
9 
 

 Eurasscience Journals  

 

 

Eurasian Journal of Forest Science (2018) 6(1): 9-22 
 

 

Geostatistics in characterizing spatial variability of forest 

ecosystems 
 

Gülay Karahan1*, Sabit Erşahin2   
 

1) Cankırı Karatekin University, Faculty of Forestry,  Department of Landscape Architecture, 18200, 

Cankırı,Turkey  
2)Cankırı Karatekin University, Faculty of Forestry, Department of Forest Engineering, 18200, 

Cankırı,Turkey  

*corresponding author: gkarahan03@gmail.com 

 

 

 
Abstract    

Forests are spatially variable due to multiple interactions among state (vegetation, species distribution, 

understory cover, soil, and topography) and forcing variables (climate and human) variables. In general, the 

spatial structure is resulted as combined effect of these external and internal variables.  Geostatistical methods 

can aid characterizing the spatial structure of forest ecosystems. The shape and parameters (nugget, sill, range) of 

semivariograms provide important information on the characteristics of spatial structure.  In addition, the 

geostatistical interpolation methods (e.g. kriging) are effective tools for constructing surface maps of variable of 

interest. Thus, the geostatistical methods have been used increasingly for characterizing forest spatial structure 

across different spatial scales for last 30 years.  In this literature study, sources of spatial variability of forest 

ecosystems are explained and results of several geostatistical studies are discussed.  
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Özet 

Ormanlar zorlayıcı (dışsal) ve etkilenen (durum) değişkenleri arasındaki çoklu etkileşimler nedeniyle 

uzaysal değişkenlik gösterirler.  Genel olarak, uzaysal değişkenlik bu değişkenlerin ortak etkisinin bir sonucu 

olarak ortaya çıkmaktadır. Joeistatiksel yöntemler uzaysal yapının karakterize edilmesine yardımcı 

olabilmektedir.  Semivaryogramın şekli ve parametreleri (nugget, sill, range) uzaysal yapı hakkında önemli 

bilgiler sağlar. Ayrıca, jeoistiksel enterpolasyon yöntemleri (örneğin, krigleme) ilgili değişkenin yüzey 

haritalarının çıkarılmasında oldukça kullanışlı araçlardır. Dolayısıyla, jeoistatistiksel yöntemler son 30 yılda 

ormanların uzaysal değişkenliklerinin karakterize edilmesinde artan bir şekilde kullanılmaktadır.  Bu literatür 

çalışmasında, ormanların uzaysal değişkenliğinin başlıca kaynakları verildikten sonra, bu kaynakların bir 

fonksiyonu olarak ortaya çıkan uzaysal değişkenliğin karakterize edilmesinde yapılmış bazı jeoistatiksel 

çalışmaların sonuçları tartışılmıştır. 

     

Anahtar kelimeler: İklim, Orman ekosistemleri, Nugget, Sill, Range, Uzaysal yapı 
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Introduction 

Forest ecosystems vary in time and space.  Spatially continuous data are important in all 

ecosystems including forests for decision-making. Therefore, analysis of spatial variability of forest 

ecosystems is needed for its thorough understanding.  In addition, understanding spatial variation of 

forests improves our understanding of ecosystem-level processes. According to Pelissari et al. (2017), 

deficiency of ecological information needs to new techniques for analyzing spatial variations in 

forests, one of them, geostatistics is a technique for modeling and mapping. 

Geostatistics was generally applied in forest research (Akhavan et al., 2010; Fox et al., 2007; 

Nanos et al., 2004; Palmer et al., 2010; Pelissari et al., 2014; Sales et al., 2007 ). The geostatistical 

methods are robust because the area of influence can be adjusted according to the case study needs 

(Torres et al., 2017). Predicting values of a variable in unsampled points allows to generate spatially 

continuous data (Li and Heap 2008).   

Goal of geostatistics is to examine the spatial structure of the target variable and predict its 

values at unsampled locations.   Therefore, geostatistics is an important technique that can be used to 

characterize spatial or temporal phenomena (Zhang, 2011). Geostatistics includes ways for analyzing 

the autocorrelation in spatial data. An important property of geostatistics is the semivariance, which 

measures spatial continuity. Use of the semivariograms needs the data supplies the real hypothesis for 

regional variable (Journel and Huijbregts, 1978). There have been number of studies carried out on 

forest ecosystems. Most of these studies were focused on carbon storage, forest biomass, growth rate 

and variability of trees, and forest soil quality etc. When compared with the others, geostatistics gives 

a powerful way to make easy of the spatial variation and interpolation quantification. In this study, 

geostatistical analysis of forest spatial variability as related to topography, land use, soils, and climate 

are mentioned and results of several studies are discussed as well. 

 

Geostatistical measures of spatial variability in forest ecosystems 

Field measurements are basic requirement in collecting information on forests. But, these 

measurements can be cost, time consuming and impractical in large areas (Zawadzki et al. 2005). 

According to Clark (1979), conventional statistics cannot completely explain the spatial variations. 

Therefore, geostatistical methods ensure a probabilistic structure for understanding the characteristics 

of the spatial distribution of forest variables (Zhang, 2011).  

According to Isaak and Srivastava (1989) and Goovaerts (1997), geostatistics was improved to 

analyze variables, which are distributed continually in space, called "regionalized variables". The aim 

of geostatistics is the prediction of values of a target attribute at unsampled locations. Key steps for 

defining and estimating are 1) modeling of the spatial variability of data of the property by fitting of 

models to the experimental semivariogram, and 2) using the data with parameters of theoretical 

semivariogram to interpolate the target attribute in the study area (Goovaerts, 1998). 

 

Steps of analyzing spatial pattern  

1- The histograms of the data (pH in this example) are plotted and summary statistics are 

computed (Fig. 1). However, by this way, critical information such as spatial location of pH 

measurements cannot be gained (Goovaerts 1998).   

2- Each values along the transect does not distribute completely random. Because close 

observations tend to be like.  For example, h-scattergram of the pH values can be showed by plotting 

with observations separated by a distance of 1-m (Figure 2) (Goovaerts 1998). 
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   Fig. 1.  Histograms of soil pH values                                Fig.2. Scattergram of the soil pH values                      

  measured in a forest plot.                                                          

    

3- The image of the graph shows correlations of pH values. These correlations evaluate with the 

linear correlation coefficient. By plotting of the estimated correlation coefficients, experimental 

correlogram is obtained (Fig.3).  

 

Fig. 3. Correlogram and semivariance of soil pH values measured in forest (Goovaerts 1998).  

 
4- Spatial patterns are described with differences in data pairs. For the average of this 

dissimilarity, experimental semivariogram γ(h) is used. Semivariogram is half of the average squared 

difference between the components of every data pair (Goovaerts 1998). Semivariogram is the central 

tool of geostatistics and a measures spatial continuity (Zawadzki et al., 2005). The semivariogram can 

be predicted by Eq.(1) (Webster and Oliver, 2001). 

 

                           𝛾(ℎ) =  
1

2𝑁(ℎ)
  ∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1                                                 (1) 

 

Where γˆ(h) is the predicted semi-variance for N data pairs, separated by a particular lag distance (h) 

𝑧 (𝑥𝑖) and z(𝑥𝑖 +h) are the values of the variable z at locations of i and i + h. 

The parameters of the semivariogram are the sill, the range, and, the nugget. Sill defines the 

maximum value of the semivariogram, range defines distance where the semivariogram reaches the 

sill, and nugget defines the y-intercept (always positive) of the semivariogram. Fig.3 (right hand side) 

depicts the nugget, sill, and range for pH values. The point where semivariogram intercepts the y-axis 

is the nugget (approximately 0.015).  It’s caused by measurement errors, spatial sources of variation at 

smaller distances than measurements are made (Journel and Huijbregts 1978). Although the variation 

is locally spatially structured, we can see a semivariogram as a pure nugget, depending on the 

sampling scale. Therefore Oliver and Webster (1986a) suggested a preliminary study to approximate 

the major scales of spatial variation (Fig.4). Soil pH at the unsampled locations can be interpolated 

with kriging or cokriging using its observations (Figure 5) (Goovaerts, 1998). 
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Fig. 4. Theoretical and experimental Semivariograms for soil pH in a forest (Goovaerts 1998). 

  

 

Fig. 5. Measured pH-values at left and kriged values at right  

One of the earliest applications of geostatistics in forest research made by Guibal (1973) who 

used kriging for interpolating forest stock in a tropical forest in Gabon. He reported that kriging was 

more accurate than classical statistics in small areas. In addition, Mandallaz (1991) reported that 

geostatistics provided a natural framework for prediction technics in forest inventory studies. The 

species distribution and abundance patterns are effected by soils, temperature, and moisture and 

strength and extent of natural disturbances in forests (Whittaker, 1956; White, 1979). 

Spatial variation in forest ecosystems as affected by soils 

The aim of most geostatistical studies is prediction of soil properties at unsampled points and 

mapping for soil science (Goovaerts, 1998). For example, soil moisture, pH, and soil temperature etc. 

are major abiotic factors influencing degradation in forest ecosystems (Benner et al.1986; Entry et al. 

1987).  Wendroth et al. (1999) used geostatistics to evaluate large trends in the scale and pattern of 

soil properties because of the directional effect of flooding and finer-scale structure. 

Forest soil’s temperature is effected by climate, topography, soil water content, and litter and 

canopy cover. In addition, the seasonal variation of CO2 is effected by soil temperature (Striegl and 

Wickland, 1998). Schume et al. (2003) showed that differences in transpiration ratio among tree 

species are the key factors of spatial variation of soil water content. Spatial continuity of the water 

content is related with both of soil water content and drying and wetting history in forest soils. The 

latter can be more important especially for fine textured soils with a dynamic macropore system. 

Evapotranspiration is an important factor for variation (Schume et al. 2003). 

Schume et al (2004) analyzed spatial variation in patterns in soil water depletion and recharge in 

mixed and pure forests of European beech and Norway spruce by geostatistics. They found that 

replenishment of soil water storage is related to crown architecture and canopy interception. 

Differences in plant transpiration ratio and rooting depths of tree species may have strong control on 

spatial and temporal depletion in the soil water storage, modification of canopy architecture change 

water uptake, evapotranspiration, and rain water interception. Schindlbacher et al. (2004) reported that 



Geostatistics in characterizing spatial variability - Karahan and Erşahin - 6(1):9-22 (2018) 
 

13 
 

soil water and temperature are the main factors to be considered in measurement of the emissions 

volumes in forests. 

Soil organic carbon accumulation in forests is linked to soil parent material, topography, 

climate, vegetation, and time factors.  Jeyanny et al. (2013) quantified the spatial variability of soil C, 

C:N and forest soil depth at varying topographic conditions in tropical and lowland forest. They made 

spatial analyses for variables using semivariograms and kriging and mapped measured and kriged 

values. The results showed that carbon stocks and C:N at the summit were best explained by a 

spherical model. They reported that spatial variability maps and C stock estimations across a catena 

and lowland forest would clearly aid conservation of forest ecosystem with respect to C management, 

suggesting that future studies should address the reliability of forest floor depth in C sequestering in 

relation to different forest systems. 

Spatial variation in organic soil carbon stock has been related with physical, biological, and 

chemical processes in forest ecosystems. Kristensen et al. (2015) examined the spatial variation of 

organic layer carbon stocks in boreal forests. They found spherical models as the best fit at the given 

lag distances. They noted that the organic layer carbon stocks showed a considerably high short-range 

variability with spatial autocorrelation distances (0.86 up to 2.85 m) for undisturbed soils and they 

concluded that spherical model most accurately described the spatial structure of the analyzed soil 

properties. 

Spatial variation in forest ecosystems as affected by topography 

Topography is considered as the main abiotic factor inducing spatial variation in tropical forests 

on local scale, due to its effect on other properties in ecosystem (Bourgeron, 1983). Literature on 

grassland biogeochemistry from the 1980s revealed that topography can induce a powerful spatial 

variability at landscape scales (Schimel et al. 1985a; Yonker et al. 1988). Variation of soil properties 

within a relatively uniform climatic region may also be resulted from topographic heterogeneity 

(Brubaker et al. 1993). Topography can be used to estimate live biomass in central Amazonia 

(Castilho et al. 1983). Ecological processes may control the timing of disturbance across a landscape, 

while topography determines their spatial pattern (Swanson et al. 1988). 

Forest biomass is not the same on a landscape due to differences in physiological conditions 

such as soil and topography. In general, greater forest biomass corresponds to more fertile soils, 

independent of species composition as more resources available for plant growth in those soils. 

However, Silva et al. (2002) did not found any topographic effect on forest growth rate in central 

Amazonia.  Establishing relations between topography and biomass is hard since topography 

combines soil type (Chauvel et al. 1987), canopy openness (Robert, 2003), and soil water availability 

(Daws et al. 2002). 

Topography influences some forest dynamics (Gale and Barfod, 1999; Bellingham and Tanner, 

2000) and nutrient cycling (Luizao et al. 2004). Topography has been associated with drainage 

regimes and soil properties are correlated with tree species distribution in a forest (Bourgeron, 1983; 

Johnston, 1992). Beaty and Taylor (2001) reported that slope aspect and position induced considerable 

variation in forest composition.  They compared fire regime characteristics at different topographies 

and found that fire regime parameters are different in slope aspect, slope position, and elevation. 

Borůvka et al. (2007) investigated acid soils of forests in mountainous areas of the Czech 

Republic. Spatial autocorrelations of O and B horizons was analyzed using cross-variograms. 

Application of geostatistics let to define the spatial structure of main stand factors. They noted that 

surface horizons had higher sensitivity to forcing factors (external disturbances) such as acid 

deposition, liming, and grass expansion.  
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Spatial variation in forest ecosystems as affected by vegetation  

Spatial arrangement of forest, woodland, riparian, and meadow vegetation types suggest that 

topographic features such as slope aspect and elevation are primary determinants of the local 

vegetation patterns (Hadley, 1994). Forest management can significantly affect diversity and spatial 

patterning of understory vegetation. Each forest stand type has a characteristic combination of 

understory composition, diversity, and spatial patterning of communities (Scheller and Mladenoff, 

2002). 

Variation of soils can influence the distribution and abundance of plant species, resulting in   

important consequences for ecosystem-level processes (Gallardo, 2003). Goodland and Pollard (1973) 

reported that a powerful correlation existed between vegetation structure (height, basal area and 

density) and nutrient contents of soils in the cerrado vegetation of Brazil. In bare soils, physical 

properties describe a substantial percentage of the variability in soil water content (Wendroth et al. 

1999), while the condition under vegetation cover is different as vegetation controls pattern in soil 

water content due to differences in evapotranspiration (Western et al. 1998). Mature forest consumes 

more water than most agricultural crops, resulting in their greater influence on soil water content 

variability in forests.  In a mixed forest stand, influence of vegetation on soil water content variability 

can be even greater. 

Rainfall is an important factor, which is affect by many factors such as canopy structure, tree 

spacing, wind, rainfall intensity, and evaporation. Canopy structure affects spatial variation of rainfall 

interception due to differences in gap fraction, horizontal and vertical distribution of leaves, and 

species composition. Therefore, canopy structure is used in most rainfall interception models as an 

important influencing factor. He et al. (2013) analyzed spatial variability of canopy interception and 

related factors, and the minimum number and locations of collectors using statistical techniques. They 

used the semi-variogram to calculate the parameters of spatial heterogeneity (Isaak and Srivastava, 

1989). They found that the spatial variation of canopy interception had a significant positive 

relationship with PAI (Plant Area Index), but not with LAI (Leaf Area Index). They also found that 

the mean of collectors, which were located at the edge of the canopy was higher than those within 

canopy. 

Spatial variation in forest ecosystems as affected by climate 

Forests are affected by climate due to long life-span of trees. The forest trees are difficultly 

adapted to unusual variations in climate (Lindner et al. 2010). Tree growth rate is not only depends on 

the photosynthesis but also on other factors such as soil nutrient availability (Hungate et al. 2003; Luo 

et al. 2004).  When the atmospheric CO2 increased, stomata are closed partially to decrease water loss 

by transpiration (Field et al. 1995; Picon et al. 1996). 

Changes in the chemistry of atmosphere including tropospheric and ground-level concentrations 

of ozone can result in increased tree drought stress (McLaughlin et al. 2007) and reduced tree biomass 

(Wittig et al. 2008). In addition, due to the industrial activities, atmospheric nitrogen deposition has 

become one of the major factors influencing forest growth over the last decades (Magnani et al. 2007; 

Kahle et al. 2008). 

According to Weber and Flannigan (1997), weather is closely related to forest fires. Weather 

variables such as temperature, precipitation, wind speed and direction and atmospheric moisture are 

the principal agents of naturally caused forest fires. Spatial variation of forests is highly correlated 

with fire regime, which controls distribution, migration, and extinction of species (Matyssek et al. 

2006). Tree biomasses of tropical forests are more spatially variable (Laurance et al. 1999; Chave et al. 

2003). In many aspects, the complex humid tropical vegetation is an indicator of the spatial and 

temporal variability in environmental conditions. However, this variation has been documented poorly 
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(Houghton 2005). Most studies recognized differences in the aboveground biomass in the Amazons 

forest (Houghton 2001). Nevertheless, studies on the variation in carbon stocks within a single forest 

type are not adequate, yet (Castilho et al. 2006). Climate changes and the fire regime will alter carbon 

and nitrogen cycling, and nutrient budgets, which in turn affect spatial variation of forest ecosystems.   

Discussion 

Geostatistical methods are frequently used for analyzing forests and their use has been increased 

rapidly for the last decades. Studies carried out using geostatistics in forest research include seed 

adaptation, species distribution, forest classification, topography, and soil conditions. Measurements 

in large forests are expensive, time consuming, and impractical. Therefore, the use of geostatistical 

methods in forest research is practical and numerous of results obtained to date are encouraging.  For 

example, St-Onge and Cavayas (1995) used high-resolution images for evaluating effect of tree size 

and density on the spatial structure of forest stands. They showed that the directional semivariograms 

were useful for analyzing spatial variability of their forests. Van der Meer (1996) used a 

nonparametric geostatistics (indicator kriging) for calcite-dolomite mineral mapping in a forest.  They 

noted that this method can be an effective tool in forest studies if the reflectance spectra of the 

classified species type are known adequately and data with adequate resolution are used. 

Woodcock et al. (1988a) evaluated relations between spatial properties of forests and their 

maps. They reported that the sill is associated with the rate of the objects area; the range is associated 

with the dimension of the objects; the shape of the semivariogram and the geostatistical range are 

more closely associated to the space of objects than to their size; the shape of a semivariogram is 

associated with the overall variance and decreased spatial resolution results in a smaller sill and greater 

geostatistical range, and in faster rise of the semivariogram height at the distance of the first lag as 

well. Bruniquel-Pinel and Gastellu-Etchegorry (1998) found that the sill and the oscillation amplitude 

of semivariograms rise with the increased LAI in visible band. On the other hand, Colombo et al. 

(2003) analyzed the spatial variability of LAI for five vegetation types. They reported that 

geostatistically interpolated data strengthened correlation between LAI and SVI (spectral vegetation 

indices) and geostatistics helped developing the LAI–SVI correlations. Zawadzki et al. (2005) reported 

that geostatistic techniques make great information about RS images. They noted that when remote 

sensing values do not used, kriging is a method to combine values of vegetation samples. 

Kriging interpolates rainfall better than conventional methods (Tabios and Salas, 1985; Phillips 

et al., 1992). However, Dirks et al. (1998) reported that sampling density and data resolution are 

important for better results. Borga and Vizzaccaro (1997) evaluated kriging and multiquadratic surface 

fitting at different measured densities and they found similar results. Creutin et al. (1988) and Azimi-

Zonooz et al. (1989) used cokriging for merging raingage and radar-rainfall data.  In the same way, 

Hevesi et al. (1992a, b) used cokriging, to incorporate elevation into the mapping of rainfall and they 

found a correlation coefficient of 0.75 between them. Daly et al. (1994) estimated rainfall versus 

elevation using, ordinary cokriging. They concluded that prediction capacity of the different 

algorithms is associated with the strength of the correlation between rainfall and elevation. 

Goovaerts (1997) studied incorporating elevation into the spatial interpolation of rainfall by 

geostatistical approaches. He showed that the contribution of the elevation to the prediction accuracy 

of rainfall depends on patterns of spatial continuity for rainfall and topography as well. This is valid 

especially when the cross semivariogram and the semivariogram of the elevation variable have a small 

relative nugget (Fig. 6). Goovaerts (1997) concluded that elevation data can be used in cokriging of 

rainfall, if the nugget effect is small. In addition, he noted that further research should be conducted to 

understand relation of elevation to the spatial variability displayed by rainfall. 
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Fig. 6 Experimental semivariogram of elevation 

Søe and Buchmann (2005) mapped soil respiration rates by ordinary block kriging using an 

exponential semivariance in a natural unmanaged highly heterogeneous beech forest. Their results 

showed significant effects of tree roots and forest structure on soil CO2 fluxes, indicating that the 

spatial variation in soil respiration could be explained by the spatial variation of gross primary 

production. On the other hand, Kosugi et al. (2007) evaluated soil respiration rate using a geostatistical 

analysis and noted that there was a negative spatial relationship between soil respiration rate and soil 

water content in a tropical forest. Jost et al. (2005) analyzed the effect of tree species composition on 

soil water storage (SWS) at the forest stand scale in a mixed stand of Norway spruce and European 

beech in Austria. They compared spatio-temporal patterns in vegetation and SWS and they noted that 

that there was a good relation between predicted soil water storage and sudden changes in SWS with 

kriging 

Most resent geostatistical studies have focused on a few soil properties in forest ecosystems. 

However, more research is needed for an adequate understanding of forest soils. Therefore, it was 

noted that geostatistical analysis is a strong mean to understand spatial variations of forest 

characteristics across multiple scales (Sauer et al., 2006). For example, Yavitt et al. (2009) reported 

that there is no adequate information on spatial heterogeneity of tropical forest soils. They investigated 

spatial heterogeneity for pH and nutrient including trace elements in tropical moist forest in Panama. 
Random, exponential, spherical, gaussian, linear, and power functions were found as best fit models in 

their studies. Their results provided important information for further research in this field. However, 

they concluded that soil chemical properties are very variable due to their small scale.  According to 

Condit (1995) and Losos and Leigh (2004), more research on geostatistics is needed in tropical forests, 

because most of the tropical forests were studied in a small scales.  

Wang et al. (2007) investigated the spatial data for soil moisture as related to topography to 

understand their mutual effect on N forms in a subtropical forest in China. They reported that the soil 

NH4+ and NO3 contents were similar with different forest conditions. Their results further showed that 

N mineralization and nitrification showed negative correlation with topographic position.  

 Jeyanny et al. (2013) analyzed spatial variability of soil carbon, carbon and nitrogen ratio, and 

forest floor depth by kriging analyses in tropical and lowland forests with different topography. They 

concluded that spatial structure of soil C showed differences in forest with different topography.  In 

addition, their maps showed spatial clustering and acceptable interpolated values and short to 

moderate effective range for C, which was less than 125.2 m for all areas. In other studies, soil C was 

found to exhibit relatively longer effective range (Kravchenko et al. 2006, Law et al. 2009). Zhang and 

McGrath (2004) reported that longer effective range for soil C was common as large spatial variations 

in C was evident. 

It was reported that forest floor depth is highly variable due to topography, vegetation 

distribution, soil temperature, moisture, and decomposition rates (Jeyanny et al. 2013). They found a 

short effective range in their study areas, especially at the side slope which registered an effective 

range of 8.6 m. Based on their short effective range, they recommend that minimum sampling interval 

for forest floor depth should not be greater than 10 m for geospatial analysis. Generally, variograms of 

the toe slope had sill values close to the sample variance, implying that a fixed variance was present 
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(Rossi et al. 2009). Silver et al. (1994) reported that spatial variations of soil properties related to plant 

species and basal area.   

Spatial variability in soil organic carbon stocks in forest have been related with a series of 

physical, biophysical, biological, and chemical processes, such as climate, soil type, tree species 

composition, stand age, and topography (Kristensen et al. 2015). Kristensen et al. (2015) computed 

spatial properties from the combination of grid and variable lag distance observations and they 

reported that spherical models yielded the best fit in Boreal forests. They found that the organic layer 

carbon stocks indicate large short-range variability. They also noted that even there are high 

differences between soil variables; there is a high correlation between horizon thickness and organic 

layer (horizon) carbon. Others (Bens et al. 2006; Liski 1995; Penne et al. 2010) reported that the 

organic layer carbon was high in location closer to tree stems. Similarly, Liski (1995) reported higher 

organic carbon contents and organic horizon variability in the vicinity of Scots pine stems and 

Hansson et al. (2011) found that organic layer carbon stock and neighboring basal area have positively 

correlated in younger spruce and pine stands. 

Rossi et al. (2009) evaluated spatial distribution of soil organic carbon in tropical forests. They 

analyzed OC variability in five forests using conventional statistical methods and geostatistics. 

Spherical model was fitted to experimental variograms, suggesting a typical spatial behavior. 

However, these researchers found no spatial structure for pine plantation, described by a pure nugget 

model, suggesting that the values beyond the smallest sampling distance were independent one to 

another, and this further indicated that the mean of the soil carbon content may represent soil carbon 

across the field at the current sampling resolution.  

Overall, information on spatial pattern of forest properties is important in developing strategies 

for forest management. Geostatistics proved beneficial for evaluation of forest inventories in various 

conditions. For successful geostatistical analyses at process scale (Zhang et al. 2004), spatial 

variability should be accurately analyzed. Some geostatistical researches show that spatial parameters 

are scale-dependent (Schume et al. 2003). It can be concluded that research is still needed for 

developing an adequate understanding on spatial structure and its relation to biotic and abiotic factors 

in different forests across multiple scales. In this regard, studies should be conducted to evaluate 

multiple interactions and feedbacks among components of forest ecosystems across different scales of 

time and space.  
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