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 ÖZ 

İnşaat mühendisliği sistemlerinin tasarımında temeller önemli bir yer tutar. Dış yüklemeler altında yüzeysel ve derin temellerin 

stabilite kaybına neden olacak durumların belirlenmesinde geoteknik incelemeler ayrıca önemlidir. Temel tabakasının kil olması 

durumunda, yükleme sırasında göçmeye neden olan koşullar tanımlanmalıdır. Bunu yapmanın en doğru yolu, matematiksel 

denklemler yardımıyla zeminin bünye davranışını teorikleştirmektir. Bu çalışmada, statik yükler altında kil zeminin bünyesel 

davranışı Genelleştirilmiş Plastisite Teorisi ile modellenmiştir. Sayısal formülasyon, her bir yükleme aşaması için açık integrasyon 

yöntemi ile çözülen temel denklemler cinsinden özetlenmiştir. Çözümün yapılabilmesi için bir bilgisayar programı geliştirilmiştir. 

Zeminde elasto-plastik matris, şekil değiştirme-gerilme ilişkisinin tersi alınarak türetilmiş, bu sayede kile ait gerilme-şekil 

değiştirme ilişkisi modelde herhangi bir akma veya potansiyel fonksiyon kullanmadan artımsal olarak elde edilmiştir. Sonrasında 

zeminde kalıcı şekil değiştirmeler hesaplanmıştır. Ardından, modeli ve bilgisayarda uygulamasını doğrulamak için bir dizi drenajlı 

ve drenajsız üç eksenli deformasyon kontrollü deney simüle edilmiştir. Deneyler, Genelleştirilmiş Plastisite modelinin kapasitesini 

belirlemek amacıyla, iyi bilinen modifiye-Cam-kili modeli ile de simüle edilmiştir. Simülasyon sonuçları, modelin normal ve aşırı 

konsolide killerin statik davranışlarını yakalamadaki etkinliğini ve kapasitesini göstermektedir.   

Anahtar Kelimeler: Killer, bünyesel modelleme, genelleştirilmiş plastisite, statik yükleme, sayısal analiz. 

Constitutive Modeling of Monotonic Behavior of 

Clays: Mathematical Formulation, Numerical 

Implementation and Experimental Verification 

ABSTRACT 

Foundations constitute a significant part of the design of civil engineering systems. Geotechnical considerations are particularly 

important in identifying the conditions leading to instability of shallow and deep foundations under various loadings. In the case 

the foundation layer is clay, one should identify the conditions leading to failure of clay soil upon loading. The most common way 

of doing so is to theorize the constitutive behavior of the soil using mathematical equations. In this study, constitutive modeling of 

clays under monotonic loadings is presented using the Generalized Plasticity Theory. Numerical formulation is summarized in 

terms of governing equations which are solved for each load step by an explicit integration method which is implemented into a 

computer program. Elasto-plastic constitutive matrix is derived based upon the inversion of strain-stress relationship without using 

a yield or a potential function in the model which is used to get the stress-strain incremental relationship. Plastic strains are then 

calculated using a non-associative flow rule. Subsequently, a number of drained and undrained strain-controlled triaxial tests are 

simulated to verify the model and its implementation. The related tests are also simulated using the well-known modified Cam 

Clay model to highlight the capabilities of the Generalized Plasticity model. Simulation results demonstrate the effectiveness and 

the capability of the model to capture static behavior of normally and overconsolidated clays. 

Keywords: Clays, constitutive modeling, generalized plasticity, monotonic loading, numerical analysis.

1. INTRODUCTION 

Stress-strain relationship and strength properties of soils 

under static loads must be known in the solution of 

geotechnical engineering problems. The shear behavior 

of natural soils under applied loads is highly dependent 

on the type of soil, drainage conditions and effective 

mean stress. In addition, the change in point-to-point 

relations of soil layers or also called heterogeneity and 

the change in engineering properties of soil in different 

directions (anisotropy) necessitate laboratory tests to be 

carried out. This allows us to determine the shear strength 

properties of the soil as well as the stress-strain 

relationship. However, it is not easy to conduct a 

different experiment each time one needs to determine 

the engineering properties of a soil sample prior to the 

solution of a geotechnical engineering problem. While it 

is still necessary to do so, engineers find themselves in a 

tough spot requiring it to make yet some kind of 
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generalization in representing the behavior of soils under 

field load conditions. In this respect, firstly, the soil 

behavior should be modeled theoretically starting from 

the response under monotonic loading. Such attempts 

resulted in the development of various constitutive 

models over the last few decades. From these models, 

Generalized Plasticity Theory (GPT) can be considered 

to have the least possible complexity with most possible 

accuracy [1-5]. That is, the model makes predictions that 

require the least number of parameters to satisfy an 

acceptable level of accuracy. GPT not only predicts the 

necessary information of soil behavior sufficiently, but it 

does this in a simple enough manner. That is, the model 

presents plausible and repeatable arguments. For 

example, the Classical Plasticity and the Bounding 

Surface Plasticity, which are both the special cases of the 

GPT, require still many model parameters and 

mathematical functions to be defined. Yield and plastic 

potential functions are two common examples of such 

required mathematical relations currently used in many 

classical models.  

One other advantage of using the GPT framework is that, 

it allows development of new models with different 

functions. This way, given the need one can always 

employ such functions in GPT for modeling a particular 

stress state or a soil test. This feature of the model makes 

it flexible enough to model the nonlinear static and 

dynamic behavior of both cohesionless and cohesive 

soils. Modifications and expansions made to the theory 

in recent years, made it more appealing to use in the 

numerical solution of some key problems encountered in 

geotechnical engineering [6]. 

In this study, constitutive modeling of clays under 

monotonic loadings is presented using the Generalized 

Plasticity Theory. Numerical formulation is summarized 

in terms of governing set of constitutive equations which 

are solved for each load step by an explicit integration 

method. General equations of the the theory written in 

terms of stress-strain relationship, flow rule and the 

hardening law are presented. Plastic strains are calculated 

using a non-associative flow rule without referencing a 

yield or a potential function. Elastoplastic constitutive 

matrix is derived by the inversion of strain-stress 

relationship without using the consistency condition. 

Subsequently, a number of drained and undrained strain-

controlled triaxial tests are simulated to verify the model 

and its implementation. 

 

2. GOVERNING CONSTITUTIVE EQUATIONS 

Generalized Plasticity Model (GPM) is the constitutive 

model formulation of the GPT framework. In this section, 

the main features of the model is described in terms of 

how the loading direction is decided, unit vector 

definitions are made, stress-strain relationship is derived 

and flow rule and the hardening law are defined. 

2.1 Loading Direction 

The loading and unloading steps of the model is decided 

in terms of associated unit vectors. The way the unit 

vectors are defined is that, they are prescribed to be 

normal to a presumable surface that does not have to exist 

in the stress space which allows to draw two important 

conclusions. One is the clear distinction in the loading 

directions through: 

: 0kld n loading       (1a) 

: 0kld n unloading     (1b) 

: 0kld n neutral loading      (1c) 

where dij’ is the change in effective stress and n is the 

unit vector along the direction of stress increment. These 

relations are valid only for hardening materials and 

should be changed [5] in the case of softening with the 

introduction of dij
e calculated using the elastic strains. It 

should be noted here that throughout this paper, an 

effective stress notation of stresses will be followed. 

The other important feature of using unit vectors is that, 

the entirety of the theory is now dependent highly on 

these unit vectors and it is indeed possible to construct a 

constitutive model with the arguments developed in this 

manner by making use of their definitions. For instance, 

we have the luxury of being able to write the necessary 

relations for both loading (L) and unloading (U) cases 

with the help of a continuity condition which is now 

solely a mathematical construct as opposed to having a 

physical meaning in the case of a yield surface. The 

strain-stress relationship is the key to start off the basic 

formulation of the model. We write: 

'L
ij ijkl kld C d    (2a) 

'U
ij ijkl kld C d    (2b) 

Continuity between loading and unloading requires that 

constitutive tensors U
ijklC  and U

ijklC are of the form: 

 (3a) 

 (3b) 

where 
e
ijklC is the elastic compliance matrix and ng

L/U is 

the unit vector showing the direction of plastic straining. 

It can be readily shown that in neutral loading, both 

relations of (3) are equal and hence non-unique 

definitions of strain is avoided. Therefore we write: 

'L e
ij ijkl kld C d    (4a) 

'U e
ij ijkl kld C d                  (4b) 

2.2 Unit Vectors and Stress Dilatancy 

As mentioned, the GPM relies on the way two unit 

vectors, ng
L/U and n, are defined. While ng

L/U, n show the 

direction of plastic flow and stress increment, 

respectively. Depending upon whether they are chosen as 

1L e L
ijkl ijkl g

L

C C n n
H

  

1U e U
ijkl ijkl g

U

C C n n
H

  
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equal (associated model) or not (non-associated model), 

they are defined as: 

,  ,   (5a) 

, ,   (5b)  

where subscripts ‘v’ and ‘s’ stand for volumetric and 

shear, respectively. In the above, d and dg are dilation 

ratios that are functions of slopes of state lines, M and 

Mg, but more definitely defined as d=dv
p/ds

p where dv
p 

is the volumetric plastic strain increment and the ds
p is 

the deviatoric plastic strain increment. As a result of tests 

on Bangkok clay by [7] under constant stress ratio, 

=q/p', a linear relationship (see Figure 1) is found for d 

as, 

 (6)  

where  is a constant to be determined from the best line 

fit of experimental data of  vs. d and M is the slope of 

the critical state line. In the case of non-associated 

plasticity, this relation becomes: 

 (7)  

where Mg is the slope of the line for which there is no 

volumetric expansion (Figure 2). M and Mg are dependent 

on the Lode’s angle,   [8], and signifies that the GPM is 

in harmony with the critical state soil mechanics. We 

know that the residual state is also controlled by Mg in 

soils. Sign of the slopes in (6) and (7) may change 

depending upon the loading direction. 

 

 

Figure 1. Dilatancy-stress ratio relationship, d-, for Bangkok 

clay, (regenerated from [7]) 

 

2.3 Flow Rule 

Plastic strain increments are calculated through the flow 

rule considering the classical plasticity. First, 

decomposition of strains is written as: 

 

Figure 2. Yield and potential functions in soils 

 

    (8) 

where the elastic and plastic strains are calculated as: 

  (9a) 

/

/

1
: 'p L U

ij g ij

L U

d n n d
H

    
 (9b) 

where (9a) is similar to (2) and in (9b) HL/U is the plastic 

modulus. Again we notice the use of two unit vectors in 

defining the plastic strain. 

2.4 Stress-Strain Relationship 

Effective stress increments, dij’, are calculated through 

the stress-strain relationship as: 

  (10) 

where Dijkl is the fourth order elasto-plastic material 

matrix (also called constitutive matrix) and dkl is the 

total strain increment. Since there is no yield surface 

prescribed in the model, there is no consistency condition 

written to enforce the stress vector to be on a yield or a 

similar form of surface. Owing to the need to write 

explicitly Eq. (10), we first rewrite (8) using (9) and (10) 

as: 

/

/

1
: 'e L U

ij ijkl g kl

L U

d C n n d
H

 
 

     
 

    (11) 

where the term in the parenthesis is the elastoplastic 

compliance tensor, ep
ijklC . Now, inverting Eq. (11) with 

some vector algebra we get, 

 /

/

L U T e
ge

T e L U
g

n n D d
d C d

H n D n


   


  (12) 

which results in the following final stress-strain 

relationship for both loading and unloading stages: 

  (13) 

Although this relation is no different than the one used in 

various sources derived from the classical plasticity, the 

fact that no yield or any other surface (say F=0 type) is 

required to derive it makes the GPT a powerful, yet a 

simple theory. While it is not required, GPT also allows 

such a F=0 surface to be implemented to calculate n [9-

21
v

d
n

d



2

1

1
sn

d



 ,v sn n n

21

g

gv

g

d
n

d



2

1

1
g s

g

n
d




 ,g gv g sn n n

  1d M   

  1g gd M   

e p
ij ij ijd d d   

'e e
ij ijkl kld C d 

'ij ijkl kld D d 

/

//
/

e L U T e
ge

L UT e L U
L U g

D n n D
d D d

H n D n

 
   

  

 
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10]. In the case of an undrained loading, pore pressure 

increments (dpw) are computed in terms of the mean and 

deviatoric stress components (
vd , sd ) and confining 

stress 
cd as, 

3w s c vdp d d d                       (14) 

2.5 Hardening Law 

2.5.1 Normally Consolidated Clays 

In order for the evolution of plastic strains, hence the 

stress-strain relationship, hardening law must be defined. 

The ongoing model is of isotropic hardening one with a 

deviatoric plastic strain increment in its nature which can 

also be called a deviatoric hardening model. The plastic 

modulus for isotropic virgin compression paths is, 

0L vH H                (15) 

where 
1v I    and 0

0

1 e
H




 
 with e0 being the initial 

void ratio,  is the slope of virgin compression curve and 

 is the slope of unloading/reloading curve. If one is to 

follow other stress paths, this relation becomes: 

0L vH H H               (16) 

where  

0 1

0

H

M H









  

  

              (17) 

A more general stress path function is provided as below 

to ensure that similar stress paths yield similar results, 

 
 

2
0

2

1
1 1

1
H

d
sign

M Md





   


 
   




 

         (18) 

with =2 for most clay soils. In order for this plastic 

modulus definition to be three dimensional (3-D) so it 

can be used in an all purpose finite element code, M 

should be a function of Lode’s angle such as the one 

below that is suitable also for a smoothed Mohr-Coulomb 

model; 

 

18

18 3 1 sin3

cM
M




 
              (19)   

Mc is the value of M in compression.         

2.5.2 Over-Consolidated Clays 

This much of the model is sufficient to model normally 

consolidated clays. For the over-consolidated soils (OC), 

there has to be some kind of a memory parameter to keep 

track of previous stress history. In this study, this is 

achieved by a mobilized hardening modulus, H defined 

as: 

maxH









 
  
 

              (20)   

where 

 
1

1
1 v

M M

  







 
  
 


               (21) 

is the mobilized stress function. The plastic loading 

modulus, HL, is now modified as: 

 0L vH H H H H                    (22) 

where other hardening parametes are:  

 expH                  (23) 

where 

0

max

1


 


 
  

 

              (24) 

and  

 :p p
s sd d d                 (25) 

We see that two additional fitting parameters,  and 0, 

are needed to extend the range of application of the 

model, particularly to modeling OC clays.  

2.6 Elastic Behavior 

Since soils are effective normal stress dependent 

materials where their stiffness moduli changes as the 

depth of the soil layer increases. Therefore, their elastic 

moduli, namely the shear modulus, G and the bulk 

modulus, K, are taken as a function of mean effective 

stress, p’. The following elastic relations hold:  

1e
s sd d

G
                (26a) 

1e
v vd d

K
                (26b) 

where 

0

0G
p

G
p 

  
 

              (27a) 

0

0

p
K K

p

 
  

 

              (27b) 

with p0 being the reference pressure, 
0G  the initial shear 

modulus and 0
0

1
K

e




  the initial bulk modulus. A 

recent comprehensive study investigating the effect of 

nonlinear elastic behavior on the elasto-plastic response 

of soils is [11].  

 

5. MODELING TRIAXIAL TESTS 

In this study, the main framework of the GPM is 

implemented in a computer program written in MATLAB 

which is verified with available monotonic triaxial shear 

tests. In a standard triaxial compression test, Lode’s 

angle,  takes the following form: 



CONSTITUTIVE MODELING OF MONOTONIC BEHAVIOR OF CLAYS: MATHEMATICAL  … Politeknik Dergisi, 2020; 23 (2) : 361-369 

 

365 

1 3

3
2

2

3 31
sin

6 3 62

J

J

 
 

 
    
 
 

              (28) 

where 
2

1
:

2
s sJ      and  3

3

1

3
sJ tr    with

   
1

dev
3

s tr         . In triaxial stress space, we 

use p’ and q as stress variables with 
1v I p    and 

23q J  . As for strains, we write,  

 vd tr d                (29) 

and  

   
2 1

dev : dev
3 2

sd d d  
 

  
 

              (30) 

where 

 
1

dev
3

vd d d                  (31) 

3.1 Normally Consolidated Behavior 

Prior to describing the modeling characteristics of the 

theory upon triaxial shear response of normally 

consolidated clays, it should be noted that the current 

formulation of the GPM is also capable of capturing the 

isotropic or anisotropic compression of clay soils. Such a 

response is modeled while the sample is still on normally 

consolidated line, NCL and recompression line during 

loading-unloading stages. An example simulation is run 

by [2] using a Kaolin soil with '=230. Slightly smaller 

void ratio changes are observed in their analyses as 

compared to the tests of [12].  

There are two types of triaxial tests simulated in this 

section. One is the constant p' test and the other is the 

constant cell pressure, c' test. Both of them are 

performed drained and undrained. In the constant p' test, 

following relation holds for the principal stress 

increments: 

2 3 1 2d d d                     (32) 

In the constant c' test (or constant 3' test) we have the 

following constraint conditions for the stress and strain 

components: 

2 3 2 3 10; 2d d d d d                       (33) 

These constraints must hold true throughout the analysis 

to be able to get accurate results. Figure 3 presents the 

consolidated drained (CD) triaxial test simulation done 

by keeping constant p' of a normally consolidated (NC) 

Bangkok clay in terms of stress ratio-deviatoric strain as 

well as stress ratio-volumetric strain behaviors. Test 

results of [7] are shown in markers. The model simulates 

the stress-strain relationship well enough (Figure 3a) but 

underpredicts the volumetric strain behavior (Figure 3b).  

Due to this reason, the normally consolidated behavior is 

also modeled using the modified Cam-Clay model 

(MCC) to better appreciate the differences between the 

two related but inherently different models. The MCC 

assumes that in addition to reaching the critical state for 

stresses, soil material needs also to be at a loose state to 

consider failure. Thus, at failure we have: 

𝑞𝑓 = 𝑀 𝑝𝑓
′                                                         (34) 

𝑣𝑓 = 𝛤 − 𝜆 ln (
𝑝′𝑓

𝑝𝑟𝑒𝑓
⁄ )                                         (35) 

where (𝑝𝑓
′ , 𝑞𝑓) are the stresses at failure and 𝑝𝑟𝑒𝑓  is the 

reference pressure, M is the slope of critical state line, , 
is the specific volume at the reference pressure and 𝑣𝑓  is 

the specific volume at critical state. In the MCC model 

the isotropic hardening is considered where the 

compression behavior of soil is governed by the 

following relationships in loading and unloading, 

respectively: 

𝑣 = 𝑁 − 𝜆 ln( 
𝑝′

𝑝𝑟𝑒𝑓
⁄  )                                              (36) 

𝑣 = 𝑣𝑠 − 𝜅 ln( 
𝑝′

𝑝𝑐
⁄  )                                                  (37) 

where N is the specific volume at 1 atm pressure and 𝑣s 

is the specific volume at the beginning of unloading. 𝑝𝑐 

is the preconsolidation pressure.  

Figure 4 shows the results of constant cell pressure, c', 

consolidated undrained (CU) triaxial test simulation for 

the same NC clay. GPM results capture the deviatoric 

stress-strain behavior as well as the stress path very well. 

While the pore pressure response yields some 

discrepancy, the maximum pore pressure is captured by 

the GPM. In comparison, the MCC model predicts the 

pore pressures slightly better but the stress path slightly 

worse. 

The drained test results are given in Figure 5 in terms of 

stress ratio-deviatoric strain behavior and stress ratio-

volumetric strain relationship. CD results match better 

than the CU test results as it was easier to model the 

drained behavior of the NC Bangkok clay. As for the 

MCC model, volumetric strains are modeled better than 

they are by the GPM.  

Figure 6 shows the constant cell pressure CU test [13] 

simulations of NC Weald clay. While the failure load is 

slightly underpredicted by the model, pore pressure is 

overpredicted, in turn. As far as the NC clay behavior, 

Figure 7 is the last test simulation with a constant c' CD 

test. The simulation results capture the overall behavior 

very well with a remarkable match of the volumetric-

strain vs. axial strain relationship (Figure 7b). Table 1 

gives the model parameters used in the analyses 

including the overconsolidated (OC) ones. 
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Figure 3. Constant p' CD simulation for NC Bangkok clay; stress ratio-deviatoric strain behavior and stress ratio-volumetric 

strain behavior; (a) and (b) GPM predictions, (c) and (d) MCC predictions 
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Figure 4. Constant c' CU simulation for NC Bangkok clay; stress ratio-deviatoric strain behavior and stress path and pore 

pressure-deviatoric strain behavior; (a)-(c) GPM predictions, (d)-(f) MCC predictions 
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Figure 6. Constant c' undrained test (CU) simulation for NC 

Weald clay, a) Stress-axial strain behavior, b) Pore 

pressure-axial strain behavior, [13] tests in markers 

 

3.2 Over-Consolidated Behavior 

With the additional ‘memory’ parameter in the evaluation 

of the plastic hardening modulus, the current model is 

capable of capturing some basic properties of OC clays 

also, even for a very high overconsolidation ratio (OCR). 

Figure 8 and 9 present such a highly OC Weald clay 

triaxial test results with OCR=24. Tests modeled are 

again the constant c' undrained and drained tests. The 

GPM is able to simulate the sign changes in the pore 

pressure and volumetric strain behavior (Figure 8b, 9b) 

and capture the overall stress-strain response (Figure 8a, 

9a). The only drawback of the OC clay behavior is that 

there is a residual response beyond the peak point with a 

lower stress magnitude which is hard to model with the 

current formulation (Figure 9a). Surely, one can add more 

parameters into the model that will only take place once 

the peak is reached however, that will further complicate 

the model and therefore is avoided in this study. 

 

 

 

 
Figure 7. Constant c' drained test (CD) simulation for NC 

Weald clay, a) Stress-axial strain behavior, b) 

Volumetric strain-axial strain behavior, tests of  [13] 

in markers 
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Figure 5. Constant c' drained test (CD) simulation for NC Bangkok clay, Stress ratio-deviatoric strain behavior, stress ratio-volumetric 

strain behavior; (a)-(b) GPM predictions, (c)-(d) MCC predictions 
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Table 1. Model parameters used in triaxial test simulations 

Soil Type 
K0 

(kPa) 

G0 

(kPa) 

p0 

(kPa) 
M H0    

Bangkok 

Clay 
12420 15000 414 1.1 6.6 2.0 - - 

0.75-

0.95 

Weald 

Clay 
5281 5516 414 0.9 165 3.0 0.1   0.4           

0.009-

0.15 

 

 
 

 
 

Figure 8. Constant c' undrained test (CU) simulation for OC Weald clay (OCR=24), a) Stress-axial strain behavior, b) Pore pressure-

axial strain behavior, tests of [13] in markers 
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Figure 9. Constant c' undrained test (CU) simulation for OC Weald clay (OCR=24), a) Stress-axial strain behavior, b) Pore pressure-

axial strain behavior, tests of [13] in markers 
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4. CONCLUSION 

Constitutive modeling of monotonic behavior of clays is 

presented in this study. Mathematical formulation of the 

Generalized Plasticity Model is given in all its aspects in 

terms of the constitutive relations for clays under 

monotonic loadings which are integrated using an 

explicit method. No reference to a yield or a potential 

surface is made in the model and thus, the flow rule and 

particularly the elasto-plastic constitutive matrix are 

derived based upon two unit vectors essentially 

calculated to describe the plastic flow direction as well as 

the loading direction. Computer implementation is 

followed by its experimental verification through a 

number of drained and undrained triaxial shear tests. At 

this point, the tests are also simulated using the modified 

Cam Clay model to make a comparison between the 

capabilities of the GPM and the classical MCC models. 

Simulation results indicate that the GPM is a simple but 

very effective model to capture the static behavior of 

normally and overconsolidated clays for various stress 

paths. 
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