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Abstract. In this paper, firstly we obtain some generalized trapezoid and midpoint type inequalities for 

functions of bounded variation using two new generalized identities for Riemann-Stieltjes integrals. Then 

quadrature formula is also provided. 
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Sınırlı Varyasyonlu Fonksiyonlar için Yeni Genelleşmiş Eşitsizlikler 

Özet. Bu makalede ilk olarak Riemann-Stieltjes integrallleri için genelleşmiş yeni iki eşitlik kullanılarak sınırlı 

varyasyonlu fonksiyonlar için yamuk (trapezoid) ve orta nokta (midpoint) tipli bazı genelleşmiş eşitsizlikler 

elde edilmiştir. Daha sonra karesel formül de sağlanmıştır. 

Anahtar Kelimeler: Sınırlı varyasyonlu fonksiyon, Ostrowski tipli eşitsizlikler, Riemann-Stieltjes integralleri. 

 

1. INTRODUCTION 

the differentiable mappings. 

Theorem 1.  Let   R,: baf  be a differentiable mapping on  ba,  whose derivative 

  R,:  baf  is bounded on  ,,ba  i.e. 
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for all  bax ,  . 

The constant 
4

1  is the best possible. 

Ostrowski inequality has applications in numerical integration, probability and optimization theory, 

stochastic, statistics, information and integral operator theory. During the past few years, many authors 

have studied on Ostrowski type inequalities for functions of bounded variation, see for example ([1]-[14], 

[16]-[18]). Until now, a large number of research papers and books have been written on Ostrowski 

inequalities and their numerous applications. 
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Definition 1. Let bxxxaP n  ...: 10
 be any partition of  ba,  and let 

).()()( 1 iii xfxfxf  
 Then )(xf  is said to be of bounded variation if the sum 
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is bounded for all such partitions. Let f  be of bounded variation on  ba, , and  P  denotes the sum 
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 corresponding to the partition P  of  ba, . The number 

      ,),(:sup:, baPPPbaV f    

is called the total variation of f  on  .,ba   Here  ),( baP  denote the family of partitions of  .,ba  

In [12], Dragomir proved the following Ostrowski type inequalities for functions of bounded variation: 

Theorem 2. Let   R,: baf  be a mapping of bounded variation on  .,ba  Then 
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holds for all  .,bax  The constant 
2

1  is the best possible. 

Dragomir gave the following trapezoid inequality and midpoint inequality in [9] and [10], respectively: 

Theorem 3.  Let   R,: baf  be a mapping of bounded variation on  .,ba  Then we have the 

inequality 
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The constant  
2

1   is the best possible. 

Theorem 4. Let   R,: baf  be a mapping of bounded variation on  .,ba  Then we have the 

inequality 
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The constant 
2

1  is the best possible. 

We introduce the notation bxxxaI nn  ...: 10  for a division of the interval  ba,  with 

iii xxh  1:  and  1,...,1,0:max)(  nihhv i . Then we have 



 

  

670 Budak, Sarikaya / Cumhuriyet Sci. J., Vol.39-3 (2018) 668-678 

                                               ),(),()( nTnT

b

a

IfRIfAdttf                                                (1.5) 

where 

                                               i
ii

n

i

nT h
xfxf

IfA
2

)()(
:),( 1

0






                                              (1.6) 

and  the remainder term satisfies 
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Similarly, we have 
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and  the remainder term satisfies 

                                                     .,)(
2

1
),( baVhvIfR fnM                                               (1.10) 

In this work, we obtain some new generalized trapezoid and midpoint type integral inequalities for 

functions of bounded variation by using the new kernel which is given by Tseng and Hwang in [19]. Then 

we give some applications for our results. 

2. GENERALIZED TRAPEZOID AND MIDPOINT INEQUALITIES 

Throughout this paper, let bdca   in R   with .dcba   

Now, we give our main results: 

Theorem 5.  Let   R,: baf be a mapping of bounded variation on  .,ba   Then, we have the 

following generalized inequality 
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Proof.  Consider the kernel )(1 xP  as follows: 
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Integration by parts gives us 
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It is well known that if ,g    R,: baf  are such that g  is continuous on  ba,  and f  is of bounded 

variation on  ,,ba  then )()( tdftg
b

a

  exists and 
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On the other hand, by using (2.3), we get 
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This completes the proof. 

Remark 1. If we choose ac   and bd   in Theorem 5, then the inequality (2.1) reduces to the trapezoid 

inequality (1.3). 

Corollary 1. Under the assumption of Theorem 5, let bac   )1(  and bad )1(    with 

2
10   , then we have the following inequality 
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Remark 2. If we choose 0  in Corollary 1, then the inequality (2.4) reduces to the trapezoid inequality 

(1.3). 

Corollary 2. If we choose 
3
1   in Corollary 1, we have the inequality 
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Corollary 3. If we choose 
4

1
  in Corollary 1, we have the inequality 
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Corollary 4.  Under the assumption of Theorem 5, suppose that  .,1 baCf   Then we have 
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where 
1

.  is the 1L -norm defined by 
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Corollary 5.  Under the assumption of Theorem 5, let   R,: baf  be a Lipschitzian with the constant 

.0L  Then 
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Theorem 6.  Let   R,: baf  be a mapping of bounded variation on  .,ba  Then, we have the 

following generalized inequality 
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Proof. Integration by parts gives us 
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where the kernel )(2 xP  is defined by 
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Using the inequalities (2.3), we have 
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Thus  the proof is completed. 

Remark 3. If we choose ac   and bd   in Theorem 6, then the inequality (2.5) reduces to the midpoint 

inequality (1.4). 

Corollary 6. Under the assumption of Theorem 6, let bac   )1(  and bad )1(    with 

2
10   , then we have the following inequality 
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Remark 4. If we choose 0  in Corollary 6, then the inequality (2.6) reduces to the midpoint inequality 

(1.4). 

Corollary 7. If we choose 
3
1  in Corollary 6, we have the inequality 
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Corollary 8. If we choose 
4
1  in Corollary 6, we have the inequality 
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Corollary 9. Under the assumption of Theorem 6, suppose that  .,1 baCf   Then we have 
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Corollary 10. Under the assumption of Theorem 6, let   R,: baf  be a Lipschitzian with the 

constant .0L  Then 
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3. APPLICATION TO QUADRATURE FORMULA 

Now we introduce the intermediate points 
ic  and ,id  ,1 iiii xdcx   1,...,1,0  ni   in the 

division bxxxaI nn  ...: 10
. Let 

iii xxh  1:  and  1,...,1,0:max)(  nihhv i
 

and define the sum 
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Then the following theorem holds: 

Theorem 7.  Let f  be as in Theorem 5. Then 
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where ),,,( iinT dcIfA  is defined as above and the remainder term ),( nIfR  satisfies 
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Proof.  Applying Theorem 5 with the interval  1, ii xx   1,...,1,0  ni , we have 
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for all  .1,...,1,0  ni  Summing the inequality (3.4) over i  from 0  to 1n  and using the generalized 

triangle inequality, we have 
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which completes the proof. 

Remark 5. If we choose 
ii xc   and 

1 ii xd  in Theorem 7, then we have (1.5) with (1.6) and (1.7). 

By using Theorem 6 and following similar steps of Theorem 5, we have the following theorem. 

Theorem 8.  Let f  be as in Theorem 6. Then 
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and the remainder term ),,,( iinM dcIfR  satisfies 
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Remark 6. If we choose ii xc   and 1 ii xd  in Theorem 8, then we get (1.10) with (1.8) and (1.9). 
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