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Abstract

In this paper we obtain some new additive inequalities for Heinz operator mean, namely the operator Hy (A, B) := % (AtyB+ At _yB) where

\%4
AtyB := Al/2 (A*I/ gAY/ 2) AY2 s the weighted geometric mean for the positive invertible operators A and B, and v € [0, 1].
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1. Introduction

Throughout this paper A, B are positive invertible operators on a complex Hilbert space (H,(-,-)). We use the following notations for
operators and v € [0, 1]

AVyB:=(1—-V)A+ VB,
the weighted operator arithmetic mean, and

AfyB:=A!/2 (A_I/ZBA_'/Z)VA]/Z,

the weighted operator geometric mean [14]. When v = % we write AVB and AfB for brevity, respectively.
Define the Heinz operator mean by

1
Hy (A,B) = 3 (AB+ Aty B).
The following interpolatory inequality is obvious
AiB < Hy, (A,B) <AVB (1.1)

forany v € [0, 1].
We recall that Specht’s ratio is defined by [16]

1
— A it he (0,1)U(1,%),
eln(hm>
S(h) == (1.2)
lifh=1.

It is well known that limy,_,1 S (h) = 1, S(h) =S (}) > 1 for i > 0, h # 1. The function is decreasing on (0, 1) and increasing on (1, o).
The following result provides an upper and lower bound for the Heinz mean in terms of the operator geometric mean AfB :

Theorem 1.1 (Dragomir, 2015 [6]). Assume that A and B are positive invertible operators and the constants M > m > 0 are such that
mA < B < MA. (1.3)
Then we have

oy (m,M)A$B < Hy (A,B) < Q, (m,M) A4B, (1.4)
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where
s(m\ZH\) M <1,

Q, (m,M):={ max {s (m‘z"’”) ,S(MIZH\)} ifm<1<M, (1.5)
S(M\ZV—”) ifl<m

and
S(M|V—%|) iFM <1,

oy (m,M) := lifm<1<M, (1.6)
S(m"’*H) if1 <m,

where v € [0, 1].

We consider the Kantorovich’s constant defined by

(h+1)*
4h

The function K is decreasing on (0, 1) and increasing on [1,e0), K (k) > 1 for any & > 0 and K (h) = K (}) for any h > 0.

We have:

K(h):=

, h>0. (1.7)

Theorem 1.2 (Dragomir, 2015 [7]). Assume that A and B are positive invertible operators and the constants M > m > 0 are such that the
condition (1.3) is valid. Then for any v € [0,1] we have

(AfB <)Hy (A,B) < exp[®y (m,M) — 1] A$B (1.8)
where

K(m\ZV*IQ M <1,
@y (m,M) :={ max {K (m\ZV*H) K <M|2"*1‘>} ifm<1<M, (1.9)

K (M\2V—1|) if1<m
and

(0 <)Hy (A,B) — AtB < 4’“% él[la);/[]D<x2V_]>A, (1.10)

where the function D : (0,00) — [0,00) is defined by D (x) = (x— 1) Inx.
The following bounds for the Heinz mean Hy (A, B) in terms of AVB are also valid:

Theorem 1.3 (Dragomir, 2015 [7]). With the assumptions of Theorem 1.2 we have
(0<)AVB—Hy (A,B)<v(1—Vv)Y(m,M)A, (1.11)

where
(m=1)InmifM <1,

Y(m,M):=q max{(m—1)Inm,(M—1)InM} ifm<1<M, (1.12)

M-1)InMif1 <m

and
AVBexp[—4v (1 —V)(F (m,M)—1)] <Hy (A,B) (< AVB) (1.13)
where
K(m) ifM < 1,
F(mM):=q max{K(m),K(M)}ifm<1<M, (1.14)
K(M) if 1 <m.

For other recent results on operator geometric mean inequalities, see [1]-[13], [15] and [17]-[18].
Motivated by the above results, we establish in this paper some inequalities for the quantities

Hy (A,B) — AfB and AVB — Hy (A, B)

under various assumptions for positive invertible operators A and B.
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2. Bounds for Hy (A,B) — AtB

We first notice the following simple result:

Theorem 2.1. Assume that A and B are positive invertible operators and the constants M > m > 0 are such that the condition (1.3) holds. If
we consider the function fy : [0,00) — R for v € [0, 1] defined by

o =5 (2 +x),
then we have
fv(m)A<Hy(A,B) < fy(M)A. 2.1

Proof. We observe that

o= (v (1w,

which is positive for x € (0,00).
Therefore fy is increasing on (0, ) and

Sfv(m)= min fy(x) < fy(x) < max fy(x) = fy (M)

x€[m,M) x€[m,M]

for any x € [m,M].
Using the continuous functional calculus, we have for any operator X with ml < X < MI that

1
Fom1 <3 (X +X7) < ()1 22)
From (1.3) we have, by multiplying both sides with A~/ that
ml <A™V2BA"12 < m1.

Now, writing the inequality (2.2) for X =A"12pA~Y 2 we get
v 1-v
fo(m)I < % {(A"/zBA_'ﬂ) + (A_'/ZBA_'/Z) } < fy (M)1. 2.3)

Finally, if we multiply both sides of (2.3) by A'/2 we get the desired result (2.1). O

Corollary 2.2. Let A and B be two positive operators. For positive real numbers m, m', M, M’, put h := %, o= % and let v € [0,1].
(D) IfO<ml <A<m'I <M'I<B<MI, then

fv(h')A<Hy(A,B) < fv(h)A. 24
(ii) FO < ml < B <m'l < M'I <A < MI, then
fv (h) fv ()

A< Hy (AB) < T A 2.5)

Proof. If the condition (i) is valid, then we have for X = A~1/2BA~1/2
M M

1< —I=hI<X<hl=—I,
m m

which, by (2.2) gives the desired result (2.4).
If the condition (ii) is valid, then we have

1 1
O0<-I<X<-=I<I
<h R <5
which, by (2.2) gives
1 1
fv n A<Hy(AB)< fy W A

that is equivalent to (2.5), since
1\ fv(h)
w(G) =15

We need the following lemma in order to prove our first main result:
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Lemma 2.3. Consider the function gy : [0,00) — R for v € (0,1) defined by

1
v (¥) =5 (xv +x“v) VAo 2.6)
Then gy (0) = gy (1) =0, gy is increasing on (0,xy) with a local maximum in
2
L \% 1-2v 0 ]) (2 7)
we= {1y €(0,1), .

is decreasing on (xy, 1) with a local minimum in x = 1 and increasing on (1,00) with limy_e gy (x) = co.
Proof. (i). If v € (0,1), then

, 1 \% 1—v 1
=37t ~an

v+ (1—v)x —x

2 xl=v

1-2
If we denote u = xTV, then we have

v+(1 —v)xlfzv—xlfzzv =(1=V)u>—u+v.

1%
—(1— VY V-1
1w (w125 )y
:(1—v)(x"z”—1fv)(x%_1).
2
We observe that g}, (x) = 0 only for x =1 and xy = (1) 7> € (0,1). Also g}, (x) > 0 forx € (0,xy)U(1,e0) and g}, (x) < 0 for x € (xy,1).

T-v
These imply the desired conclusion.
(i) If v e (%,1), then

11— vyl
g(/(X)ZE

xV
2v—1
If we denote z =x "2z , then we have

2v—1
l—v+v®Vl—x 7 =v2—z+1-v

2

2 2
We observe that g}, (x) =0 only forx=1andxy = (15¥) ¥ T = () 7> € (0,1). Also g}, (x) > 0 forx € (0,xy) U(1,e0) and g}, (x) <0

v v
for x € (xy,1). These imply the desired conclusion. O

The above lemma allows us to obtain various bounds for the nonnegative quantity

Hy (A,B) — A4B

when some conditions for the involved operators A and B are known.

Theorem 2.4. Assume that A and B are positive invertible operators with B < A. Then for v € (0,1) we have

(0<)Hy (A,B) —AfB < gy (xv)A, (2.8)
where gy is defined by (2.6) and xy by (2.7).

Proof. From Lemma 2.3 we have for v € (0, 1) that

1
0< 3 <xv —I—xl*") —Vx<gy(xy)

for any x € [0,1].
Using the continuous functional calculus, we have for any operator X with 0 < X <[ that

0< % (7 +X17Y) =X < gy (xv) 2.9)

forve (0,1).
By multiplying both sides of the inequality 0 < B < A with A2 we get

0<A™Y2paA~12<.
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If we use the inequality (2.9) for X = A~Y2BA=1/2 then we get

1 “1/2p4-1/2)" - 1\ Y _ 1\ /2
<2 / /2 1/2 1/2 . 1/2 1/2 .
0_2{(A BA ) +(A BA ) (A BA ) (2.10)
<gv ()l
forve (0,1).
Finally, if we multiply both sides of (2.10) with Al 2 then we get the desired result (2.8). O

Theorem 2.5. Assume that A and B are positive invertible operators and the constants M > m > 0 are such that the condition (1.3) holds.
Letv e (0,1).
()IfO<m<M<1,then

Yv (m,M)A < Hy (A,B) —AtB <Ty (m,M)A, (2.11)
where
gv(m) if 0 <m <M <uxy,

Yy (m,M) =< min{gy (m),gy (M)} if0<m<xy <M<, (2.12)

gv(M) ifxy <m<M
and
gv (M) if0<m<M <xy,

Ty (mM):={ gy(x) if0<m<xy <M<, (2.13)

gy (m) ifxyy <m<M<1,

where gy is defined by (2.6) and xy by (2.7).
(i) If 1 <m <M < oo, then

gv(m)A <Hy(A,B)—AfB < gy (M)A. 2.14)
Proof. (1) If 0 <m < M < 1 then by Lemma 2.3 we have for v € (0, 1) that

gy(m) if0<m<M<xy
min{gy (m),gy (M)} if0<m<xy <M<1

gv(M) ifxy <m<M
<gv(¥)
gv(M)if0<m<M<xy

<< gvlry) if0<m<xy <M<L1

gv(m) ifxy <m<M<1

for any x € [m,M].
Now, on making use of a similar argument to the one in the proof of Theorem 2.4, we obtain the desired result (2.13).
(i1) Obvious by the properties of function gy . O

The interested reader may obtain similar bounds for other locations of 0 < m < M < co. The details are omitted.
The following particular case holds:

Corollary 2.6. Let A and B be two positive operators. For positive real numbers m, m', M, M’, put h := %, = %’ andlet v € (0,1).
(i) IfO <ml <A <m'lI<M'1I<B<MI, then

gv (M)A <Hy(A,B)—AfB < gy(h)A. (2.15)
(ii) FO < mI < B < m'l < M'I <A < MI, then
% (h,')A < Hy (A,B) — AtB < T\, (h, /) A, (2.16)

where

o (h1) :

Il
3
B
=

—
()
==
=
"o
=
==
=
——
<
(e}
IN
>
IN
=
<
IN
S
IN
—_

2.17)
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and

Dy (hh) =4 gvxy) if0< j <xy <4 <1,

3. Bounds for AVB—H, (A,B)

In order to provide some upper and lower bounds for the quantity

AVB—H, (A,B)

where A and B are positive invertible operators, we need the following lemma.

Lemma 3.1. Consider the function hy : [0,00) — R for v € (0,1) defined by

1 1
hy (x) = % —3 (xv—o—xlfv) >0.

(2.18)

3.1)

Then hy is decreasing on [0,1) and increasing on (1,00) with x = 1 its global minimum. We have hy (0) = % limy e iy (x) = co and hy is

convex on (0,0).

Proof. We have

1 \% 1—v
h’v(x)ZE(l‘F‘Tv)

and

W) = bv(1—v) (¢ )

for any x € (0,¢) and v € (0,1).

We observe that 72}, (1) = 0 and A (x) > 0 for any x € (0,0) and v € (0,1). These imply that the equation A}, (x) = 0 has only one solution

on (0,0), namely x = 1. Since /), (x) < 0 for x € (0,1) and %}, (x) > 0 for x € (1,0), then we deduce the desired conclusion.

O

Theorem 3.2. Assume that A and B are positive invertible operators, the constants M > m > 0 are such that the condition (1.3) holds and

v € (0,1). Then we have

8y (m,M)A < AVB —Hy (A,B) < Ay (m,M)A,

where

Oy(mM):=¢ 0iffm<1<M,
hy (m) if 1 <m

and
hV (m) lfM< 17

Ay (m,M) :=< max{hy (m),hy (M)} ifm<1<M,
hy (M) if 1 <m,

where hy is defined by (3.1).
Proof. Using Lemma 3.1 we have

hy (M) if M <1,
0iftm<1<M, <hy(x)

hy (m) if 1 < m,
hy (m) if M <1,

<< max{hy(m),hy M)} ifm<1<M,

hy (M) if 1 <m

3.2)

(3.3)

34
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for any x € [m,M] and v € (0,1).
Using the continuous functional calculus, we have for any operator X with ml < X < MI that

X+1 1
8y (m,M)I < T“L -3 (XV +X1—V) <Ay (m,M)I. (3.5)

From (1.3) we have, by multiplying both sides with A~1/2 that
ml <A™V2BA"12 < m1.

Now, writing the inequality (3.5) for X = Ail/zBA*I/z7 we get

Sy (m,M)I (3.6)
—~1/2pa—1/2 .

_ATVPBATIP 4T 1 <A,1/ZBA,1/2)V+(A71/23A71/2>1 Y

- 2 2

<Ay (m,M)I.

Finally, if we multiply both sides of (3.6) by AY2 we get the desired result (3.2). O

Corollary 3.3. Let A and B be two positive operators. For positive real numbers m, m', M, M’, put h := %., o= % and let v € (0,1).
(i) IfO <ml <A <m'l<MI<B<MI, then

hy (K")A <AVB—Hy (A,B) < hy (h)A. 3.7)
(i) If0<ml <B<m'l<MI<A<MI, then

hy ()

h/

hy (h)
h

A<AVB—H, (A,B) < A. (3.8)
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