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ON A SOLVABLE SYSTEM OF DIFFERENCE EQUATIONS OF
HIGHER-ORDER WITH PERIOD TWO COEFFICIENTS

YASIN YAZLIK AND MERVE KARA

Abstract. We show that the next difference equations system

xn+1 =
anxn−k+1yn−k

yn − αn
+ βn+1, yn+1 =

bnyn−k+1xn−k
xn − βn

+ αn+1, n ∈ N0,

where N0 = N ∪ {0}, the sequences (an)n∈N0 , (bn)n∈N0 , (αn)n∈N0 , (βn)n∈N0
are two periodic and the initial conditions x−i, y−i i ∈ {0, 1, . . . , k}, are non-
zero real numbers, can be solved. Also, we investigate the behavior of solutions
of above mentioned system when a0 = b1 and a1 = b0.

1. Introduction

Theory of difference equations have attracted attention of many authors in re-
cent years(see, e.g., [1]-[40]). Most of the recent applications of this theory have
appeared in many scientific areas such as biology, physics, engineering, economics.
Particularly, rational difference equations and their systems of higher order have
great importance in applications. It is very worthy to find systems which belong
to solvable nonlinear difference equations systems and to solve nonlinear difference
equations or systems in closed-form or explicit-form. The found formulas for the
solutions of these types of equations or systems can be used easily for description
of many features of the solutions of these equations or systems. For this reason,
finding of a formula for solution of a nonlinear difference equation is worthy as well
as interesting.
In an earlier paper, Elabbasy et al., in [3], considered, among other things, the

next difference equation

xn+1 =
xnxn−1
xn − 1

+ 1, n ∈ N0. (1)
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Quite recently in [14], Haddad et al. considered the following system of difference
equations

xn+1 =
axnyn−1
yn − α

+ β, yn+1 =
bynxn−1
xn − β

+ α, n ∈ N0, (2)

where the parameters a, b, α, β and the initial conditions x−i, y−i, i = 0, 1, are non-
zero real numbers, which is an extension of the equation in (1). By using appropriate
substitutions on variables, authors reduced system (2) to the first order linear dif-
ference equations and investigated the existence and behavior of the solutions of
system (2).
Our aim in this study to show that the next difference equations system

xn+1 =
anxn−k+1yn−k

yn − αn
+ βn+1, yn+1 =

bnyn−k+1xn−k
xn − βn

+ αn+1, n ∈ N0, (3)

where the sequences an, bn, αn, βn are two periodic and the initial conditions x−i,
y−i, i ∈ {0, 1, . . . , k}, are non-zero real numbers, is solvable in closed form. Also,
by using obtained formulas we give the behavior and periodicity of well-defined
solutions of system (3) when a0 = b1 and a1 = b0. Note that system (3) is a
natural extension of both Eq. (1) and system (2),

Lemma 1. [27] Let (an)n∈N0 and (bn)n∈N0 be two sequences of real numbers and
the sequences ykm+i, i = 0, k − 1, be solutions of the equations

ykm+i = akm+iyk(m−1)+i + bkm+i, m ∈ N0. (4)

Then, for each fixed i ∈ {0, 1, . . . , k− 1} and m ≥ −1, equation (4) has the general
solution

ykm+i = y−k+i

m∏
j=0

akj+i +

m∑
s=0

bks+i

m∏
j=s+1

akj+i.

Further, if (an)n∈N0 and (bn)n∈N0 are constant and i = 0, k − 1, then

ykm+i =

{
am+1y−k+i + b

1−am+1

1−a , if a 6= 1,
y−k+i + b (m+ 1) , if a = 1.

Definition 2. [12] (Periodicity) A solution {xn}∞n=−k of equation xn+1 =
f (xn, xn−1, . . . , xn−k) , n ∈ N0, is called periodic with period p if there exists an
integer p ≥ 1 such that xn+p = xn for all n ≥ −k.

In the sequel, as usual, we suppose that
∏m
j=iAj = 1 and

∑m
j=iAj = 0, for all

m < i.

2. Solutions of System (3)

Let (xn, yn)n≥−k be a solution of system (3). If one of the initial conditions
x−j , y−j , j = 0, k is equal to zero, then the system (3) is not defined. For example,
if x−k = 0, then y1 = α1, and so x2 can not be calculated. For the other j = 0, k − 1,
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the case is same. Now assume that x−j 6= 0 6= y−j , j = 0, k. If one of the terms
xn0 and yn0 , for n0 ≥ 1, is equal to zero, then from system (3) either xn0+k =
an0+k−1xn0yn0−1
yn0+k−1−αn0+k−1

+ βn0+k = βn0+k and so, it follows that, yn0+k+1 is not defined or

yn0+k =
bn0+k−1yn0xn0−1
xn0+k−1−βn0+k−1

+ αn0+k = αn0+k and so, it follows that, xn0+k+1 is not

defined. Thus, for well-defined solution of system (3), we may assume that none of
the terms of xn and yn is not equal to zero, for every n ≥ −k. By means of the
change of variables

un =
xn − βn
xn−k

, vn =
yn − αn
yn−k

, n ∈ N0, (5)

the system in (3) becomes

un+1 =
an
vn
, vn+1 =

bn
un
, n ∈ N0. (6)

From (6), we have two independent equations

un+2 =
an+1
bn

un, vn+2 =
bn+1
an

vn, n ∈ N0, (7)

and so

u2m+i =

(
a1−i
bi

)m
ui, v2m+i =

(
b1−i
ai

)m
vi, i ∈ {0, 1} , m ∈ N0, (8)

where the sequences (an)n∈N0 and (bn)n∈N0 are two periodic. From (5) we have
that

xn = unxn−k + βn = unun−kxn−2k + unβn−k + βn,

yn = vnyn−k + αn = vnvn−kyn−2k + vnαn−k + αn, n ∈ N0. (9)

We consider three cases: (a) k = 1; (b) k = 2t + 1 (t = 1, 2, . . . ); and (c) k =
(2t) (t = 1, 2, . . . ).
a)If k = 1, then, from equations in (9), we can write

xn = unxn−1 + βn, yn = vnyn−1 + αn, n ∈ N0. (10)

from which it follows that

x2n = u2nx2n−1 + β2n =

(
a1
b0

)n
u0x2n−1 + β0, n ∈ N0,

x2n+1 = u2n+1x2n + β2n+1 =

(
a0
b1

)n
u1x2n + β1, n ∈ N0,

y2n = v2ny2n−1 + α2n =

(
b1
a0

)n
v0y2n−1 + α0, n ∈ N0,

y2n+1 = v2n+1y2n + α2n+1 =

(
b0
a1

)n
v1y2n + α1, n ∈ N0.
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which implies that

x2n+1 =

(
a0
b1

)n(
a1
b0

)n
u0u1x2n−1 +

(
a0
b1

)n
u1β0 + β1, n ∈ N0, (11)

x2n+2 =

(
a0
b1

)n(
a1
b0

)n+1
u0u1x2n +

(
a1
b0

)n+1
u0β1 + β0, n ∈ N0, (12)

y2n+1 =

(
b0
a1

)n(
b1
a0

)n
v0v1y2n−1 +

(
b0
a1

)n
v1α0 + α1, n ∈ N0, (13)

y2n+2 =

(
b0
a1

)n(
b1
a0

)n+1
v0v1y2n +

(
b1
a0

)n+1
v0α1 + α0, n ∈ N0. (14)

Hence, from Lemma 1 for k = 1 and Eqs. (11)-(14), we can write the solution of
system (3) as follows:

x2n−1 = x−1

n−1∏
t=0

d

(
a0
b1

)t(
a1
b0

)t
+

n−1∑
r=0

β0u1

(
a0
b1

)r n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t

+

n−1∑
r=0

β1

n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t
,

x2n = x0

n−1∏
t=0

d

(
a0
b1

)t(
a1
b0

)t+1
+

n−1∑
r=0

β0

n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t+1

+

n−1∑
r=0

β1u0

(
a1
b0

)r+1 n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t+1
,

y2n−1 = y−1

n−1∏
t=0

a0b0
d

(
b0
a1

)t(
b1
a0

)t
+

n−1∑
r=0

α0v1

(
b0
a1

)r n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t

+

n−1∑
r=0

α1

n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t
,

y2n = y0

n−1∏
t=0

a0b0
d

(
b0
a1

)t(
b1
a0

)t+1
+

n−1∑
r=0

α0

n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t+1

+

n−1∑
r=0

α1v0

(
b1
a0

)r+1 n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t+1
,

where u0 =
x0−β0
x−k

, u1 =
x1−β1
x1−k

, v0 =
y0−α0
y−k

, v1 =
y1−α1
y1−k

, d = u0u1 and v0v1 = a0b0
d .

b) Suppose k = 2t + 1 (t = 1, 2, . . . ). Iterating the right-hand side of equations in
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(9), we can write

x4tm+2m+2j+1 = x2j−4t−1

m∏
s=0

u2(2ts+s+j)+1u2(2ts+s+j−t)

+

2m+1∑
l=0

β2(tl+j−t)+l

2m+1∏
s=l+1

u2(ts+j−t)+s (15)

x4tm+2m+2j+2 = x2j−4t

m∏
s=0

u2(2ts+s+j+1)u2(2ts+s+j−t)+1

+

2m+1∑
l=0

β2(tl+j−t)+l+1

2m+1∏
s=l+1

u2(ts+j−t)+s+1 (16)

y4tm+2m+2j+1 = y2j−4t−1

m∏
s=0

v2(2ts+s+j)+1v2(2ts+s+j−t)

+

2m+1∑
l=0

α2(tl+j−t)+l

2m+1∏
s=l+1

v2(ts+j−t)+s (17)

y4tm+2m+2j+2 = y2j−4t

m∏
s=0

v2(2ts+s+j+1)v2(2ts+s+j−t)+1

+

2m+1∑
l=0

α2(tl+j−t)+l+1

2m+1∏
s=l+1

v2(ts+j−t)+s+1, (18)

where j ∈ {t, t+ 1, ..., 3t}. Using (8) in (15)-(18), we get

x4tm+2m+2j+1 = x2j−4t−1

m∏
s=0

d

(
a0
b1

)(2t+1)s+j (
a1
b0

)(2t+1)s+j−t
+

m∑
l=0

β2(2tl+j+l−t)u
m−l
0 um−l+11

×
(
a1
b0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

(
a0
b1

)j(m−l+1)+(2t+1)m(m+1)−l(l−1)
2

+

m∑
l=0

β2(2tl+j+l)+1u
m−l
0 um−l1

(
a1
b0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l+1)
2

×
(
a0
b1

)j(m−l)+(2t+1)m(m+1)−l(l+1)
2

x4tm+2m+2j+2 = x2j−4t

m∏
s=0

d

(
a0
b1

)(2t+1)s+j+1(
a1
b0

)(2t+1)s+j−t
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+

m∑
l=0

β2(2tl+j+l−t)+1u
m−l+1
0 um−l1

×
(
a1
b0

)(j+1)(m+1−l)+(2t+1)m(m+1)−l(l−1)
2

(
a0
b1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

+

m∑
l=0

β2(2tl+j+l+1)u
m−l
0 um−l1

(
a1
b0

)(j+1)(m−l)+(2t+1)m(m+1)−l(l+1)
2

×
(
a0
b1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

y4tm+2m+2j+1 = y2j−4t−1

m∏
s=0

a0b0
d

(
b0
a1

)(2t+1)s+j (
b1
a0

)(2t+1)s+j−t
+

m∑
l=0

α2(2tl+j+l−t)v
m−l
0 vm−l+11

×
(
b1
a0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

(
b0
a1

)j(m−l+1)+(2t+1)m(m+1)−l(l−1)
2

+

m∑
l=0

α2(2tl+j+l)+1v
m−l
0 vm−l1

(
b1
a0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l+1)
2

×
(
b0
a1

)j(m−l)+(2t+1)m(m+1)−l(l+1)
2

y4tm+2m+2j+2 = y2j−4t

m∏
s=0

a0b0
d

(
b0
a1

)(2t+1)s+j+1(
b1
a0

)(2t+1)s+j−t

+

m∑
l=0

α2(2tl+j+l−t)+1v
m−l+1
0 vm−l1

(
b1
a0

)(j+1)(m−l+1)+(2t+1)m(m+1)−l(l−1)
2

×
(
b0
a1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

+

m∑
l=0

α2(2tl+j+l+1)v
m−l
0 vm−l1

×
(
b1
a0

)(j+1)(m−l)+(2t+1)m(m+1)−l(l+1)
2

(
b0
a1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

c) Suppose k = (2t) (t = 1, 2, . . . ). Similarly, iterating the right-hand side of
equations in (9), we have

x4tm+2j = x2j−4t

m∏
s=0

u2(2ts+j)u2(2ts+j−t)
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+

2m+1∑
l=0

β2(tl+j−t)

2m+1∏
s=l+1

u2(ts+j−t), (19)

x4tm+2j+1 = x2j−4t+1

m∏
s=0

u2(2ts+j)+1u2(2ts+j−t)+1

+

2m+1∑
l=0

β2(tl+j−t)+1

2m+1∏
s=l+1

u2(ts+j−t)+1, (20)

y4tm+2j = y2j−4t

m∏
s=0

v2(2ts+j)v2(2ts+j−t)

+

2m+1∑
l=0

α2(tl+j−t)

2m+1∏
s=l+1

v2(ts+j−t), (21)

y4tm+2j+1 = y2j−4t+1

m∏
s=0

v2(2ts+j)+1v2(2ts+j−t)+1

+

2m+1∑
l=0

α2(tl+j−t)+1

2m+1∏
s=l+1

v2(ts+j−t)+1, (22)

where j ∈ {t, t+ 1, ..., 3t− 1}. Using (8) in (19)-(22), we get

x4tm+2j = x2j−4t

m∏
s=0

u20

(
a1
b0

)4ts+2j−t
+

2m+1∑
l=0

β2(tl+j−t)u
2m−l+1
0

×
(
a1
b0

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

x4tm+2j+1 = x2j−4t+1

m∏
s=0

u21

(
a0
b1

)4ts+2j−t
+

2m+1∑
l=0

β2(tl+j−t)+1u
2m−l+1
1

×
(
a0
b1

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

y4tm+2j = y2j−4t

m∏
s=0

v20

(
b1
a0

)4ts+2j−t
+

2m+1∑
l=0

α2(tl+j−t)v
2m−l+1
0

×
(
b1
a0

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

y4tm+2j+1 = y2j−4t+1

m∏
s=0

v21

(
b0
a1

)4ts+2j−t
+

2m+1∑
l=0

α2(tl+j−t)+1v
2m−l+1
1
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×
(
b0
a1

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

,

where u0 =
x0−β0
x−k

, u1 =
x1−β1
x1−k

, v0 =
y0−α0
y−k

, v1 =
y1−α1
y1−k

, d = u0u1 and v0v1 =
a0b0
d .
The previous computations prove the next theorem.

Theorem 3. Let{(xn, yn)}n≥−k be a well-defined solution of system (3). Then, we
get the next formulas:
(a) If k = 1, for all n ∈ N0, then we get

x2n−1 = x−1

n−1∏
t=0

d

(
a0
b1

)t(
a1
b0

)t
+

n−1∑
r=0

β0u1

(
a0
b1

)r n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t

+

n−1∑
r=0

β1

n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t
,

x2n = x0

n−1∏
t=0

d

(
a0
b1

)t(
a1
b0

)t+1
+

n−1∑
r=0

β0

n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t+1

+

n−1∑
r=0

β1u0

(
a1
b0

)r+1 n−1∏
t=r+1

d

(
a0
b1

)t(
a1
b0

)t+1
,

y2n−1 = y−1

n−1∏
t=0

a0b0
d

(
b0
a1

)t(
b1
a0

)t
+

n−1∑
r=0

α0v1

(
b0
a1

)r n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t

+

n−1∑
r=0

α1

n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t
,

y2n = y0

n−1∏
t=0

a0b0
d

(
b0
a1

)t(
b1
a0

)t+1
+

n−1∑
r=0

α0

n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t+1

+

n−1∑
r=0

α1v0

(
b1
a0

)r+1 n−1∏
t=r+1

a0b0
d

(
b0
a1

)t(
b1
a0

)t+1
.

b) If k = 2t+ 1 (t = 1, 2, . . . ), for all m ∈ N0, we have

x4tm+2m+2j+1 = x2j−4t−1

m∏
s=0

d

(
a0
b1

)(2t+1)s+j (
a1
b0

)(2t+1)s+j−t

+

m∑
l=0

β2(2tl+j+l−t)u
m−l
0 um−l+11

(
a1
b0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2
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×
(
a0
b1

)j(m−l+1)+(2t+1)m(m+1)−l(l−1)
2

+

m∑
l=0

β2(2tl+j+l)+1u
m−l
0 um−l1

(
a1
b0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l+1)
2

×
(
a0
b1

)j(m−l)+(2t+1)m(m+1)−l(l+1)
2

x4tm+2m+2j+2 = x2j−4t

m∏
s=0

d

(
a0
b1

)(2t+1)s+j+1(
a1
b0

)(2t+1)s+j−t
+

m∑
l=0

β2(2tl+j+l−t)+1u
m−l+1
0 um−l1

×
(
a1
b0

)(j+1)(m−l+1)+(2t+1)m(m+1)−l(l−1)
2

(
a0
b1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

+

m∑
l=0

β2(2tl+j+l+1)u
m−l
0 um−l1

(
a1
b0

)(j+1)(m−l)+(2t+1)m(m+1)−l(l+1)
2

×
(
a0
b1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

y4tm+2m+2j+1 = y2j−4t−1

m∏
s=0

a0b0
d

(
b0
a1

)(2t+1)s+j (
b1
a0

)(2t+1)s+j−t
+

m∑
l=0

α2(2tl+j+l−t)v
m−l
0 vm−l+11

×
(
b1
a0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

(
b0
a1

)j(m−l+1)+(2t+1)m(m+1)−l(l−1)
2

+

m∑
l=0

α2(2tl+j+l)+1v
m−l
0 vm−l1

(
b1
a0

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l+1)
2

×
(
b0
a1

)j(m−l)+(2t+1)m(m+1)−l(l+1)
2

y4tm+2m+2j+2 = y2j−4t

m∏
s=0

a0b0
d

(
b0
a1

)(2t+1)s+j+1(
b1
a0

)(2t+1)s+j−t
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+

m∑
l=0

α2(2tl+j+l−t)+1v
m−l+1
0 vm−l1

(
b1
a0

)(j+1)(m−l+1)+(2t+1)m(m+1)−l(l−1)
2

×
(
b0
a1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

+

m∑
l=0

α2(2tl+j+l+1)v
m−l
0 vm−l1

×
(
b1
a0

)(j+1)(m−l)+(2t+1)m(m+1)−l(l+1)
2

(
b0
a1

)(t+j+1)(m−l)+(2t+1)m(m−1)−l(l−1)
2

c) If k = 2t (t = 1, 2, . . . ), for all m ∈ N0, we have

x4tm+2j = x2j−4t

m∏
s=0

u20

(
a1
b0

)4ts+2j−t
+

2m+1∑
l=0

β2(tl+j−t)u
2m−l+1
0

×
(
a1
b0

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

x4tm+2j+1 = x2j−4t+1

m∏
s=0

u21

(
a0
b1

)4ts+2j−t
+

2m+1∑
l=0

β2(tl+j−t)+1u
2m−l+1
1

×
(
a0
b1

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

y4tm+2j = y2j−4t

m∏
s=0

v20

(
b1
a0

)4ts+2j−t
+

2m+1∑
l=0

α2(tl+j−t)v
2m−l+1
0

×
(
b1
a0

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

y4tm+2j+1 = y2j−4t+1

m∏
s=0

v21

(
b0
a1

)4ts+2j−t
+

2m+1∑
l=0

α2(tl+j−t)+1v
2m−l+1
1

×
(
b0
a1

)j(2m−l+1)+t 2m(2m+1)−l(l−1)
2

,

where u0 =
x0−β0
x−k

, u1 =
x1−β1
x1−k

, v0 =
y0−α0
y−k

, v1 =
y1−α1
y1−k

, d = u0u1 and v0v1 = a0b0
d .

3. The case a0 = b1 and a1 = b0

The aim of in this section is to investigate the asymptotic behavior and period-
icity of well-defined solutions of system (3) in the case a0 = b1 and a1 = b0. The
following corollary gives us the solutions of system (3) when a0 = b1 and a1 = b0.

Corollary 4. Suppose that {(xn, yn)}n≥−k is a well-defined solution of system (3)
when a0 = b1 and a1 = b0. Then, the solutions of system (3) are given by:
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a) If k = 1, for all m ∈ N0, then we get

x2m−1 =

{
x−1 + (β0u1 + β1)m if d = 1,

x−1d
m + (β0u1 + β1)

dm−1
d−1 if d 6= 1,

(23)

x2m =

{
x0 + (β1u0 + β0)m if d = 1,

x0d
m + (β1u0 + β0)

dm−1
d−1 if d 6= 1,

(24)

y2m−1 =

y−1 + (α0v1 + α1)m if a0b0 = d,

y−1
(
a0b0
d

)m
+ (α0v1 + α1)

( a0b0d )
m−1

a0b0
d −1

if a0b0 6= d,
(25)

y2m =

y0 + (α1v0 + α0)m if a0b0 = d,

y0
(
a0b0
d

)m
+ (α1v0 + α0)

( a0b0d )
m−1

a0b0
d −1

if a0b0 6= d,
(26)

b) If k = 2t+ 1 (t = 1, 2, . . . ), for all m ∈ N0 and j ∈ {t, t+ 1, ..., 3t}, we have

x4tm+2m+2j+1 =

{
x2j−4t−1 + (β0u1 + β1) (m+ 1) if d = 1,

x2j−4t−1d
m+1 + (β0u1 + β1)

(
dm+1−1
d−1

)
if d 6= 1,

(27)

x4tm+2m+2j+2 =

{
x2j−4t + (β1u0 + β0) (m+ 1) if d = 1,

x2j−4td
m+1 + (β1u0 + β0)

(
dm+1−1
d−1

)
if d 6= 1,

(28)

y4tm+2m+2j+1 =

y2j−4t−1 + (α0v1 + α1) (m+ 1) if d = a0b0,

y2j−4t−1
(
aobo
d

)m+1
+ (α0v1 + α1)

(
( a0b0d )

m+1−1
a0b0
d −1

)
if d 6= a0b0, ,

(29)

y4tm+2m+2j+2 =

y2j−4t + (α1v0 + α0) (m+ 1) if d = a0b0

y2j−4t
(
a0b0
d

)m+1
+ (α1v0 + α0)

(
( a0b0d )

m+1−1
a0b0
d −1

)
if d 6= a0b0,

(30)

c) If k = 2t (t = 1, 2, . . . ), for all m ∈ N0 and j ∈ {t, t+ 1, ..., 3t− 1}, we have

x4tm+2j+1 =

{
x2j−4t+1 + β1 (2m+ 2) if u1 = 1,

x2j−4t+1u
2m+2
1 + β1

(
(u1)

2m+2−1
u1−1

)
if u1 6= 1,

(31)

x4tm+2j =

{
x2j−4t + β0 (2m+ 2) if u0 = 1,

x2j−4t (u0)
2m+2

+ β0

(
(u0)

2m+2−1
u0−1

)
if u0 6= 1,

(32)

y4tm+2j+1 =

{
y2j−4t+1 + α1 (2m+ 2) if v1 = 1,

y2j−4t+1 (v1)
2m+2

+ α1

(
(v1)

2m+2−1
v1−1

)
if v1 6= 1,

(33)
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y4tm+2j =

{
y2j−4t + α0 (2m+ 2) if v0 = 1,

y2j−4t (v0)
2m+2

+ α0

(
(v0)

2m+2−1
v0−1

)
if v0 6= 1.

(34)

where u0 =
x0−β0
x−k

, u1 =
x1−β1
x1−k

, v0 =
y0−α0
y−k

, v1 =
y1−α1
y1−k

, d = u0u1 and v0v1 = a0b0
d .

The next theorem gives the limiting properties of solutions of system (3) in the
case a0 = b1 and a1 = b0.

Theorem 5. Suppose that {(xn, yn)}n≥−k is a well-defined solution of system (3)
with a0 = b1, a1 = b0. Then, the next statements are true.

(1) Let k = 1.
(a) If (d− 1)x−1 + (β0u1 + β1) 6= 0, then we get

lim
n→∞

|x2n−1| =
{∣∣∣β0u1+β1d−1

∣∣∣ If |d| < 1 ,
∞ if |d| > 1 .

Otherwise, if (d− 1)x−1 + (β0u1 + β1) = 0 and d 6= 1, then x2n−1 =
x−1 for all n ∈ N0.

(b) If β0u1+β1 6= 0 and d = 1, then |x2n−1| → ∞, as n→∞. Otherwise,
if β0u1 + β1 = 0 and d = 1, then x2n−1 = x−1, for all n ∈ N0.

(c) If (d− 1)x0 + (β1u0 + β0) 6= 0, then we have

lim
n→∞

|x2n| =
{∣∣∣β1u0+β0d−1

∣∣∣ if |d| < 1,
∞ if |d| > 1.

Otherwise, if (d− 1)x0 + (β1u0 + β0) = 0 and d 6= 1, then x2n = x0
for all n ∈ N0.

(d) If β1u0 + β0 6= 0 and d = 1, then |x2n| → ∞, as n → ∞. Otherwise,
if β1u0 + β0 = 0 and d = 1, then x2n = x0, for all n ∈ N0.

(e) If
(
a0b0
d − 1

)
y−1 + (α0v1 + α1) 6= 0, then we get

lim
n→∞

|y2n−1| =
{∣∣∣ (α0v1+α1)dd−a0b0

∣∣∣ if |d| > a0b0,

∞ if |d| < a0b0.

Otherwise, if
(
a0b0
d − 1

)
y−1 + (α0v1 + α1) = 0 and d 6= a0b0, then

y2n−1 = y−1 for all n ∈ N0.
(f) If α0v1 + α1 6= 0 and d = a0b0, then |y2n−1| → ∞, as n → ∞.

Otherwise, if α0v1 + α1 = 0 and d = a0b0, then y2n−1 = y−1, for all
n ∈ N0.

(g) If
(
a0b0
d − 1

)
y0 + (α1v0 + α0) 6= 0, then we get

lim
n→∞

|y2n| =
{∣∣∣ (α1v0+α0)dd−a0b0

∣∣∣ if |d| > a0b0

∞ if |d| < a0b0



SOLVABLE SYSTEM OF DIFFERENCE EQUATIONS 1687

Otherwise, if
(
a0b0
d − 1

)
y0+(α1v0 + α0) = 0 and d 6= a0b0, then y2n =

y0 for all n ∈ N0.
(h) If α1v0+α0 6= 0 and d = a0b0, then |y2n| → ∞, as n→∞. Otherwise,

if α1v0 + α0 = 0 and d = a0b0, then y2n = y0, for all n ∈ N0.
(2) Let k = 2t+ 1 (t = 1, 2, . . . ) and j ∈ {t, t+ 1, ..., 3t}.

(a) If (d− 1)x2j−4t−1 + (β0u1 + β1) 6= 0, then we have

lim
m→∞

|x4tm+2m+2j+1| =
{∣∣∣β0u1+β1d−1

∣∣∣ if |d| < 1,
∞ if |d| > 1.

Otherwise, if (d− 1)x2j−4t−1 + (β0u1 + β1) = 0 and d 6= 1, then
x4tm+2m+2j+1 = x2j−4t−1 for all m ∈ N0.

(b) If β0u1 + β1 6= 0 and d = 1, then |x4tm+2m+2j+1| → ∞, as m → ∞.
Otherwise, if β0u1+β1 = 0 and d = 1, then x4tm+2m+2j+1 = x2j−4t−1,
for all m ∈ N0.

(c) If (d− 1)x2j−4t + (β1u0 + β0) 6= 0, then we get

lim
m→∞

|x4tm+2m+2j+2| =
{∣∣∣β1u0+β0d−1

∣∣∣ if |d| < 1,
∞ if |d| > 1 .

Otherwise, if (d− 1)x2j−4t + (β1u0 + β0) = 0 and d 6= 1, then
x4tm+2m+2j+2 = x2j−4t for all m ∈ N0.

(d) If β1u0 + β0 6= 0 and d = 1, then |x4tm+2m+2j+2| → ∞, as m → ∞.
Otherwise, if β1u0 + β0 = 0 and d = 1, then x4tm+2m+2j+2 = x2j−4t,
for all m ∈ N0.

(e) If
(
a0b0
d − 1

)
y2j−4t−1 + (α0v1 + α1) 6= 0, then we have

lim
m→∞

|y4tm+2m+2j+1| =
{∣∣∣ (α0v1+α1)dd−a0b0

∣∣∣ if |d| > a0b0,

∞ if |d| < a0b0 .

Otherwise, if
(
a0b0
d − 1

)
y2j−4t−1+(α0v1 + α1) = 0 and d 6= a0b0, then

y4tm+2m+2j+1 = y2j−4t−1 for all m ∈ N0.
(f) If α0v1+α1 6= 0 and d = a0b0, then |y4tm+2m+2j+1| → ∞, as m→∞.

Otherwise, if α0v1 + α1 = 0 and d = a0b0, then y4tm+2m+2j+1 =
y2j−4t−1, for all m ∈ N0.

(g) If
(
a0b0
d − 1

)
y2j−4t + (α1v0 + α0) 6= 0, then we get

lim
m→∞

|y4tm+2m+2j+2| =
{∣∣∣ (α1v0+α0)dd−a0b0

∣∣∣ if |d| > a0b0,

∞ if |d| < a0b0.

Otherwise, if
(
a0b0
d − 1

)
y2j−4t + (α1v0 + α0) = 0 and d 6= a0b0, then

y4tm+2m+2j+2 = y2j−4t for all m ∈ N0.
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(h) If α1v0+α0 6= 0 and d = a0b0, then |y4tm+2m+2j+2| → ∞, as m→∞.
Otherwise, if α1v0+α0 = 0 and d = a0b0, then y4tm+2m+2j+2 = y2j−4t,
for all m ∈ N0.

(3) Let k = 2t (t = 1, 2, . . . ) and j ∈ {t, t+ 1, ..., 3t− 1}.
(a) If (u1 − 1)x2j−4t+1 + β1 6= 0, then we have

lim
m→∞

|x4tm+2j+1| =
{∣∣∣ β1

u1−1

∣∣∣ if |u1| < 1,
∞ if |u1| > 1.

Otherwise, if (u1 − 1)x2j−4t+1+β1 = 0 and u1 6= 1, then x4tm+2j+1 =
x2j−4t+1 for all m ∈ N0.

(b) If β1 6= 0 and u1 = 1, then |x4tm+2j+1| → ∞, as m→∞. Otherwise,
if β1 = 0 and u1 = 1, then x4tm+2j+1 = x2j−4t+1, for all m ∈ N0.

(c) If (u0 − 1)x2j−4t + β0 6= 0, then we get

lim
m→∞

|x4tm+2j | =
{∣∣∣ β0

u0−1

∣∣∣ if |u0| < 1,
∞ if |u0| > 1.

Otherwise, if (u0 − 1)x2j−4t + β0 = 0 and u0 6= 1, then x4tm+2j =
x2j−4t for all m ∈ N0.

(d) If β0 6= 0 and u0 = 1, then |x4tm+2j | → ∞, as m→∞. Otherwise, if
β0 = 0 and u0 = 1, then x4tm+2j = x2j−4t, for all m ∈ N0.

(e) If (v1 − 1) y2j−4t+1 + α1 6= 0, then we have

lim
m→∞

|y4tm+2j+1| =
{∣∣∣ α1

v1−1

∣∣∣ if |v1| < 1,
∞ if |v1| > 1.

Otherwise, if (v1 − 1) y2j−4t+1+α1 = 0 and v1 6= 1, then y4tm+2j+1 =
y2j−4t+1 for all m ∈ N0.

(f) If α1 6= 0 and v1 = 1, then |y4tm+2j+1| → ∞, as m→∞. Otherwise,
if α1 = 0 and v1 = 1, then y4tm+2j+1 = y2j−4t+1, for all m ∈ N0.

(g) If (v0 − 1) y2j−4t + α0 6= 0, then we get

lim
m→∞

|y4tm+2j | =
{∣∣∣ α0

v0−1

∣∣∣ if |v0| < 1,
∞ if |v0| > 1.

Otherwise, if (v0 − 1) y2j−4t + α0 = 0 and v0 6= 1, then y4tm+2j =
y2j−4t for all m ∈ N0.

(h) If α0 6= 0 and v0 = 1, then |y4tm+2j | → ∞, as m→∞. Otherwise, if
α0 = 0 and v0 = 1, then y4tm+2j = y2j−4t, for all m ∈ N0.

Proof. We will only prove the items (a) and (b) for k = 2t + 1(t = 1, 2, ...) and
j ∈ {t, t+ 1, ..., 3t} since the other cases can be proved similarly.

(a) Assume that (d− 1)x2j−4t−1 + (β0u1 + β1) 6= 0. It is easy to see from
Corollary 4 that x4tm+2m+2j+1 6= 0. Clearly, if |d| < 1, then |d|m+1 → 0
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as m → ∞. On the other hand, if |d| > 1, then |d|m+1 → ∞ as m → ∞.
From Eq. (27), we get

lim
m→∞

|x4tm+2m+2j+1| = lim
m→∞

∣∣∣∣ (d− 1)x2j−4t−1 + (β0u1 + β1)d− 1 dm+1

+

(
(β0u1 + β1)

1− d

)∣∣∣∣
=

∣∣∣∣ (d− 1)x2j−4t−1 + (β0u1 + β1)d− 1 lim
m→∞

dm+1

+

(
(β0u1 + β1)

1− d

)∣∣∣∣
=

{∣∣∣ (β0u1+β1)d−1

∣∣∣ if |d| < 1
∞ if |d| > 1

.

Now on the other hand (d− 1)x2j−4t−1+(β0u1 + β1) = 0 and d 6= 1. Then
we have

x4tm+2m+2j+1 = x2j−4t−1d
m+1 + (β0u1 + β1)

(
dm+1 − 1
d− 1

)
= x2j−4t−1d

m+1 +

(
dm+1 − 1
d− 1

)
(− (d− 1)x2j−4t−1)

= x2j−4t−1d
m+1 −

(
dm+1 − 1

)
x2j−4t−1

= x2j−4t−1,

which completes the proof of (a).
(b) Let d = 1. If β0u1 + β1 6= 0, then from Eq. (27) we get

x4tm+2m+2j+1 = x2j−4t−1 + (β0u1 + β1) (m+ 1) 6= 0.

Letting m→∞ in above equations implies that |x4tm+2m+2j+1| → ∞. On
the other hand, If β0u1 + β1 = 0, then obviously, for all m ∈ N0,

x4tm+2m+2j+1 = x2j−4t−1 + (β0u1 + β1) (m+ 1) = x2j−4t−1 + 0 = x2j−4t−1,

which completes the proof of (b).

�

Corollary 6. Suppose that {(xn, yn)}n≥−k is a well-defined solution of system (3)
with a0 = b1, a1 = b0, u0u1 = d, v0v1 = a0b0

d . Then, the next statements are true.

(1) Let k = 1.
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(a) If d = −1, then for all m ∈ N0, we get
x4m−1 = x−1,

x4m = x0,

x4m+1 = −x−1 + (β0u1 + β1) ,
x4m+2 = −x0 + (β1u0 + β0) .

(b) If d = −a0b0, then for all m ∈ N0, we have
y4m−1 = y−1,

y4m = y0,

y4m+1 = −y−1 + (α0v1 + α1) ,
y4m+2 = −y0 + (α1v0 + α0) .

(c) If d = 1, u1 = u0 = 1, β0 + β1 = 0, then for all m ∈ N0, we get{
x2m−1 = x−1,

x2m = x0.

(d) If d = a0b0, v1 = v0 = 1, α0 + α1 = 0, then for all m ∈ N0, we have{
y2m−1 = y−1,

y2m = y0.

(2) Let k = 2t+ 1, (t = 1, 2, . . . ) and j ∈ {t, t+ 1, . . . , 3t}.
(a) If d = −1, then for all m ∈ N0, we have

x8tm+4m+2j+1 = −x2j−4t−1 + (β0u1 + β1) ,
x8tm+4m+4t+2j+3 = x2j−4t−1,

x8tm+4m+2j+2 = −x2j−4t + (β1u0 + β0) ,
x8tm+4m+4t+2j+4 = x2j−4t.

(b) If d = −a0b0, then for all m ∈ N0, we get
y8tm+4m+2j+1 = −y2j−4t−1 + (α0v1 + α1) ,
y8tm+4m+4t+2j+3 = y2j−4t−1,

y8tm+4m+2j+2 = −y2j−4t + (α1v0 + α0) ,
y8tm+4m+4t+2j+4 = y2j−4t.

(c) If d = 1 , u1 = u0 = 1 , β0 + β1 = 0 then for all m ∈ N0, we have{
x4tm+2m+2j+1 = x2j−4t−1,

x4tm+2m+2j+2 = x2j−4t.
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(d) If d = a0b0 , v1 = v0 = 1 , α0 + α1 = 0 then for all m ∈ N0, we get{
y4tm+2m+2j+1 = y2j−4t−1,

y4tm+2m+2j+2 = y2j−4t.

(3) Let k = 2t, (t = 1, 2, . . . ) and j ∈ {t, t + 1, . . . , 3t − 1}. If u1 = u0 = v1 =
v0 = −1 or u1 = u0 = v1 = v0 = 1 and β1 = β0 = α1 = α0 = 0 , then for
all m ∈ N0, we have

x4tm+2j+1 = x2j−4t+1,

x4tm+2j = x2j−4t,

y4tm+2j+1 = y2j−4t+1,

y4tm+2j = y2j−4t.
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