. 

As can be seen from Table 1 and Table 2, as the 
value of the compression parameter (ε) increases, 
the compression ratio also increases, but also 
increases the PRD and RMSE values, leading to 
distortions in the compressed signal. 

In the next experiments, the proposed SVR model 
(ε-insensitive Huber loss function) is compared 
with classical SVR model (Vapnik loss function) 
on ECG data sets contaminated by Gaussian and 
Cauchy noise distributions. As shown in Table 3, 

Table 3. Comparison of classical SVR (Vapnik loss) and proposed SVR (ε-insensitive Huber loss) performance in compressing 
ECG data polluted with Gaussian noise distribution 

Model parameters #TS Loss function #SV w RMSE PRD CR 

C=1, µ=15 

ε=0.015 
σ=0.012 

268 

ε-Huber 91 0,90 0,019 15,49 2,94 

ε-Vapnik  93 0,99 0,019 15,07 2,88 

C=2, µ=10 
ε-Huber 86 0,93 0,019 15,35 3,11 

ε-Vapnik 90 1,11 0,019 15,07 2,97 

C=4, µ=5 
ε-Huber 82 0,95 0,019 15,22 3,26 

ε-Vapnik 88 1,22 0,019 15,19 3,04 

C=8, µ=2 
ε-Huber 72 0,94 0,019 15,34 3,72 

ε-Vapnik 87 1,15 0,019 15,07 3,08 

C=16, µ=1 
ε-Huber 63 0,95 0,019 15,25 4,25 

ε-Vapnik 77 1,16 0,019 15,14 3,48 

C=32, µ=0.5 
ε-Huber 45 0,96 0,019 15,54 5,95 

ε-Vapnik 69 1,21 0,019 15,19 3,88 

C=64, µ=0.25 
ε-Huber 26 0,92 0,019 15,40 10,30 

ε-Vapnik 61 1,27 0,019 15,36 4,39 

C=128, µ=0.125 
ε-Huber 13 0,95 0,019 15,35 20,61 

ε-Vapnik 48 1,51 0,019 15,14 5,83 
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the proposed SVR and classical SVR models 
exhibit different behaviors at different C values for 
the same ε=0.015 and σ=0.012 values in the ECG 
dataset contaminated with Gaussian noise. In 
particular, as the C value increases, the proposed 
SVR model performs better than the classical SVR 
model for different µ values. That is to say, in the 
same RMSE and PRD values, depending on the µ 
value, the proposed SVR model gives a higher 
compression ratio while at the same time 
producing a smoother model. For example, for the 
same RMSE=0.019, PRD=15.40, C=32, ε=0.015 
and σ=0.012 values, the proposed SVR model 
(with µ=0.5) yields SV=45, w=0.96, and CR=5.95 
while the classical SVR model yields SV=69, 
w=1.21, and CR=3.88. Moreover, if the C and µ 
are set to 64 and 0.25 respectively, the proposed 
SVR model produces SV=26, w=0.92, and 
CR=10.30 while the classical SVR model 
produces SV=61, w=1.27, and CR=4.39. 

In the case of using Cauchy noise distribution 
(Table 4), the proposed SVR (with ε-insensitive 
Huber loss function) provides a better compression 
ratio (CR) and smoothness (w) than the classical 
SVR in the same RMSE and PRD values, 
depending on the μ value, thus confirming the 
superiority of the proposed SVR model. 

These experimental results show that the proposed 
SVR model is more robust than the classical SVR 
model even if the ECG recordings are subjected to 
different noise distributions due to ambient 
conditions. 

4. CONCLUSION AND FUTURE WORK 

Long-term monitored ECG recordings lead to a 
large volume of data that makes storage and 
transmission difficult. A number of algorithms 
have been proposed to effectively compress these 
records. Recently, support-vector based 
algorithms have attracted considerable attention in 
regression (compression) problems because they 
attempt to reduce not only the experimental 
measurement error but also the upper limit of the 
generalization error. However, their performance 
depends on the loss function used, i.e., error 
distribution, as shown in Table 3 and 4. The classic 
SVR method assumes that ECG data has a 
Laplacian error distribution. However, long-term 
ECG recordings may be subject to different error 
distributions, so classical SVR may not be the 
appropriate choice. In order to cope with different 
error distributions, this study proposes the ε-
insensitive Huber loss based SVR for the 
compressing of ECG signals.

Table 4. Comparison of classical SVR (Vapnik loss) and proposed SVR (ε-insensitive Huber loss) performance in compressing 
ECG data polluted with Cauchy noise distribution 

Model parameters #TS Loss function #SV w RMSE PRD CR 

C=1, µ=15 

ε=0.01 
σ=0.012 

268 

ε-Huber 212 1,19 0,028 22,47 1,26 

ε-Vapnik  216 1,33 0,027 21,40 1,24 

C=2, µ=10 
ε-Huber 207 1,28 0,027 21,94 1,29 

ε-Vapnik 212 1,73 0,028 22,29 1,26 

C=4, µ=1 
ε-Huber 203 0,94 0,028 22,37 1,32 

ε-Vapnik 219 1,97 0,029 23,38 1,22 

C=8, µ=0.25 
ε-Huber 190 0,79 0,029 23,41 1,41 

ε-Vapnik 217 2,55 0,029 23,20 1,23 

C=16, µ=0.125 
ε-Huber 188 0,96 0,028 21,65 1,42 

ε-Vapnik 215 4,63 0,029 22,77 1,24 

C=32, µ=0.1 
ε-Huber 172 0,88 0,028 22,55 1,55 

ε-Vapnik 218 6,49 0,028 22,12 1,22 

C=64, µ=0.05 
ε-Huber 132 0,90 0,029 22,33 2,03 

ε-Vapnik 220 21,31 0,028 22,09 1,21 

C=128, µ=0.025 
ε-Huber 69 0,81 0,028 22,63 3,88 

ε-Vapnik 221 27,50 0,028 21,79 1,23 

Computer simulations for various values of the 
compression parameter (ε) show that the ε-

insensitive Huber loss based SVR provides an 
optimal compression ratio in the ECG data set 
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contaminated by Gaussian and Cauchy error 
distributions. Furthermore, in compressing ECG 
data, computer simulations have shown that the 
proposed SVR (with Huber loss) performs better 
than classical SVR against Gauss and Cauchy 
error distributions. For example, for the same 
RMSE=0.019, PRD=15.35, C=128, ε=0.015 and 
σ=0.012 values the proposed SVR model (with 
µ=0.125) yields SV=13, w=0.95, and CR=20.61 
while the classical SVR model yields SV=48, 
w=1.51, and CR=5.83 for the Gaussian error 
distribution. 

As a future study, the proposed SVR model can 
be applied to other biomedical signals such as 
Electromyography (EMG), Electroencephalo-
grapy (EEG) since it does not require any 
preprocessing algorithm. 
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