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Abstract

In this article, some novel approaches to the analysis of global exponential stability (GES) for a class of neural
networks with time-varying lags are presented. For functional differential equations, these approaches to are based
on Lyapunov stability theory. Then, the necessary and sufficient conditions for GES of the equation considered
have been discussed. An example was given to illustrate the qualitative behavior of the solution of the proposed
equation and MATLAB-Simulink Program was used to demonstrate the validity of the results obtained in this
sample. Consequently, the obtained results include and improve the results found in the related literature.

Keywords: Neural networks, GES, Lyapunov functional, Convergence rate.

Zaman Degisken Gecikmelerle Sinifsal Sinir Aglarinin Ustel Kararhihg
Uzerine Yeni Sonuc¢lar

Oz

Bu makalede, zamanla degisen gecikmelerle sinir aglarinin bir sinift i¢in global {istel kararliliginin analizine
yonelik bazi yeni yaklagimlar sunulmustur. Fonksiyonel diferansiyel denklemlere yonelik bu yaklagimlar i¢in
Lyapunov kararlilik teorisinden yararlanilmistir. Daha sonra, dikkate alinan denklemin global tstel kararliligi
(GUK) i¢in gerek ve yeter kosullar tartigilmistir. Onerilen denklemin ¢dziimiiniin nitel davramsim gdstermek icin
bir 6rnek verilmistir ve bu orneklerde elde edilen sonuglarin gegerliligini gostermek icin MATLAB-Simulink
Programi kullanilmistir. Sonug olarak, elde edilen sonuglar ilgili literatiirde bulunan sonuglari igerir ve gelistirir.

Anahtar kelimeler: Sinir aglari, GUK, Lyapunov fonksiyoneli, Yakinsama orani.

1. Introduction

It should be noted that time-varying lags are often encountered in different neural networks. These time-
varying delays are frequently examined in qualitative behaviors of neural networks, such as
optimization, stability, and instability. When examining the qualitative behavior of neural networks, the
stability conditions that bring the restriction conditions to the network parameters are obtained
depending on the desired applications. Thus, when a neural network is used to solve problems, the neural
network must have a equilibrium point independent of the initial conditions. It should be noted that the
assumptions to be applied to the network parameters of a neural network are determined by the
characters of the functions considered. Lately, the dynamic properties of neural networks, particularly
the stability, instability, oscillation and asymptotic behaviors of neural networks have been received
considerable account by many researchers (see, for instance, [1-18] and the references therein).
In 2009, Li [12] considered a class of neural networks defined as follows
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%[x(t) + px(t—7)]+ax(t) —btanh x(t—o0) =0, t>t, >0, Q)

where a,b,z and o are positive real constants |p|<1. Using Lyapunov functional, the author

established some conditions for the GES of solutions of (1). By this work, the author established an
improved criterion for the GES of solutions of (1).

In the relevant literature, some conclusions can be reached regarding the qualitative properties
of the neutral-type neural networks (see for instance, Agarwal and Grace [1], Altun and Tung [2], El-
Morshedy and Gopalsamy [5], Park [14], Park and Kwon [15], Tung [16] and the references therein).
The authors often used from several techniques such as Lyapunov-functional method, model
transformations and linear matrix inequality to obtain some new necessary and sufficient conditions to
ensure the stability and asymptotic stability of equation (1).

The Lyapunov method, which we will benefit from in this study, is used as a basic tool for
examining the qualitative behaviors of differential equations and systems. The main advantage of these
methods allows us to mention about their qualitative behavior without any knowledge of about the
solutions. The basis of these methods is based on the construction of an appropriate function for the
equation or system under examination. We will use this method for the equation (2) which we will
discuss below.

In this paper, instead of (1), we take into account a class of neural networks defined by non-
linear equation system as follows

%[X(t) + p(O)x(t —z(®)]+q()h(x(t)) - r(t) tanh x(t — o (t)) = 0 )

where p,q,r:[t,,0) =[0,0), t, >0, and h: R — R are continuous functions with h(0) =0;
P is also differentiable, and |p(t)| < p, <1, (p,-constant). The variable delays z(t) and o(t) are

continuous differentiable functions, defined by 7(t) :[0,00) -[0,7,] and o(t):[0,0) —[0,0,]
satisfying

0<z(t)<7z,, O0<Zo(t)<o, 7'(t)<o,<l, o'(t)<0o,<1l (3)

Throughout the paper, we assume that assumptions given by (3) hold.
For each solution of (2), we suppose existence of the following initial condition

X (0)=¢(0), 0<[-30],
where 9 = max{z,, 0,}, ¢ € C([-4,0]; R).

The function h,(X) is defined as follows

h(x)
hl(X)Z T, X0 (4)
h'(0), X =0.

Hence, taking into account condition (4), the equation (2) can be rewritten as follows

%[X(t) + p(Ox(t —z(O)]+q()h, (x(®)x(t) —r(t) tanh x(t — o(t)) = 0 ()
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It should be well known that GES has an important place in many areas of applications and
designs of neural networks, engineering fields, automatic control, biological systems and
synchronization in secure communication [11-13]. Therefore, GES question of equation (5) is very
important from both theoretical and practical viewpoints. The result obtained here contributes to the
subject in the related literature and it may be beneficial for authors working on the behaviors of the
equation considered with variable lags. Especially, this exponential stability can also be applied to some
type of delayed equations [3].

The main aim of this study is firstly to examine the qualitative behaviors of solutions of equation
(5) and to present some novel approaches ensuring GES of this equation by utilizing Lyapunov
functional. Then an instance is given to illustrate the applicability and usefulness of the results obtained.
Finally, we used MATLAB-Simulink Program to show the qualitative behaviors of the solution of the
proposed equation system.

The following Lemma is required to prove the main result of this article.

Lemma 1. ([2]) Let N be a symmetric matrix positive definite and a,b € R". Then, for YN € R™",
we have

+2a'b<a’'Na+b"N7'b .
2. Main Results

We suppose that there exist non-negative real numbers ¢,,d,, I, I, N;and n, suchthat for t >t,
d <qt)<q,, n<ri)<r,, n, <h(x)<n,. (6)

In this section, the GES of the equation discussed under some sufficient conditions is presented
as follows.

Theorem 1. Suppose that g,n,(L—p,)>r,(L+ p,). Then the zero solution of (5) is globally
exponentially stable.

Proof. Since ¢,n,(1— p,) >r,(L+ p,), we can choose the proper constants «, 3 as follows such that
Po (G, +1,) < e, A+ p,)<pB

and
a+ <20 —qnp, —,.
Thus, there exist &, &,,&, >0 such that
26,05 + Po(GuNy +1,) <(A-8)ae ™™, 1L+ py) < (1-35,) 5 " (7)
And
2, +a+ <200, — PN, — 1. 8
Considering the assumption \p(t)\ < p, <1, there also exists a positive constant &, such that
[p®)|<p, <e 27 ©)

Let & =min{g,&,,6,,6,), then we can indicate that, for any initial data
¢ € C([-max{z,, o, } 0], R), there exists a number M >1 such that
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e
—Z(t-t
5 (k)

X(t,ty, #) + P)X(t —7(t)| < M|g] e :

where 4] =SUD g, ogl#(S).

In order to show this, we describe a new Lyapunov functional as follows:

V() = et [x(t) + pt)x(t — ()] +« _t[eg*sxz(s)ds+ B je tanh 2 x(s)ds,

t—z(t) t—o(t)

which implies that

2 2 2

V(t,) <e® ¢

@+ po)? +az(ty)e” ™|¢ + Bo(ty)e” ¢

(70.00) (70.00) (70.00)

2

(70.00)

<e > {0+ po)? +ar, + Bo, . (10)

The following equality is obtained when the derivative of V along solutions of (5) is taken and
the necessary algebraic operations are performed:
O o [x() + px(t — e +2 [x(®) + pO)X(t )]
x[—q(t)h, (x(t))x(t) + r(t) tanh x(t — o' (t))]
+ae” X2 (t) - (L—7'(t))ae’ TR (t — (1))
+ et tanh2 x(t) — (1— o'(t)) e @ tanh ? x(t — o (1))
=e”'&"[x(®) + pOX(t - )] +e{=2a)h, (x(©)x° (©)
+ 2r (t)x(t) tanh x(t — o (t)) — 2 p(t)q(t)h, (x(t))x(t)x(t — z(t))
+2p)r()x(t —z(t)) tanh x(t — o (1))}
+ae” X2 (t) — (L—7'(t))ae® TR (t — (1))
+ fe’ttanh 2 x(t) — (L1— o'(t)) fe’ 7™ tanh? x(t — o (t)).

Using conditions (3) and (6) and the inequalities (a+b)? <2(a® +b?) and |p(t)|< p, <1,
we can write the following inequality

dv (t)

S 267" [x2 (1) + p2X? (t — 7 (1))]+ e {-20,n,x° (1)

+2r,X(t) tanh X(t — o (t)) — 2 p,0,n, X(E)X(t — 7(t))

+ 2P I,X(t — 7(t)) tanh X(t — o ()}

+0e” X2 (t) - (1—8,)ae” TOX2(t — 7 (1))

+ e tanh 2 x(t) — (1— 5,) fe® ) tanh ? x(t — o (t)).

By Lemmal, and the fact that tanh?® x(t) < x*(t), we get
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dv (t)

" <e’! {xz(t)[Zg* —2q,n, + 1, + p,g,n, +a + 3]

+ Xz(t —T(t))[Zg* pg + Pol N, + Pol, _(1_51)0@_8&0 ]
+tanh? x(t - o (O)F + pof, - - 5,) 1],

which, together with inequalities (7) and (8) yields

dv() _ 0
dt

Therefore, we know that V(t) is monotone non-increasing in t for t e[t,,o), that is,
V (t) <V (t,). Taking into account inequality (10) and the definition of V, we get

e [x(t) + p)x(t — (M) <V (1) <V (t,) < e |p

(210’%) {(1+ )’ +ar, + fo, },
ie.,

—i*(t ~to)

x(t) + p(t)x(t —z(t)| < M|g| e 2= (11)

where M =/(1+ p,)? +az, + o, >1.

By (9), next we can show that|p(t)| < p, <e ? '

( 0)
XO s ——,__e* " t=t, (12
1- p,e o

First, note M >1 and (11), we have, for t €[t,,t, +7,),

ef%(t*to)

()| <|pt)| [x(t -z (t)|+ M ||¢||

S||¢||(TO [p0+|\/|e 2 ]<M||¢|| [p0+e 2(t to)]

To

*f(t*to
£M||¢|| e 2 [p0e2 +1]

(o)
———14l, - (13)

& oao)
To

1|oo2

Similarly, by (13), we obtain, for t [t, + z,,t, + 27,),

*‘i(t*to)

()| <|p(t)| [x(t — 7 (t)|+ M ||¢||(r0 e’

o
o —7(t—to )

(70.00)

—g—*[ -7(t)-t] g—*r
<pMlg| e r T pe” +1+ Mg
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*g(t*TO —t) %70 *iz*(t*to)
<pMlg| e (e +1+Mlg|
—g—*(t—to) g—*Zro g—*ro
< M| e 27 [ ple?  +pe? +1]
< M ||¢ ’%(t’to)
- i*fo (z0.00) .
1-p,e?

By induction, we reach at, for t e[t, + kz,,t, +(k+D7,), keZ,,

R
—Z(t-t
5 ()

(70.00)

x(t)| <|pt)| [x(t —z(t)|+ M|¢

*

*
&

Ett) g Sk (kg L

< Mg e 2" [ pste +pse?  +...+pe? +1]
P
£ (t-t)

My e

i, (z0.00)
0
1-p,e?

So, the inequality (12) holds. Thus, the zero solution of (5) is GES. Therefore the proof is
completed.

Corollary 1. Let ¢;n,(1— p,) > 1, (L+ p,)- Then the zero solution of (5) is uniformly stable.

Proof. To show that the zero solution of equation (5) is uniformly stable, we consider the following
Lyapunov functional:

V() = [x@®) + pOXt - @) + po (a0, +1,) [x*(s)ds
t—z(t)

t
+1,(1+ p,) [tanh? x(s)ds.

t-o(t)

Then taking into account inequality |p(t)|< p, <1 and using the similar argument to the proof
of Theorem 1, we can obtain the above mentioned result.

Example 1. As a special case of (5), we take into account the following nonlinear equation system with
two time-varying lags

%[x(t) s jtz X(t - r(t))} +(1+ exp(—t))[Zx + 1+Xx2 }
— G + exp(—t)j tanh x(t —o(t))=0, t>0. (14)

Here, considering the conditions (3), (4) and (7), the following equality or inequalities can be
written:
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1—|oo<1

p()_6 t2 —
g, =1<q(t) _1+exp(—t) <2=q,,

1 1 5
n<==r(t)==+exp(-t)<==r,,
=T = ;o)< =r,

4
1
2+——, x=0
h(x)=2x+1 XZ, h, (x) = 1+ x?
* h'(0), x=0
h(0) =0, n—2<h(x)<3=n2
0<z(t) = sin (t) (t)_sm2t£;_5l<
sin (t) sin2t 1
0<oft < t) = <-=0,<
o(t)= > 5 o'(t) 5> =9
2 3
=— and B=—.
a=3 @ =

As seen in the example above, it is clear that the equation (14) under different initial conditions
is stable after a certain time interval. Thus, all the conditions of Theorem 1 are provided.

4

—x(0)=15
—x(0)=25(
—x(0)=35
N\
\\\
0.5 1 15 2 25 3
time (ec) x10°
Figure. 1 Trajectories of X(t) of equation (14) in Example 1, for z(t) = o(t) = sin;(t) . t>0.

3. Conclusion

As a result, we examined the global exponential stability of the problem (2). An appropriate Lyapunov-
Krasovskii functional was defined and stability criteria were obtained. An example is given to illustrate
the feasibility and usefulness of the results obtained. The MATLAB-Simulink Program was used to
illustrate the results of the problem presented in the example. The simulation of the example we consider
as a special case of equation (2) is shown in Figure 1. When the Figure is examined it is clear that the
equation considered in the example is stable after a certain time interval under different initial
conditions. Our results include the results found in the relevant literature and improves them.
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