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ON A GRAPH OF IDEALS OF A COMMUTATIVE RING

S. EBRAHIMI ATANI, S. DOLATI PISHHESARI, AND M. KHORAMDEL

Abstract. In this paper, we introduce and investigate a new graph of a com-
mutative ring R, denoted by G(R), with all nontrivial ideals of R as vertices,
and two distinct vertices I and J are adjacent if and only if ann(I ∩ J) =
ann(I) + ann(J). In this article, the basic properties and possible structures
of the graph G(R) are studied and investigated as diameter, girth, clique num-
ber, cut vertex and domination number. We characterize all rings R for which
G(R) is planar, complete and complete r-partite. We show that, if (R,M) is
a local Artinian ring, then G(R) is complete if and only if Soc(R) is simple.
Also, it is shown that if R is a ring with G(R) is r-regular, then either G(R) is
complete or null graph. Moreover, we show that if R is an Artinian ring, then
R is a serial ring if and only if G(R/I) is complete for each ideal I of R.

1. Introduction

Over the last years, there has been an explosion of interest in associating a graph
to an algebraic structure. In 1988, Istvan Beck proposed the study of commutative
rings by representing them as graphs [6]. Since then a huge number of works have
been added to the literature, see for instance [2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18].
Most properties of a ring are connected to a behavior of its ideals. Besides, ideals
play crucial roles in the study of ring constructions. This is why it is interesting
and useful to associate graphs to ideals of a ring, as for example in [1, 10, 24].
The benefit of studying these graphs is that one may find some results about the
algebraic structures.
A well known result of Ikeda and Nakayama [21] explores that if a (not necessarily

commutative) ring R is right self-injective, then annl(I ∩ J) = annl(I) + annl(J)
for all right ideals I and J of R, where annl(X) denotes the left annihilator of X.
The study of rings that satisfying the aforementioned property has been initiated
by Camillo, Nicholson and Yousif in [9] and called Ikeda-Nakayama rings.
In this paper, we introduce and investigate a new graph in a commutative ring

R, in order to know when ann(I ∩ J) = ann(I) + ann(J) for ideals I and J of R.
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Our main goal is to study the connection between the algebraic properties of a ring
and the graph theoretic properties of the graph associated to it. We associate a
graph G(R) to a commutative ring R whose vertices are nonzero proper ideals of R
and two vertices I and J are adjacent if and only if ann(I ∩J) = ann(I) +ann(J).
We summarize the contents of this article as follows. In section 2, we show that

G(R) is a connected graph with diam(G(R)) ∈ {0, 1, 2} and gr(G(R)) ∈ {3,∞}.
Also, we show that what happen for R and G(R), if gr(G(R)) =∞. In this section
it is shown that G(R) is a star graph if and only if G(R) is a bipartite graph if
and only if G(R) contains a cut vertex. In section 3, we investigate the planar
property, complete or complete r-partite property of G(R). In this section maximal
ideals and socle are useful instrument which help us to do our study. We prove
that, if (R,M) is a local Artinian ring, then the G(R) is complete if and only if
Soc(R) is simple. It is shown that if R is a ring with G(R) is r-regular, then either
G(R) is complete or null graph. Moreover, we show that if R is an Artinian ring,
then R is a serial ring if and only if G(R/I) is complete for each ideal I of R. A
complete characterizations of rings for which G(R) is planar or complete r-partite
are provided. It is proved that, if R is a ring, then G(R) is planar if and only if one
of the following holds:

(1) R ∼= F×S, where F is a field and (S,M) is a local ring with the only non-zero
proper ideal M or R ∼= F1 × F2, where F1, F2 are fields.

(2) (R,M) is a local ring with the maximal ideal M and R is Ikeda-Nakayama
with at most four nontrivial ideals.

(3) (R,M) is a local ring with the maximal ideal M , M = Rx + Ry, M2 = 0,
all proper ideals, different from M , must be principal and of the form Rx, Ry, or
R(x+ ay), where a is an invertible element of R and G(R) is a star graph.

(4) (R,M) is a local ring with the maximal ideal M , M = Rx + Ry, M3 = 0
and the set of nontrivial ideals of R is equal to

{M,Rx,Ry,Ry2, R(x+ y), R(x+ y2), Rx⊕Ry2 = Soc(R)}.
Furthermore, it is shown that if R is a ring with G(R) is a complete r-partite

graph with part,s Vi(1 ≤ i ≤ r), then R is Artinian and one of the following
statements hold:

(1) G(R) is complete and R is an Ikeda-Nakayama ring.
(2) R is a local ring, `(Soc(R)) ≤ 2 and if I, J ∈ Vi, then I and J are cyclic local

R-modules with common maximal submodule I ∩ J .
Among other results, we give a description of a lower bound for the clique number

of G(R).
In order to make this paper easier to follow, we recall in this section various

notions which will be used in the sequel. Throughout this paper all rings are
commutative with non-zero identity. Let R be a ring. By I(R), we denote the
set of all nontrivial ideals of R. A ring R is said to be local if it has a unique
maximal ideal M and we denote it by (R,M). For a subset X of a ring R, the
annihilator of X in R is ann(X) = {r ∈ R : rx = 0 for all x ∈ X} and we denote
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the set of all maximal ideals of R by max(R). The socle of ring R, denoted by
Soc(R), is the sum of all minimal ideals of R. Following [22], a ring R is called a
dual ring if every ideal of R is an annihilator. Let N be an R-module. A chain of
R-submodules of length n is a sequence Ni (0 ≤ i ≤ n) of R-submodules of N such
that 0 = N0 ⊂ N1 ⊂ ... ⊂ Nn = N . A composition series of N is a maximal chain,
that is one in which no extra R-submodules can be inserted. Two composition
series A0 = 0 ≤ A1 ≤ ... ≤ An = N and B0 = 0 ≤ B1 ≤ ...Bt = N of an R-
module N are said to be isomorphic (or equivalent) provided n = t and there exists
a permutation π of {1, 2, ..., n} such that Ai/Ai−1

∼= Bπ(i)/Bπ(i)−1 (isomorphic as
an R-module) for all i = 1, ..., n. It is known that every two composition series
for N are equivalent. The length of composition series of N is denoted by `(N).
A submodule K of an R-module M is called essential in M if, for every non-zero
submodule L of M , we have K ∩ L 6= 0. An R-module M is called uniform, if
every non-zero submodule of M is essential in M . Let N,H be two submodules of
R-moduleM . Then H is called a complement of N if H is maximal with respect to
the propertyH∩N = {0}. If N andH are complement of each other, then N andH
are called mutual complement. An R-module N is called uniserial if its submodules
are linearly ordered by inclusion. If R is uniserial as an R-module, then we call R
is uniserial. Note that uniserial rings are in particular local rings. Commutative
uniserial rings are also known as valuation rings. We call an R-module N serial if
it is a direct sum of uniserial modules. The ring R is called serial if R is serial as
an R-module.
For a graph G by E(G) and V (G) we denote the set of all edges and vertices,

respectively. We recall that a graph is connected if there exists a path connecting
any two distinct vertices. A graph G is said to be totally disconnected if it has
no edges. The distance between two distinct vertices a and b, denoted by d(a, b),
is the length of the shortest path connecting them (if such a path does not exist,
then d(a, b) = ∞). The diameter of a graph G, denoted by diam(G), is equal to
sup{d(a, b) : a, b ∈ V (G)}. The eccentricity of a vertex a is defined as e(a) =
max{d(a, b) : b ∈ V (G)} and the radius of G is given by rad(G) = min{e(x) : x ∈
V (G)}. A vertex x of a connected graph G is a cut vertex of G if there are vertices a
and b of G such that x is in every path from a to b (and x 6= a, x 6= b). Equivalently,
for a connected graph G, x is a cut vertex of G if G − {x} is not connected. The
degree of a vertex x in a graph G is the number of edges incident with x. The
degree of a vertex x is denoted by deg(x). Let r be a non-negative integer. The
graph G is said to be r-regular, if the degree of each vertex is r. If a and b are
two adjacent vertices of G, then we write a − b. A vertex a of G is called end
vertex, if deg(a) = 1. A graph is complete if it is connected with diameter less than
or equal to one. We denote the complete graph on n vertices by Kn. The girth
of a graph G, denoted gr(G), is the length of a shortest cycle in G, provided G
contains a cycle; otherwise; gr(G) =∞. A complete bipartite graph with part sizes
m and n is denoted by Km,n. A star graph is a graph with a vertex adjacent to all
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other vertices and has no other edges. A clique of a graph is its maximal complete
subgraph and the number of vertices in the largest clique of graph G, denoted by
ω(G), is called the clique number of G. An induced subgraph of a graph G by the
set S ⊆ V (G) is a subgraph H of G where vertices are adjacent in H precisely
when adjacent in G. A set of vertices S in G is a dominating set, if N [S] = V . The
domination number, γ(G), of G is the minimum cardinality of a dominating set of
G ([20]).

Lemma 1. [9, Proposition 1] Let R be a ring and I, J two ideals of R such that
I + J = R. Then ann(I ∩ J) = ann(I)⊕ ann(J).

2. Basic properties of G(R)

In this section, we give some basic properties of the graph G(R) which are useful
in the following sections. We begin with the following useful lemma.

Lemma 2. Let R be a ring and I, J two nontrivial ideals of R. Then the following
statements hold.

(1) If I + J = R, then I and J are adjacent in G(R).
(2) If I ⊆ J or J ⊆ I, then I and J are adjacent in G(R).

Proof. (1) is clear by Lemma 1
(2) is obvious. �

The benefit of studying the graph G(R) is that one may find some results about
its known subgrapghs, for a ring R.

Remark 3. (1) Let R be a ring. The inclusion ideal graph of a ring R, denoted
by In(R), is a graph whose vertices are all nontrivial ideals of R and two distinct
ideals I and J are adjacent if and only if I ⊂ J or J ⊂ I [1]. By Lemma 2, In(R)
is a subgraph of G(R).
(2) Let R be a ring. The comaximal ideal graph, denoted by Γ(R), is a graph

whose vertices are proper ideals of R that are not contained in the Jacobson radical
of R, and two vertices I and J are adjacent if and only if I + J = R [24]. By
Lemma 2, Γ(R) is a subgraph of G(R).

Proposition 4. Let R be a ring. Then the following statements hold.
(1) G(R) is a totally disconnected graph if and only if R has only one non-zero

proper ideal.
(2) G(R) is a complete graph if and only if R is an Ikeda-Nakayama ring.

Proof. (1) One side is clear. To prove the other side, suppose that G(R) is a
totally disconnected graph, with at least two vertices I, J . Since G(R) is totally
disconnected, I ∩ J = {0} and I + J = R. Hence Lemma 1 gives I and J are
adjacent, a contradiction. So R has only one non-zero proper ideal.

(2) It is clear. �
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Lemma 5. Let R be a ring and max(R) = {Mi : i ∈ K}. Then the following
statements hold.

(1) For any finite subset Λ of K, ann(∩i∈ΛMi) =
∑
i∈Λ ann(Mi).

(2) If Λ is a finite subset of K and ∩i∈ΛMi 6= 0, then ∩i∈ΛMi is adjacent to
every other vertex in G(R).

Proof. (1) It is clear by Lemma 1.
(2) Let I be a nonzero proper ideal of R and Λ a finite subset of K. We split

the proof into three cases for I:
Case 1: If I ⊆ Mi, for each i ∈ Λ, then I ⊆ ∩i∈ΛMi. Hence I and ∩i∈ΛMi are

adjacent by Lemma 2.
Case 2: If I 6⊆ Mi for each i ∈ Λ, then I + ∩i∈ΛMi = R. Hence I and ∩i∈ΛMi

are co-maximal, so I and ∩i∈ΛMi are adjacent by Lemma 2.
Case 3: Let ∆ = {i ∈ Λ : I ⊆ Mi} and Θ = {i ∈ Λ : I 6⊆ Mi}. So ann(I ∩

(∩i∈ΛMi)) = ann(I ∩ (∩i∈ΘMi)). Since I and ∩i∈ΘMi are co-maximal, ann(I ∩
(∩i∈ΘMi)) = ann(I) + ann(∩i∈ΘMi). Also for each i ∈ ∆, ann(Mi) ⊆ ann(I),
hence ann(I) = ann(I) + Σi∈∆ann(Mi). Therefore

ann(I ∩ (∩i∈ΛMi)) = ann(I ∩ (∩i∈ΘMi)) =

= ann(I) + Σi∈∆ann(Mi) + ann(∩i∈ΘMi) = ann(I) + ann(∩i∈ΛMi).

Hence ∩i∈ΛMi is adjacent to every other vertex in G(R). �

Theorem 6. Let R be a ring. Then the following statements hold.
(1) If deg(I) is finite for some ideal I of R, then R is an Artinian ring.
(2) If M is a maximal ideal of R, then deg(M) is finite if and only if G(R) is

finite.
(3) γ(G(R)) = 1 and rad(G(R)) = 1.

Proof. (1) It is clear by Lemma 2(2) and [19, Proposition 4.5].
(2) It is clear by Lemma 5.
(3) By Lemma 5, every maximal ideal of R is adjacent to every other vertex of

R. Hence γ(G(R)) = 1 and rad(G(R)) = 1. �

Theorem 7. Let R be a ring. Then G(R) is a connected graph and diam(G(R)) ∈
{0, 1, 2}.

Proof. Let R contain more than one non-zero proper ideal. Let I, J be two non-
zero proper ideals of R. If I ∈ max(R) or J ∈ max(R), then I and J are adjacent
by Lemma 2. Hence d(I, J) = 1. Suppose that I, J are not maximal. By Lemma
5, for each M ∈ max(R), M is adjacent to I, J , hence d(I, J) ≤ 2. Hence G(R) is
connected and diam(G(R)) ∈ {0, 1, 2}. �

Theorem 8. Let R be a ring. Then gr(G(R)) ∈ {3,∞}.
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Proof. If |max(R)| ≥ 3, then gr(G(R)) = 3 by Lemma 5. Suppose |max(R)| ≤ 2.
We divide the proof in two cases:
Case 1: max(R) = {M1,M2}. If M1 ∩M2 6= 0, then M1−M1 ∩M2−M2−M1

is a path in G(R), which gives gr(G(R)) = 3. If M1 ∩M2 = 0, then R = M1⊕M2.
Hence M1,M2 are the only nonzero proper ideals of R, so gr(G(R)) =∞.
Case 2: Let (R,M) be a local ring. If there exist non-zero proper (non-maximal)

ideals I and J of R such that I & J , then gr(G(R)) = 3. Suppose, for each ideal I
of R, there is no ideal J of R such that J ⊆ I, hence each non maximal ideal of R
is minimal, which gives gr(G(R)) =∞. �
Corollary 9. Let R be a ring. Then gr(G(R)) = 3 if and only if G(R) contains a
cycle.

Theorem 10. Let R be a ring. Then the following statements are equivalent:
(1) G(R) contains an end vertex;
(2) Either R = M1⊕M2, where I(R) = {M1,M2} or (R,M) is a local ring and

each proper non-maximal ideal of R is minimal;
(3) G(R) is a star graph;
(4) gr(G(R)) =∞;
(5) G(R) is a bipartite graph.

Proof. (1)⇒ (2) Let I be an end vertex of G(R). If I is a maximal ideal of R, then
|I(R)| = 2, because deg(I) = 1 and I is adjacent to every other vertex of G(R) by
Lemma 5. Suppose that I is not maximal. By Lemma 5, I is adjacent to every
maximal ideal of R. Hence R is a local ring. We show for each non-maximal ideal
J 6= 0 (J 6= I) of R, J is minimal. Since I is only adjacent to the maximal ideal
M of R, I ∩ J = {0}, I + J = M for each ideal J of R. Suppose that, there exists
an ideal J of R such that J is not minimal. Hence there exists an ideal K of R
such that K ⊂ J . By the above argument, I ⊕ K = M . By using modular law,
J = K ⊕ (I ∩ J). Hence J = K, a contradiction. So R is a local ring and each
proper non-maximal ideal of R is minimal.

(2)⇒ (3) If R = M1 ⊕M2, where I(R) = {M1,M2}, then it is clear that G(R)
is a star graph. If (R,M) is a local ring and each proper non-maximal ideal of
R is minimal, then M is adjacent to every other vertex of G(R) and two non-
zero non-maximal ideals I, J of R are not adjacent (because I ∩ J = {0} and
annl(I) = annl(J) = M). Hence G(R) is a star graph.

(3)⇒ (4) It is clear.
(4)⇒ (5) By Corollary 9 and the proof of Theorem 8, G(R) is a star graph and

so it is a bipartite graph.
(5) ⇒ (1) By [7, Theorem 4.7], a graph is bipartite if and only if it contains no

odd cycle. Hence G(R) is bipartite if and only if gr(G(R)) =∞ by Theorem 8 and
Corollary 9. Therefore it contains an end vertex. �
Theorem 11. Let R be a ring. Then the following statements are equivalent:
(1) G(R) contains a cut vertex;
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(2) (i) (R,M) is a local ring.
(ii) Each proper non-maximal ideal of R is minimal, maximal in M and `(R) =

3.
(iii) R has at least three non-trivial ideals.
(3) G(R) = K1,n, for some n ≥ 2.

Proof. (1)⇒ (2) Let G(R) contain a cut vertex. By Lemma 5 each maximal ideal
of R is adjacent to every other vertex. This implies that cut vertex of G(R) should
be a maximal ideal. Hence |max(R)| = 1 or 2. If max(R) = {M1,M2}, then
R = M1 ⊕M2, because M1,M2 are adjacent to every other vertex of G(R). Hence
I(R) = {M1,M2}, and so G(R) = K2, but K2 contains no cut vertex. This implies
thatmax(R) = {M}. Therefore our assumption impliesM is the cut vertex ofG(R)
(because M is adjacent to every other vertex). So G(R)\{M} is disconnected. Let
I, J be two vertex of G(R) \ {M} such that there is no path between them. Hence
I ∩ J = {0}, I + J = M . It can not be diffi cult to see that I, J are mutually
complemented. We show I, J are maximal submodules of M as submodules of the
R-module M . If I is not maximal, then I ⊆ L, for some right L 6= M of R. Since
I is complement of J , J ∩ L 6= {0}. Since I 6⊆ J , J ∩ L 6= L. If J ∩ L = J , then
J ⊆ L, gives J + I ⊆ L, a contradiction. Hence J −J ∩L−L− I is a path between
I, J , a contradiction, so I is a maximal submodule of M . Similarly, J is a maximal
submodule of M , too, which gives I and J are minimal ideals of R. So M is a
semisimple R-module with `(M) = 2. So deg(I) = 1, for each ideal I 6= M of R.
Since G(R) 6= K2, R has at least three non-trivial ideals.

(2)⇒ (3) and (3)⇒ (1) are clear. �

3. When is G(R) planar, complete or complete r-partite?

In this section, planar property, complete and complete r-partite property of
G(R) are investigated.

Lemma 12. Let (R,M) be a local ring. If I, J are two nontrivial ideals of R which
are adjacent in G(R), then I ∩ J 6= 0.

Lemma 13. Let (R,M) be a local Artinian ring. Then the following statements
are equivalent:

(1) G(R) is complete;
(2) Soc(R) is simple;
(3) R is a dual ring;
(4) R is uniform;
(5) R is an Ikeda-Nakayama ring.

Proof. (1)⇒ (2) As G(R) is complete and R is local, we have I ∩ J 6= {0} for each
nontrivial ideals I, J of R, by Lemma 12. Hence `(Soc(R)) = 1.

(2) ⇒ (1) If `(Soc(R)) = 1, then R contains only one minimal ideal, say K.
HenceK ⊆ I∩J , for each ideals I, J of R. By [8, Exercise 3.2.15], ann(ann(I)) = I,
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which gives I = J if and only if ann(I) = ann(J). Now, we claim that G(R) is a
complete graph. Let I, J be two ideals of R. Then

ann(ann(I) + ann(J)) = ann(ann(I)) ∩ ann(ann(J)) =

= I ∩ J = ann(ann(I ∩ J)).

Hence ann(I ∩J) = ann(I) + ann(J) and I, J are adjacent, which implies G(R)
is a complete graph.

(2)⇔ (3)⇔ (4) See [8, Exercise 3.2.15].
(1)⇔ (5) By Proposition 4. �

Theorem 14. Let R be an Artinian ring. Then the following statements are equiv-
alent:

(1) G(R) is complete;
(2) R = R1 × R2 × .... × Rn (n ∈ N), where (Ri,Mi) is local and G(Ri) is

complete.
(3) R = R1 × R2 × .... × Rn (n ∈ N), where (Ri,Mi) is local and Soc(Ri) is

simple.
(4) R = R1 ×R2 × ....×Rn (n ∈ N), where (Ri,Mi) is a uniform local ring.

Proof. (1)⇒ (2) Let R be an Artinian ring. By [5, Theorem 8.7], R is isomorphic
to the product of local Artinian rings Ri with maximal ideals Mi. We show that
G(Ri) is complete. Let I, J be two nontrivial ideals of Ri, then R1 × ... × Ri−1 ×
I ×Ri+1× ...×Rn and R1× ...×Ri−1×J ×Ri+1× ...×Rn are nontrivial ideals of
R. As G(R) is complete, I and J are adjacent in Ri. Therefore G(Ri) is complete.

(2)⇒ (1) Let I = I1 × ...× In and J = J1 × ...× Jn be two nontrivial ideals of
R1 × ...× Rn. Set SI = {i : Ii is nontrivial } and SJ = {i : Ji is nontrivial }. If
SI ∩ SJ = ∅, then I and J are adjacent. If SI ∩ SJ 6= ∅, then by assumption, for
each i ∈ SI ∩ SJ , Ii and Ji are adjacent in G(Ri). Hence I and J are adjacent.

(2)⇔ (3)⇔ (4) is clear by Lemma 13. �

Theorem 15. Let R be a ring with G(R) r-regular. Then either G(R) is complete
or null graph.

Proof. Suppose G(R) is not null. By Theorem 6, R is an Artinian ring. Thus
R ∼= R1 × ... × Rn by [5, Theorem 8.7], where (Ri,Mi) is a local Artinian ring.
Toward a contradiction, assume that G(R) is not complete. Hence by Theorem 14,
G(Ri) is not complete for some 1 ≤ i ≤ n. Thus Soc(Ri) is not minimal. Let I1
and I2 be two minimal ideals of Ri. If H is a vertex of G(Ri) that is adjacent to
I1, then I1 ⊆ H, by Lemma 12. Thus ann(H ∩ (I1 ⊕ I2)) = ann((H ∩ I2)⊕ I1) =
Mi = ann(I1 ⊕ I2) ⊕ ann(H). Therefore every vertex which is adjacent to I1
is adjacent to I1 ⊕ I2 too, in G(Ri). Moreover, I1 and I2 are not adjacent in
G(Ri). This shows that deg(R1 × ... × Ri−1 × (I1 ⊕ I2) × Ri+1 × ... × Rn) >
deg(R1 × ... × Ri−1 × I1 × Ri+1 × ... × Rn), a contradiction. Therefore G(R) is
complete. �
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Theorem 16. Let R be an Artinian ring. Then R is a serial ring if and only if
G(RI ) is complete for each ideal I of R.

Proof. Let R be an Artinian ring. Then R ∼= R1×R2× ...×Rn, where (Ri,Mi) is a
local Artinian ring. Assume that G(RI ) is complete for each ideal I of R. Let Ii be
an arbitrary ideal of Ri. As R1×R2×...×Rn

R1×...×Ri−1×Ii×Ri+1×...×Rn

∼= Ri

Ii
, G(Ri

Ii
) is complete

by our assumption. Therefore Soc(Ri

Ii
) is simple, by Lemma 13. This shows that

Ri is uniserial by [23, 55.1(1)]; and so R is serial.
Let R be a serial ring. Then R = R1×R2× ...×Rn, where Ri is a uniserial ring

(and so local) for each 1 ≤ i ≤ n. As Ri is Artinian for each 1 ≤ i ≤ n, Soc(Ri/Ii)
is simple for each proper ideal Ii of Ri. Therefore, G(Ri/Ii) is complete by Lemma
13, for each 1 ≤ i ≤ n. Hence Theorem 14 implies that G(RI ) is complete for each
ideal I of R. �

In the following, we characterize the rings for which their Ikeda-Nakayama graph
is planar.

Lemma 17. Let R be a ring with G(R) is planar. Then R is Artinian and R has
at most 2 maximal ideals.

Proof. Since G(R) is planar, R is Artinian. Let |max(R)| ≥ 3 and M1,M2,M3 ∈
max(R). Then by Lemma 5, {M1,M2,M3,M1∩M2,M1∩M3} is a vertex set of K5

as a subgraph of G(R), a contradiction (note that Mi ∩Mj 6= {0} for each i 6= j).
Therefore |max(R)| ≤ 2. �

Theorem 18. Let R be a ring with two maximal ideals. Then G(R) is planar if
and only if either R ∼= F × S, where F is a field and (S,M) is a local ring with
the only non-zero proper ideal M or R ∼= F1 × F2 where F1, F2 are fields. In these
cases, either G(R) ∼= K2 or G(R) ∼= K4 and R is an Ikeda-Nakayama ring.

Proof. Let G(R) be a planar graph. Then by Lemma 17, R is Artinian. Hence
R ∼= R1 × R2, where (Ri,Mi) is a local ring for each i = 1, 2. If Ri is not field
for each i = 1, 2, then {R1 × 0, R1 ×M2,M1 × R2, 0 × R2,M1 × 0} is a clique in
G(R). Therefore, R1 or R2 is field. Let R1 be field. We show that R2 has only
one non-zero proper ideal M2. Otherwise, assume that I is a non-zero ideal of R2

such that I ⊂ M2. Then {R1 × 0, 0 × R2, R1 ×M2, R1 × I, 0 × I, 0 ×M2} is a
clique in G(R). This contradicts the planar property of G(R). Thus (R2,M2) is
a local ring with the only non-zero proper ideal M2. Hence G(R) ∼= K4 and R is
an Ikeda-Nakayama ring. If R2 is a field (M2 = 0), then G(R) ∼= K2 and R is an
Ikeda-Nakayama ring.
The converse is clear. �

Lemma 19. Let (R,M) be a local Artinian ring. Then ann(Soc(R)) = M and
ann(M) = Soc(R).



2292 S. EBRAHIMI ATANI, S. DOLATI PISHHESARI, AND M. KHORAMDEL

Proof. Since R is Artinian, Soc(R) 6= 0. By [23, Theorem 21.12],M.Soc(R) = 0, so
Soc(R) ⊆ ann(M). Now, let x ∈ ann(M)\Soc(R). So there exists an essential ideal
I of R such that x /∈ I. Since I ≤ess R, I ∩ Rx 6= 0. Let 0 6= rx = i ∈ I ∩ Rx, for
some r ∈ R. Since x ∈ ann(M) and rx 6= 0, r /∈M . So r is invertible which implies
x ∈ I, a contradiction. Hence ann(M) ⊆ Soc(R), which gives Soc(R) = ann(M).
Moreover ann(Soc(R)) = ann(ann(M)) = M . �
Lemma 20. Let (R,M) be a local ring, with G(R) planar. Then

(1) Soc(R) is adjacent to every other vertex of G(R).
(2) `(Soc(R)) ≤ 2.

Proof. (1) Let I be an ideal of R. By Lemma 17, R is Artinian. Hence Soc(R)∩I 6=
{0}. Therefore ann(Soc(R)∩I) = M . This implies that Soc(R) and I are adjacent.

(2) Let Soc(R) = K1⊕K2⊕...⊕Kn, whereK
,
is are minimal ideals of R. Suppose,

on the contrary, n ≥ 3. Hence {K1⊕K2,K1⊕K3,K2⊕K3,M, Soc(R)} makes K5

in G(R), which is a contradiction. �
Lemma 21. Let (R,M) be a local ring, with G(R) planar. Then every set of
minimal generators for M has at most two elements.

Proof. Let M = Rx + Ry + Rz. By Lemma 20, `(Soc(R)) ≤ 2. If `(Soc(R)) = 1,
then by Lemma 13, the vertex set {Rx,Ry,Rz,Rx + Ry,M} makes K5 in G(R)
which is a contradiction. So `(Soc(R)) = 2. We will show that M2 = {0}. Let
x2 6= 0. By Lemma 20 the vertex set {Rx2, Rx,Rx+Ry,M,Soc(R)} makes K5 in
G(R). Since G(R) is planar and `(Soc(R)) = 2, Soc(R) = Rx. Therefore x2 = 0
(MSoc(R) = 0), a contradiction. So x2 = 0. Similarly, y2 = z2 = 0. Let xy 6= 0. If
V1 = {Rxy,Rz,M} and V2 = {Rxy + Rz,R(x + y) + Rz,Rx + Rz}, then V1 and
V2 are two parts of K3,3 as a subgraph of G(R), a contradiction. Hence xy = 0.
Similarly, xz = yz = 0. Thus M2 = {0}, which implies ann(M) = M . By Lemma
19, ann(M) = Soc(R), hence M = Soc(R). So `(M) = 2, which is a contradiction.
So every set of minimal generators for M has at most two elements. �
Lemma 22. Let (R,M) be a local Artinian ring with M = Rx+Ry and {x, y} is
the set of minimal generators for M . Then Soc(R) 6= Rx,Ry.

Proof. Suppose, on the contrary, Soc(R) = Rx. Since R is Artinian Rx ∩ Ry 6= 0.
Let 0 6= rx = sy ∈ Rx ∩ Ry. By Lemma 19, r /∈ M . So r is invertible, which is a
contradiction. Similarly, Soc(R) 6= Ry. �
Lemma 23. Let (R,M) be a local ring with M = Rx+Ry, where x, y are minimal
generators of M . If G(R) is a planar graph, then M3 = 0.

Proof. Suppose, M3 6= 0. As M3 = Rx3 + Ry3 + Rxy2 + Rx2y, we show Rx3,
Ry3, Rxy2, Rx2y = 0. Suppose x3 6= 0. Then Rx3 ⊆ Rx2 ⊆ Rx ⊆ M . If
Soc(R) /∈ {Rx3, Rx2, Rx,M}, we have K5 as a subgraph of G(R), a contradiction,
so Soc(R) ∈ {Rx3, Rx2, Rx,M}. By Lemma 20, `(Soc(R)) ≤ 2. If `(Soc(R)) = 1,
then Soc(R) = Rx3, hence {Rx3, Rx2, Rx,M,Ry} makes a K5 in G(R), by Lemma
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13, a contradiction. If `(Soc(R)) = 2, then Soc(R) = Rx2; so by Lemma 19, x3 = 0,
a contradiction. Similarly, one can show that Ry3, Rxy2, Rx2y = 0, as needed. �

Lemma 24. Let (R,M) be a local ring with M = Rx+Ry, where x, y are minimal
generators of M . If M2 = {0}, then G(R) is a star graph.

Proof. As M2 = {0}, by Lemma 19, M = Soc(R). So by Lemma 12 and Theorem
10, G(R) is a star graph and every proper ideal, different fromM , must be principal
and of the form Rx, Ry, or R(x+ ay), where a is an invertible element of R. �

In the following theorem, G1 denotes the next graph.

Theorem 25. Let (R,M) be a local ring. Then G(R) is planar if and only if one
of the following statements holds.

(1) R is an Ikeda-Nakayama ring and G(R) is isomorphic to Kn, for some n ≤ 4.
(2) M2 = 0, M = Rx + Ry, every proper ideal, different from M , must be

principal and of the form Rx, Ry, or R(x + ay), where a is an invertible element
of R and G(R) is a star graph.

(3) M3 = 0, M = Rx+Ry, the set of nontrivial ideals of R is equal to

{M,Rx,Ry,Ry2, R(x+ y), R(x+ y2), Rx⊕Ry2 = Soc(R)}
and G(R) ∼= G1.

Proof. Let R be a ring with G(R) planar. By Lemma 21, the set of minimal
generators for M has at most 2 elements. If M = Rx, then R is a principal ideal
ring. This implies that

I(R) = {M i : 1 ≤ i ≤ n},
where n is the smallest number such that Mn = 0 and n ≤ 4. Thus (1) holds.
Let M = Rx+Ry, where x, y are minimal generators of M and x, y ∈M \M2.

By Lemma 20, `(Soc(R)) ≤ 2. If `(Soc(R)) = 1, then G(R) is complete by lemma
13. As G(R) is planar, G(R) ∼= Kn for some n ≤ 4 and (1) holds. Now, let
`(Soc(R)) = 2. By Lemma 23, M3 = {0}. If M2 = {0}, then G(R) is a star graph
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by Lemma 24; so (2) holds. Assume that M2 6= {0}. Therefore M2 ⊆ Soc(R).
We will show that M2 is simple. Suppose on the contrary, M2 = Soc(R). Let
Soc(R) = K1 ⊕K2 for some minimal ideals K1 and K2 of R. If Soc(R) ⊆ Rx,Ry,
then V1 = {K1,K2,M} and V2 = {Rx,Ry, Soc(R)} are two parts of K3,3 as a
subgraph of G(R), a contradiction. Hence, suppose without lose of generality,
Soc(R) 6⊆ Rx and K2 ⊆ Rx. Then {M,M2, Rx,K2,K1 ⊕ Rx} is the vertex set of
K5 as a subgraph of G(R), a contradiction(note that Soc(R) * Rx implies that
M 6= Rx⊕K1). Therefore M2 is simple. We have three cases.
Case 1: M2 ∩Rx = {0}. Hence x2 = xy = 0.
Fact 1.1: Let α, β ∈ U(R) (U(R) denotes the set of invertible elements of R).

Then R(αx+ y) = R(βx+ y) if and only if α− β ∈M .
Proof: If α− β ∈M , then αx+ y = (α− β)x+ βx+ y = βx+ y. Conversely, if

R(αx+ y) = R(βx+ y), then αx+ y = rβx+ ry for some r ∈ R. Thus (α− rβ)x =
(1−r)y. Clearly 1−r ∈M and α−rβ ∈M . Therefore α−β = α−rβ+(r−1)β ∈M .
Fact 1.2: |R/M | = 2.
Proof: Let |R/M | ≥ 3. Then α+M 6= 1+M for some α ∈ U(R). So 1−α 6∈M

and R(x + y) 6= R(αx + y) by Fact 1.1. Let V1 = {Ry,R(x + y), R(αx + y)} and
V2 = {M2 = Ry2,M, Soc(R)}. Then V1 and V2 make K3,3 as a subgraph of G(R),
a contradiction. Therefore |R/M | = 2
Fact 1.3: R(x+ y) = R(αx+ y) for each α ∈ U(R).
Proof: By Fact 1.1 and Fact 1.2.
Fact 1.4: For each α, β ∈ U(R), R(x + αy2) = R(x + βy2) and R(αx + y2) =

R(βx+ y2) if and only if α− β ∈M .
Proof: It is similar to Fact 1.1.
Fact 1.5: For each α ∈ U(R), R(αx+ y2) = R(x+ αy2) = R(x+ y2).
Proof: By Fact 1.2 and Fact 1.4.
Fact 1.6: R(x+ αy) ∈ {Rx,R(x+ y2), R(x+ y)} for each α ∈ R.
Proof: If α ∈M , then α = t1x+ t2y for some t1, t2 ∈ R. So x+ αy = x+ t2y

2.
If t2 ∈M , then x+ αy = x. If t2 6∈M , then R(x+ αy) = R(x+ t2y

2) = R(x+ y2)
by Fact 1.6. If α 6∈M , then R(x+ αy) = R(α−1x+ y) = R(x+ y) by Fact 1.3.
Fact 1.7: R(αx+ βy) ∈ {Rx,R(x+ y2), R(x+ y)}.
Proof: It is similar to the proof of Fact 1.6.
Hence

I(R) = {M,Rx,Ry,Ry2, R(x+ y), R(x+ y2), Rx⊕Ry2 = Soc(R)}.
As Rx ∩Ry = {0} and Ry2 ⊆ R(x+ y), G(R) ∼= G1.
Case 2: M2 ∩Ry = {0}. Similar to Case 1,

I(R) = {M,Rx,Ry,Rx2, R(x+ y), R(y + x2), Ry ⊕Rx2 = Soc(R)}
and G(R) ∼= G1.
Case 3: M2 ⊆ Rx,Ry. If M2 ⊆ R(x + y), then V1 = {Rx,Ry,R(x + y)} and

V2 = {M2,M, Soc(R)} make K3,3 as subgraph of G(R), a contradiction. Therefore
M2 ∩R(x+ y) = {0}. Hence x2 = y2 = −xy 6= 0, because M2 6= 0.
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Hence, we have M = Rp+Rq and M2 ∩Rq = {0}, where p = x and q = x+ y.
Therefore, this case is similar to Case 2 and

I(R) = {M,Rp,Rq,Rp2, R(p+ q), R(q + p2), Rq ⊕Rp2 = Soc(R)}.
It is clear that G(R) ∼= G1.
The converse is clear. �

Theorem 26. Let R be a ring. If G(R) is a complete r-partite graph with part,s
Vi (1 ≤ i ≤ r), then R is Artinian and one of the following statements hold:

(1) G(R) is complete and R is an Ikeda-Nakayama ring.
(2) R is a local ring, `(Soc(R)) ≤ 2 and if I, J ∈ Vi, then I and J are cyclic

local R-modules with common maximal submodule I ∩ J .

Proof. Since G(R) is complete r-partite, R is Artinian.
Suppose R is not local, so R ∼= R1 × ... × Rn, where R,is are local rings. Since

G(R) is not complete, there exists i such that G(Ri) is not complete, by Theorem
14. Suppose, without lose of generality, G(R1) is not complete, hence, there exist
ideals I1 and J1 of R1 such that they are not adjacent. So I1 × 0 × ... × 0 and
J1×0× ...×0 are in the same part, say V1. Consider J1×R2×0× ...×0 as an ideal
of R. So I1 × 0× ...× 0 is not adjacent to J1 ×R2 × 0...× 0 but J1 × 0× ...× 0 is
adjacent to J1×R2×0...×0, which is a contradiction. Therefore G(R) is complete
and (1) holds.
Suppose R is local. We show that `(Soc(R)) ≤ 2. Suppose, on the contrary,

`(Soc(R)) ≥ 3 and K1 ⊕ K2 ⊕ K3 ⊆ Soc(R), where Ki is a minimal ideal of R,
for each 1 ≤ i ≤ 3. It is clear that K1 ⊕ K2 and K3 are not adjacent. Let
K1 ⊕K2,K3 ∈ Vj . Since K2 is adjacent to K1 ⊕K2, K2 is adjacent to K3, which
is a contradiction.
Let I, J ∈ Vi. We show I and J are maximal in I + J . Let I ⊆ L ⊆ I + J , for

some ideal L of R. We show J ⊆ L. If J * L, then J ∩L 6= J . Hence I is adjacent
to J ∩ L. Thus

ann(I ∩ J) = ann(I ∩ L ∩ J) = ann(I) + ann(L ∩ J)

= ann(I) + ann(L) + ann(J) = ann(I) + ann(J),

a contradiction. So J ⊆ L. Thus I + J ⊆ L, which gives I is maximal in I + J .
Similarly, J is maximal in I+J . Since I+J

J
∼= I

I∩J , so I ∩J is maximal in I, J . We
show that I and J are local as R-modules. Suppose on the contrary, there exists
x ∈ I \ I ∩ J such that Rx 6= I. Hence J ⊆ J + Rx ⊆ J + I, I + J = J + Rx and
I = Rx+ I ∩ J . Thus

ann(I ∩ J) = ann(I ∩ J) ∩ ann(Rx ∩ J).

Since Rx and J are adjacent,

ann(I ∩ J) = ann(I ∩ J) ∩ (ann(Rx) + ann(J))

= ann(J) + ann(I ∩ J) ∩ ann(Rx) = ann(J) + ann(I ∩ J +Rx)
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= ann(J) + ann(I).

So I ∩ J is the only maximal submodule of I. Similarly, I ∩ J is the only maximal
submodule of J . �

Theorem 27. Let R be a ring. If ω(G(R)) < ∞, then the following statements
hold.

(1) R is Artinian.
(2) ω(G(R)) ≥ 2|max(R)| + n− 3, where n = max{`(Mi) : Mi ∈ max(R)}.

Proof. (1) It is clear.
(2) Since ω(G(R)) is finite, max(R) is finite, by Lemma 5(2). Let max(R) =

{M1,M2, ...Mt} and P (max(R)) be the power set of max(R). Let TX = ∩T∈XT ,
for each X ∈ P (max(R)). Then by Lemma 5, the subgraph of G(R) with vertex
set {TX} − {∅, J(R)} is a complete subgraph of G(R), say G′ (J(R) may be zero).
So ω(G(R)) ≥ 2|max(R)| − 2. Now, let n = max{`(Mi) : Mi ∈ max(R)}. Hence
n = `(Mj) for some 1 ≤ j ≤ t and Mj has the composition series

0 = N0 ⊂ N1 ⊂ ... ⊂ Nn = Mj ,

for some submodules Ns of Mj (0 ≤ s ≤ n). Similar to the proof of Lemma
5, one can prove that for each 1 ≤ s ≤ n − 1, every Ns is adjacent to every
other vertex of G′. Therefore V (G′) ∪ {Ns}n−1

s=1 is a clique in G(R), and thus
ω(G(R)) ≥ 2|max(R)| − 2 + n− 1 = 2|max(R)| + n− 3. �
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