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Abstract 

In this study, the solutions of random partial differential equations are examined. The parameters and the initial 

conditions of the random component partial differential equations are investigated with Beta distribution. A few 

examples are given to illustrate the efficiency of the solutions obtained with the random Differential Transformation 

Method (rDTM). Functions for the expected values and the variances of the approximate analytical solutions of the 

random equations are obtained. Random Differential Transformation Method is applied to examine the solutions of 

these partial differential equations and MAPLE software is used for the finding the solutions and drawing the figures. 

Also the Laplace- Padé Method is used to improve the convergence of the solutions. The results for the random 

component partial differential equations with Beta distribution are analysed to investigate effects of this distribution on 

the results. Random characteristics of the equations are compared with the results of the deterministic partial differential 

equations. The efficiency of the method for the random component partial differential equations is investigated by 

comparing the formulas for the expected values and variances with results from the simulations of the random 

equations. 

 

Keywords: Expected Value, Random Component Partial Differential Equation, Random Differential Transformation 

Method 

 

 

Öz 

Bu çalışmada, rastgele kısmi diferansiyel denklemlerin çözümleri incelenmiştir. Rastgele bileşenli kısmi diferansiyel 

denklemlerin başlangıç şartları ve parametreleri Beta dağılımı ile incelenmiştir. Rastgele Diferansiyel dönüşüm 

yöntemi ile elde edilen çözümlerin etkinliği birkaç örnekle verilmiştir. Rastgele denklemlerin yaklaşık analitik 

çözümlerinin beklenen değerleri ve varyansları için fonksiyonlar elde edilmiştir. Rastgele Diferansiyel dönüşüm 

yöntemi, bu kısmi diferansiyel denklemlerin çözümlerini incelemek için uygulanmış ve MAPLE programı, çözümleri 

bulmak ve grafikleri çizmek için kullanılmıştır. Ayrıca çözümlerin yakınsaklığını iyileştirmek için Laplace-Padé metodu 

kullanılmıştır. Beta dağılımı ile rastgele bileşenli kısmi diferansiyel denklemlerin sonuçları, bu dağılımın sonuçlara 

etkilerini incelemek amacıyla analiz edilmiştir. Denklemlerin rastgele karakteristikleri ile rastgele olmayan kısmi 

diferansiyel denklemlerin sonuçları karşılaştırılmıştır. Rastgele bileşenli kısmi diferansiyel denklemler için yöntemin 

etkinliği, rastgele denklemlerin simülasyonlarından elde edilen sonuçlarla beklenen değerlerin ve varyansların 

formüllerini karşılaştırarak incelenmiştir. MAPLE programı, rastgele bileşenli kısmi diferansiyel denklemlerin 

sonuçlarını simüle etmek için kullanılmıştır ve bu simülasyon sonuçlarından standart sapma, güven aralığı gibi diğer 

karakteristiklerler elde edilmiştir. 

 

Anahtarlar kelimeler: Beklenen değer, Rastgele bileşenli kısmi diferansiyel denklemler, Rastgele diferansiyel dönüşüm 

metodu 
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1. Introduction 

 

Random ordinary differential equations are 

currently being studied extensively. Two 

dimensional random differential equations have a 

great significance in many applications in areas 

such as engineering, biology and physics. Models 

of various scientific problems are established with 

nonlinear random differential equations 

containing two variables. Many of these equations 

can be analyzed by numerical methods. A few of 

these numerical methods are Homotopy 

Perturbation Method (HPM) (Khalaf, 2011), 

Adomian Decomposition Method (ADM) 

(Khudair et al, 2011) and Variational Iteration 

Method (VIM) (Khudair et al, 2011). 

 

In 2012, L. Villafuerte and B.M. Chen-

Charpentier developed the random differential 

transformation method to solve random 

differential equations. They found an analytical 

mean-fourth convergent series solution to a 

nonlinear random Riccati differential equation 

with the random DTM. In addition, they obtained 

approximate values of the basic statistical 

functions of the random solution process such as 

the mean and variance by using this series 

solution of the Riccati equation (Villafuerte and 

Chen-Charpentier, 2012). 

 

The goal of this study is to present the application 

of differential transformation method (DTM) for 

obtaining variance and expected values of 

accurate and approximate solutions of the random 

component partial differential equations. For this 

aim, the notion of the two dimensional differential 

transformation method is given in Section 1.1. 

Laplace-Padé method is given in Section 1.2. Beta 

distribution and its properties such as the 

probability density function, expected value and 

variance are introduced in Section 1.3. Some 

applications are given in Section 2. 

 

1.1. Two-dimensional differential transformation 

method 
 

Let 𝑤(𝑥, 𝑦) be analytic and differentiated 

continuously in the domain of interest.  𝑊(𝑘, ℎ) is 

defined as follows ( Kanth and Aruna, 2009; 

Kangalgil and Ayaz, 2009; Yüzbaşi and Ismailov, 

2017; Tari et al, 2009; Ziyaee and Tari, 2015; 

Hadizadeh and Moatamedi, 2007;Zhou, 1986). 

 

 

𝑊(𝑘, ℎ) =
1

𝑘!ℎ!
[

𝜕𝑘+ℎ
𝑤(𝑥,𝑦)

𝜕𝑥𝑘𝜕𝑦ℎ ]
(𝑥0 ,𝑦0)

                      (1) 

 

(where the 𝑊(𝑘, ℎ) is the transformed function, 

i.e. T-function). In this study, 𝑤(𝑥, 𝑦) will 

indicate the original function and 𝑊(𝑘, ℎ) will 

indicate the transformed function (T-function). 

The differential inverse transform of  𝑊(𝑘, ℎ) is 

defined as follows: 

 

 

𝑤(𝑥, 𝑦) = ∑ ∑ 𝑊(𝑘, ℎ)(𝑥 − 𝑥0)𝑘(𝑦 −∞
ℎ=0

∞
𝑘=0

𝑦0)ℎ                                                                    (2) 

 

 

Using (1) and (2), it is found that   

 

 

𝑤(𝑥, 𝑦) = ∑ ∑
1

𝑘!ℎ!
[

𝜕𝑘+ℎ𝑤(𝑥,𝑦)

𝜕𝑘𝜕ℎ ]
(𝑥0 , 𝑦0)

(𝑥 −∞
ℎ=0

∞
𝑘=0

𝑥0)𝑘(𝑦 − 𝑦0)ℎ  

                                                                            (3) 

 

The notion of the two–dimensional differential 

transform can be found with the basis of two-

dimensional Taylor series expansion. From (1) 

and (2), the basic operations obtained by two 

dimensional differential transform are given in 

Table1 (Jang et al, 2001; Bildik et al, 2006; 

Pukhov, 1982). 

 

We give the Laplace-Padé method to expand the 

convergence region of the series solutions 

obtained by random DTM in the following. 

 

1.2. Laplace–Padé Method 
 

Consider the power series ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0 . Assume 

that 𝑓(𝑥) represents a function such that  

 

 

𝑓(𝑥) = ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0                                              (4) 

 

 

A Padé approximation is defined as follows. 

(Merdan, 2010; Abassy et al, 2007) 

 

 

[
𝐿

𝑀
] =

𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
=

𝑝𝐿𝑥𝐿+...+𝑝1𝑥+𝑝0

𝑞𝑀𝑥𝑀+...+𝑞1𝑥+𝑞0
                           (5) 

 

The Padé approximation can be obtained from 

Maclaurin expansion which complies with (4). 

There are (𝐿 + 1) dividend coefficients and 

(𝑀 + 1) divisor coefficients in formula (5). 
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Table1: Operations in the two-dimensional differential transform 

Original function Transformed function 

𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) ± 𝑣(𝑥, 𝑦) 𝑊(𝑘, ℎ) = 𝑈(𝑘, ℎ) ± 𝑉(𝑘, ℎ) 

𝑤(𝑥, 𝑦) = 𝛼𝑢(𝑥, 𝑦) 𝑊(𝑘, ℎ) = 𝛼𝑈(𝑘, ℎ) 

𝑤(𝑥, 𝑦) =
𝜕𝑢(𝑥, 𝑦)

𝜕𝑥
 𝑊(𝑘, ℎ) =

(𝑘 + 1)

𝐻
𝑈(𝑘 + 1, ℎ) 

𝑤(𝑥, 𝑦) =
𝜕𝑢(𝑥, 𝑦)

𝜕𝑦
 𝑊(𝑘, ℎ) =

(𝑘 + 1)

𝐾
𝑈(𝑘, ℎ + 1) 

𝑤(𝑥, 𝑦) =
𝜕𝑟+𝑠𝑢(𝑥, 𝑦)

𝜕𝑟𝜕𝑠
 𝑊(𝑘, ℎ) =

[(𝑘 + 1)(𝑘 + 2) … (𝑘 + 𝑟)(ℎ + 1)(ℎ + 2) … (ℎ + 𝑠) … 𝑈(𝑘 + 𝑟, ℎ + 𝑠)]

(𝐻𝑟𝐾𝑠)
 

𝑤(𝑥, 𝑦) = 𝑢(𝑥, 𝑦)𝑣(𝑥, 𝑦) 𝑊(𝑘, ℎ) = 𝑈(𝑘, ℎ)⨂𝑉(𝑘, ℎ) 

                = ∑ ∑ 𝑈(𝑟, ℎ − 𝑠)𝑉(𝑘 − 𝑟, 𝑠)

ℎ

𝑠=0

𝑘

𝑟=0

 

 

𝑤(𝑥, 𝑦) = 𝑥𝑚𝑦𝑛 𝑊(𝑘, ℎ) = 𝐻𝑚𝐾𝑛𝛿(𝑘 − 𝑚)𝛿(ℎ − 𝑛) 

 

 

The polynomials in (5) are constituted so that 

𝑓(𝑥) and [
𝐿

𝑀
]  conform at 𝑥 = 0 and their 

derivatives up to 𝐿 + 𝑀  conform at 𝑥 = 0.  Under 

the condition 𝑄0(𝑥) = 1, the approximation is 

exactly the Maclaurin expansion for 𝑓(𝑥). In the 

case 𝐿 + 𝑀 is a fixed value, when 𝑃𝐿(𝑥) and 

𝑄𝑀(𝑥)  get the same degree or the degree of  

𝑃𝐿(𝑥)  gets one bigger than the degree of  𝑄𝑀(𝑥), 

the error is smallest. Pay attention that the 

constant coefficient of 𝑄𝑀 is 𝑞0 = 1. When both 

𝑃𝐿(𝑥) and 𝑄𝑀(𝑥)  are divided by the same 

constant, [
𝐿

𝑀
] remains unchanged. So the rational 

function [
𝐿

𝑀
] gets (𝐿 + 𝑀 + 1) unknown 

coefficients. This number offers that the [
𝐿

𝑀
] must 

accord the power series (4) along the orders 

1, 𝑥, 𝑥2, … , 𝑥𝐿+𝑀  in the symbol of formal power 

series, 

 

We multiply the both side of (6) with the divisor 

of right side in (6) and contrast the coefficients of 

both sides in (6). We obtain (7) and (8). 

 

 

∑ 𝑎𝑘𝑥𝑘

∞

𝑘=0

𝑃𝐿(𝑥)

𝑄𝑀(𝑥)
=

𝑝𝐿𝑥𝐿+. . . +𝑝1𝑥 + 𝑝0

𝑞𝑀𝑥𝑀+. . . +𝑞1𝑥 + 𝑞0
+ 𝑂(𝑥𝐿+𝑀+1).                                                                                        (6) 

 

𝑎𝑠 + ∑ 𝑎𝑠−𝑖𝑞𝑖

𝑀

𝑖=1

= 𝑝𝑠, (𝑠 = 0, … , 𝑀),                                                                                                                             (7) 

𝑎𝑠 + ∑ 𝑎𝑠−𝑖𝑞𝑖

𝐿

𝑖=1

= 0, (𝑠 = 𝑀 + 1, … , 𝑀 + 𝐿).                                                                                                             (8) 

 

 

If we solve the linear equation in (8), we obtain  

𝑞𝑖(𝑖 = 1, … , 𝐿). If we replace 𝑞𝑖  in (7), we obtain 

𝑞𝑠(𝑠 = 0,1, … , 𝑀). Hence, we constitute a [
𝐿

𝑀
] 

Pade approximation that conforms by ∑ 𝑎𝑘𝑥𝑘∞
𝑘=0  

along order 𝑥𝐿+𝑀. When 𝑀 ≤ 𝐿 ≤ 𝑀 + 2 where 

𝐿  and 𝑀 are respectively the degree of divisor 

and dividend in Padé series, an invariable formula 

for an ordinary differential equation is obtained by 

Padé series. (Abassy et al, 2007)  

1.3. Beta Distribution 
 

In 1895, a Beta function was used to explain the 

Beta distribution introduced by Karl Pearson, and 

the use of this function gives the Beta distribution. 

We use the standard state of Beta distribution in 

this paper. 

 

Definition (Beta random variable): If the 

probability density of a random variable 𝑋 has the 

following form, this random variable has the Beta 
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distribution and is called a Beta random variable. 

For  𝛼, 𝛽˃0 and 0˂𝑥˂1, 

 

 

f(𝑥, 𝛼, 𝛽) =
𝛤(𝛼+𝛽)

𝛤(𝛼)𝛤(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1                (9) 

 

 

If the random variable 𝑋 gets a beta distribution 

with parameters 𝛼 and 𝛽, the expected value and 

variance of the random variable 𝑋 are given as 

(Eugene et al, 2002): 

 

 

𝐸(𝑋) =
α

𝛼+𝛽
, 𝑉𝑎𝑟(𝑋) =

𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
           (10) 

 

 

In this study, Beta distribution in the used 

examples is taken as 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1). Also 

the symbol of 𝑢𝑎(𝑥, 𝑡) indicates approximate 

solutions of the following equations. 

 

2. Applications 
 

Example 1.  Consider the following convection-

diffussion equation 

 

 
𝜕𝑢

𝜕𝑡
=

𝜕2
𝑢

𝜕𝑥2 −
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕2
𝑢

𝜕𝑥2 − 𝑢2 + 𝑢                       (11) 

 

 

with the initial-value conditions for 𝑎˃0 and let 𝑎 

be random variable with beta distribution. Let 

these initial-value conditions be random: 

 

 

𝑢(𝑥, 0) = 𝑎𝑒𝑥, 𝑢(0, 𝑡) = 𝑎𝑒𝑡 , 𝑢𝑡(𝑥, 0) = 𝑎𝑒𝑥 , 𝑢𝑥(0, 𝑡) = 𝑎𝑒𝑡                                                                          (12) 

 

Applying the differential transform of (11), it can be found that 

 

(ℎ + 1)𝑈(𝑘, ℎ + 1) = (𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2, ℎ) − (𝑘 + 1)𝑈(𝑘 + 1, ℎ) + 𝑈(𝑘, ℎ) 

+ ∑ ∑(𝑘 − 𝑟 + 1)(𝑘 − 𝑟 + 2)𝑈(𝑟, ℎ − 𝑠)𝑈(𝑘 − 𝑟 + 2, 𝑠)

ℎ

𝑠=0

𝑘

𝑟=0

− ∑ ∑ 𝑈(𝑟, ℎ − 𝑠)𝑈(𝑘 − 𝑟, 𝑠)

ℎ

𝑠=0

𝑘

𝑟=0

 

 

The solution of 𝑢(𝑥, 𝑡) can be found as 

 

𝑢(𝑥, 𝑡) = 𝑎𝑒𝑥+𝑡 

 

With the Maple software, it can be obtained that  

𝑢𝑎(𝑥, 𝑡) = 𝑎 + 𝑎𝑡 +
𝑎𝑡2

2
+ 𝑎𝑥 + 𝑎𝑥𝑡 +

𝑎𝑥𝑡2

2
+

𝑎𝑥2

2
+

𝑎𝑥2𝑡

2
+

𝑎𝑥2𝑡2

4
+

𝑎𝑥3

6
+

𝑎𝑥3𝑡

6
+

𝑎𝑥3𝑡2

12
+

𝑎𝑥4

24
 

+
𝑎𝑥4𝑡

24

+
𝑎𝑥4𝑡2

48
                                                                                                                                                               (13) 

 

Let  𝑎 ∊ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1) 

𝐸(𝑎) =
2

3
 , 𝐸(𝑎2) =

1

2
 

𝑢𝑎(𝑥, 𝑡) = (𝑎 + 𝑎𝑥 +
1

2
𝑎𝑥2 +

1

6
𝑎𝑥3 +

1

24
𝑎𝑥4) + 𝑡 (𝑎 + 𝑎𝑥 +

1

2
𝑎𝑥2 +

1

6
𝑎𝑥3 +

1

24
𝑎𝑥4) + 𝑡2(

1

2
𝑎 +

1

2
𝑎𝑥 

+
1

4
𝑎𝑥2 +

1

12
𝑎𝑥3 +

1

48
𝑎𝑥4)  

𝑢𝑎(𝑥, 𝑡) = 𝑎 (1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
) + 𝑎𝑡 (1 + 𝑥 +

𝑥2

2
+

𝑥3

6
+

𝑥4

24
) +

𝑎𝑡2

2
(1 + 𝑥 +

𝑥2

2
+

𝑥3

6
+

𝑥4

24
) 

= 𝑓(𝑥) (𝑎 + 𝑎𝑡 +
𝑎𝑡2

2
)                                                                                                                                                 (14) 
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From (14) equation, 𝑓(𝑥) = (1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
), X(0) = 𝑎𝑓(𝑥), X(1) = 𝑎𝑓(𝑥) , X(2) =

𝑎𝑓(𝑥)

2
  are 

obtained. 

We get the expected value of (14) as follows. 

𝐸[𝑢𝑎(𝑥, 𝑡)] = 𝐸[𝑓(𝑥)(𝑎 + 𝑎𝑡 + 𝑎𝑡2)] = 𝑓(𝑥)(𝐸(𝑎) + 𝐸(𝑎)𝑡 + 𝐸(𝑎)𝑡2) = 𝑓(𝑥) (
2

3
+

2𝑡

3
+

𝑡2

3
) 

 

So the expected value of (14) can be obtained that 

𝐸[𝑢𝑎(𝑥, 𝑡)] = (1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
) (

2

3
+

2𝑡

3
+

𝑡2

3
) 

 

If the Laplace-Padé technique is applied to improve the approximate analytical value obtained for the 

expected value of equation (11), the following solution is obtained. 

 

𝑀 =
1

36
(24 + 24𝑥 + 12𝑥2 + 4𝑥3 + 𝑥4)𝑒𝑡 

 

The graph of this solution is given in figure 2. 

 

 

 

Figure 1. Time-dependent change of expected 

value of the equation (11) 

 

Figure 2. The time-dependent change of the 

solution of the expected value of  the equation  

(11) from MDTM. 

 

 

 

𝑉[𝑢𝑎(𝑥, 𝑡)] = ∑ ∑ 𝑐𝑜𝑣(𝑥(𝑖), 𝑥(𝑗))𝑡𝑖+𝑗

2

𝑖=0

2

𝑗=0

                                                                                                                (15) 

𝑐𝑜𝑣(𝑥(𝑖), 𝑥(𝑗)) = 𝐸(𝑥(𝑖)𝑥(𝑗)) − 𝐸(𝑥(𝑖))𝐸(𝑥(𝑗)) 

 

If we calculate the variance of (14) with (15) as follows 

 

𝑉[𝑢𝑎(𝑥, 𝑡)] = 𝑐𝑜𝑣(𝑥(0), 𝑥(0)) + 𝑐𝑜𝑣(𝑥(0), 𝑥(1))𝑡 + 𝑐𝑜𝑣(𝑥(0), 𝑥(2))𝑡2 + 𝑐𝑜𝑣(𝑥(1), 𝑥(0))𝑡 

+𝑐𝑜𝑣(𝑥(1), 𝑥(1))𝑡2 + 𝑐𝑜𝑣(𝑥(1), 𝑥(2))𝑡3 + 𝑐𝑜𝑣(𝑥(2), 𝑥(0))𝑡2 + 𝑐𝑜𝑣(𝑥(2), 𝑥(1))𝑡3 

+𝑐𝑜𝑣(𝑥(2), 𝑥(2))𝑡4 

 

The variance of (14) can be obtained as 
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𝑉[𝑢𝑎(𝑥, 𝑡)] = (1 + 2𝑥 + 2𝑥2 +
4𝑥3

3
+

2𝑥4

3
+

𝑥5

4
+

5𝑥6

72
+

𝑥7

72
+

𝑥8

576
) (

𝑡2

9
+

𝑡3

18
+

𝑡4

72
)                            (16) 

 

If the Laplace-Padé technique is applied to improve the approximate analytical value obtained for the 

variance of the equation (11), the following solution is obtained. 

 

𝑁 =
16

27
𝑥 +

16

27
𝑥2 +

32

81
𝑥3 +

16

81
𝑥4 −

16

27
𝑒

3
4

𝑡𝑥𝑐𝑜𝑠 (
𝑡√3

4
) +

2

27
𝑥5 +

5

243
𝑥6 +

1

243
𝑥7 +

1

1944
𝑥8 

+
8

27
+

16

27
𝑒

3
4

𝑡𝑥√3𝑠𝑖𝑛 (
𝑡√3

4
) +

16

27
𝑒

3
4

𝑡𝑥2√3𝑠𝑖𝑛 (
𝑡√3

4
) +

32

81
𝑒

3
4

𝑡𝑥3√3𝑠𝑖𝑛 (
𝑡√3

4
) 

+
16

81
𝑒

3
4

𝑡𝑥4√3𝑠𝑖𝑛 (
𝑡√3

4
) +

2

27
𝑒

3
4

𝑡𝑥5√3 𝑠𝑖𝑛 (
𝑡√3

4
) +

5

243
𝑒

3
4

𝑡𝑥6√3𝑠𝑖𝑛 (
𝑡√3

4
) 

+
1

243
𝑒

3
4

𝑡𝑥7√3𝑠𝑖𝑛 (
𝑡√3

4
) +

1

1944
𝑒

3
4

𝑡𝑥8√3 𝑠𝑖𝑛 (
𝑡√3

4
) −

16

27
𝑒

3
4

𝑡𝑥2𝑐𝑜𝑠 (
𝑡√3

4
) 

−
32

81
𝑒

3
4

𝑡𝑥3𝑐𝑜𝑠 (
𝑡√3

4
) −

16

81
𝑒

3
4

𝑡𝑥4𝑐𝑜𝑠 (
𝑡√3

4
) +

8

27
𝑒

3
4

𝑡
√3 𝑠𝑖𝑛 (

𝑡√3

4
) −

2

27
𝑒

3
4

𝑡𝑥5 𝑐𝑜𝑠 (
𝑡√3

4
) 

−
5

243
𝑒

3
4

𝑡𝑥6 𝑐𝑜𝑠 (
𝑡√3

4
) −

1

243
𝑒

3
4

𝑡𝑥7𝑐𝑜𝑠 (
𝑡√3

4
) −

1

1944
𝑒

3
4

𝑡𝑥8𝑐𝑜𝑠 (
𝑡√3

4
) −

8

27
𝑒

3
4

𝑡𝑐𝑜𝑠 (
𝑡√3

4
) 

 

The graph of this solution is given in figure 4. 

 

 

 

 

 

Figure 3. The time-dependent variation of the 

variance of the equation (11). 

 

 

Figure 4. The time-dependent variation of the 

solution obtained from MDTM of the equation 

(11) 

 

Example 2. Consider the following Gas Dynamics equation 

 

𝜕𝑢

𝜕𝑡
= −𝑢

𝜕𝑢

𝜕𝑥
− 𝑢2 + 𝑢                                                                                                                                                     (17) 

 

with the initial-value conditions for  𝑎 > 0 and let 𝑎 be random variable with Beta distribution. Let these 

initial-value conditions be random: 

𝑢(𝑥, 0) = 𝑎𝑒−𝑥, 𝑢(0, 𝑡) = 𝑎𝑒𝑡, 𝑢𝑡(𝑥, 0) = 𝑎𝑒−𝑥, 𝑢𝑥(0, 𝑡) = −𝑎𝑒−𝑡                                                                     (18) 
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Applying the differential transform of (17), it can be found that 

(ℎ + 1)𝑈(𝑘, ℎ + 1) = − ∑ ∑(𝑘 − 𝑟 + 1)𝑈(𝑟, ℎ − 𝑠)𝑈(𝑘 − 𝑟 + 1, 𝑠)

ℎ

𝑠=0

𝑘

𝑟=0

+ 𝑈(𝑘, ℎ) 

− ∑ ∑ 𝑈(𝑟, ℎ − 𝑠)𝑈(𝑘 − 𝑟, 𝑠)

ℎ

𝑠=0

𝑘

𝑟=0

 

 

The solution of 𝑢(𝑥, 𝑡) can be found as 

 

𝑢(𝑥, 𝑡) = 𝑎𝑒−𝑥+𝑡. Let  𝑎 ∊ 𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 1) .  

 𝐸(𝑎) =
2

3
 , 𝐸(𝑎2) =

1

2
   

 

With the Maple software, it can be obtained that 

𝑢𝑎(𝑥, 𝑡) = (𝑎 − 𝑎𝑥 +
𝑎𝑥2

2
−

𝑎𝑥3

6
+

𝑎𝑥4

24
) + 𝑡 (𝑎 − 𝑎𝑥 +

𝑎𝑥2

2
−

𝑎𝑥3

6
+

𝑎𝑥4

24
) 

+𝑡2 (
𝑎

2
−

𝑎𝑥

2
+

𝑎𝑥2

4
−

𝑎𝑥3

12
+

𝑎𝑥4

48
)                                                                                                                            (19) 

𝑢𝑎(𝑥, 𝑡) = 𝑎 (1 − 𝑥 +
𝑥2

2
−

𝑥3

6
+

𝑥4

24
) + 𝑎𝑡 (1 − 𝑥 +

𝑥2

2
−

𝑥3

6
+

𝑥4

24
) +

𝑎𝑡2

2
(1 − 𝑥 +

𝑥2

2
−

𝑥3

6
+

𝑥4

24
) 

= 𝑓(𝑥) (𝑎 + 𝑎𝑡 +
1

2
𝑎𝑡2)                                                                                                                                              (20) 

From (20) equaiton, 𝑓(𝑥) = (1 − 𝑥 +
𝑥2

2
−

𝑥3

6
+

𝑥4

24
) , X(0) = 𝑎𝑓(𝑥) , X(1) = 𝑎𝑓(𝑥) , X(2) =

1

2
𝑎𝑓(𝑥) are 

obtained. 

We get the expected value of (20) as follows. 

𝐸[𝑢𝑎(𝑥, 𝑡)] = 𝐸[𝑓(𝑥)(𝑎 + 𝑎𝑡 + 𝑎𝑡2)] = 𝑓(𝑥)[𝐸(𝑎) + 𝐸(𝑎)𝑡 + 𝐸(𝑎)𝑡2] = 𝑓(𝑥) (
2

3
+

2𝑡

3
+

𝑡2

3
) 

 

So the expected value of (20) can be obtained that 

𝐸[𝑢𝑎(𝑥, 𝑡)] = (1 − 𝑥 +
𝑥2

2
−

𝑥3

6
+

𝑥4

24
) (

2

3
+

2𝑡

3
+

𝑡2

3
) 

 

𝑀 =
1

36
(24 − 24𝑥 + 12𝑥2 − 4𝑥3 + 𝑥4)𝑒𝑡 

 

The graph of this solution is given in figure 6. 

 

 

 

 

 

 

 

Figure 5. Time-dependent change of expected 

value of the equation (17) 

If the Laplace-Padé technique is applied to 

improve the approximate analytical value 

obtained for the expected value of equation (17), 

the following solution is obtained. 
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Figure 6. The time-dependent change of the 

solution of the expected value of the equation (17) 

from the modified Differential Transformation 

Method. 

 

 

𝑉[𝑢𝑎(𝑥, 𝑡)] = ∑ ∑ 𝑐𝑜𝑣(𝑥(𝑖), 𝑥(𝑗))𝑡𝑖+𝑗

2

𝑖=0

2

𝑗=0

                                                                                                                (21) 

 𝑐𝑜𝑣(𝑥(𝑖), 𝑥(𝑗)) = 𝐸(𝑥(𝑖)𝑥(𝑗)) − 𝐸(𝑥(𝑖))𝐸(𝑥(𝑗))   

 

If we calculate variance of (20) with (21), 

 

𝑉[𝑢𝑎(𝑥, 𝑡)] = 𝑐𝑜𝑣(𝑥(0), 𝑥(0)) + 𝑐𝑜𝑣(𝑥(0), 𝑥(1))𝑡 + 𝑐𝑜𝑣(𝑥(0), 𝑥(2))𝑡2 + 𝑐𝑜𝑣(𝑥(1), 𝑥(0))𝑡 

+𝑐𝑜𝑣(𝑥(1), 𝑥(1))𝑡2 + 𝑐𝑜𝑣(𝑥(1), 𝑥(2))𝑡3 + 𝑐𝑜𝑣(𝑥(2), 𝑥(0))𝑡2 + 𝑐𝑜𝑣(𝑥(2), 𝑥(1))𝑡3 

+𝑐𝑜𝑣(𝑥(2), 𝑥(2))𝑡4 

 

The variance of (20) can be obtained as 

 

𝑉[𝑢𝑎(𝑥, 𝑡)] = (1 − 2𝑥 + 2𝑥2 −
4𝑥3

3
+

2𝑥4

3
−

𝑥5

4
+

5𝑥6

72
−

𝑥7

72
+

𝑥8

576
) (

𝑡2

9
+

𝑡3

18
+

𝑡4

72
)                            (22) 

 

If the Laplace-Padé technique is applied to improve the approximate analytical value obtained for the 

variance of the equation (17), the following solution is obtained. 

 

𝑁 = −
16

27
𝑥 +

16

27
𝑥2 −

32

81
𝑥3 +

16

81
𝑥4 +

16

27
𝑒

3
4

𝑡𝑥𝑐𝑜𝑠 (
𝑡√3

4
) −

2

27
𝑥5 +

5

243
𝑥6 −

1

243
𝑥7 

+
1

1944
𝑥8 +

8

27
−

16

27
𝑒

3
4

𝑡𝑥√3 𝑠𝑖𝑛 (
𝑡√3

4
) +

16

27
𝑒

3
4

𝑡𝑥2√3 𝑠𝑖𝑛 (
𝑡√3

4
) 

−
32

81
𝑒

3
4

𝑡𝑥3√3 𝑠𝑖𝑛 (
𝑡√3

4
) +

16

81
𝑒

3
4

𝑡𝑥4√3 𝑠𝑖𝑛 (
𝑡√3

4
) −

2

27
𝑒

3
4

𝑡𝑥5√3 𝑠𝑖𝑛 (
𝑡√3

4
) 

+
5

243
𝑒

3
4

𝑡𝑥6√3 𝑠𝑖𝑛 (
𝑡√3

4
) −

1

243
𝑒

3
4

𝑡𝑥7√3 𝑠𝑖𝑛 (
𝑡√3

4
) +

1

1944
𝑒

3
4

𝑡𝑥8√3 𝑠𝑖𝑛 (
𝑡√3

4
) 

−
16

27
𝑒

3
4

𝑡𝑥2𝑐𝑜𝑠 (
𝑡√3

4
) +

32

81
𝑒

3
4

𝑡𝑥3𝑐𝑜𝑠 (
𝑡√3

4
) −

16

81
𝑒

3
4

𝑡𝑥4𝑐𝑜𝑠 (
𝑡√3

4
) +

8

27
𝑒

3
4

𝑡
√3 𝑠𝑖𝑛 (

𝑡√3

4
) 

+
2

27
𝑒

3
4

𝑡𝑥5𝑐𝑜𝑠 (
𝑡√3

4
) −

5

243
𝑒

3
4

𝑡𝑥6𝑐𝑜𝑠 (
𝑡√3

4
) +

1

243
𝑒

3
4

𝑡𝑥7 𝑐𝑜𝑠 (
𝑡√3

4
) 
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−
1

1944
𝑒

3
4

𝑡𝑥8 𝑐𝑜𝑠 (
𝑡√3

4
) −

8

27
𝑒

3
4

𝑡 𝑐𝑜𝑠 (
𝑡√3

4
) 

 

The graph of this solution is given in figure 8. 

 

 

 

Figure 7. The time-dependent variation of the 

variance of the equation (17) 

 

 

Figure 8. The time-dependent variation of the 

solution obtained from modified Differential 

Transformation Method for the equation (17) 

 

 

 

3. Conclusion 

 

In this study, we analyzed some random 

component partial differential equations 

containing random initial values. We obtained 

approximate analytical solutions of these 

equations with random Differential 

Transformation Method (rDTM). We obtained 

approximate variance and expected values with 

for the examples by using rDTM. We applied the 

modified rDTM (Pade-DTM) technique to 

improve the results and to extend the convergence 

region. Graphics simulations were given for 

solutions. Comparison of the approximate solution 

with the 𝑀 function improved from expected 

value of approximate solution and the error 

between these values for example 1 is given in 

Table2. Comparison of the approximate solution 

with the 𝑀 function improved from expected 

value of approximate solution and the error 

between these values for example 2 is given in 

Table3. 

 

It is observed that error between the approximate 

solution with the M function obtained from 

expected value of approximate solution is 

respectively small for example 1 and example 2 

from Table 2 and Table 3. 

 

 

Table2: Comparison of the approximate solution with the M function obtained from expected value of 

approximate solution  for example 1. 

   𝑥     𝑡 𝑢𝑎(𝑥, 𝑡) (𝑎 =
2

3
) 𝑀 Err= |𝑢𝑎(𝑥, 𝑡) − 𝑀| 

-1.0 -1.0 0.1250000000 0.0919686029 0.0333313971 

-0.8 -0.8 0.1566008889 0.1353179138 0,0212829751 

-0.6 -0.6 0.2124346667 0.2010114086 0,0114232581 

-0.4 -0.4 0.3039146667 0.2995883725 0,0043262942 

-0.2 -0.2 0.4475742223 0.4468814390 0,0006927833 

0.0   0.0 0.6666666666 0.6666666666 0,0000000000 

0.2   0.2 0.9934053333 0.9945475525 0,0009422192 

0.4   0.4 1.4718435570 1.4836030860 0,0117595290 

0.6   0.6 2.1613946670 2.2125381220 0,0511434550 

0.8   0.8 3.1409920000 3.2973614390 0,1569694390 

1.0   1.0 4.5138888888 4.9080088569 0,3941199681 
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Table3: Comparison of the approximate solution with the M function obtained from expected value of 

approximate solution for example 2. 

𝑥 𝑡 𝑢𝑎(𝑥, 𝑡) (𝑎 =
2

3
) 𝑀 Err= |𝑢𝑎(𝑥, 𝑡) − 𝑀| 

-1.0 -1.0 0.9027777777 0.6642267687 0.2385510090 

-0.8 -0.8 0.7704320000 0.6657257932 0.1047062068 

-0.6 -0.6 0.7042746667 0.6664036762 0.0378709905 

-0.4 -0.4 0.6762524447 0.6666258378 0.0096266069 

-0.2 -0.2 0.6676986667 0.6666651613 0.0010335054 

  0.0   0.0 0.6666666666 0.6666666666 0.0000000000 

  0.2   0.2 0.6659031112 0.6666687676 0.0007656564 

  0.4   0.4 0.6614613333 0.6667461850 0.0052848517 

  0.6   0.6 0.6519546667 0.6673813792 0.0154267125 

  0.8   0.8 0.6384497779 0.6702340147 0.0317842368 

  1.0   1.0 0.6250000000 0.6795704571 0.0545704571 
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