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ABSTRACT 

 
In the literature, although many studies are describing the structural break in the linear 

regression model with time-series data, studies investigating this issue with cross-sectional 

data are limited. In this study, the performance evaluation of some approaches used to 

determine the structural break in a linear regression equation based on cross-sectional data 

was performed. In this context, firstly, the structural break problem is defined. Then, the 

theoretical expositions of some well-known methods which determine the structural break 

are given. The methods which used to determine the structural breaks may show 

performance differences under the effect of some factors. The performances of selected 

methods were evaluated with a simulation study in the context of the difference of constant 

terms, the difference of slope coefficients, location of break-point, sample size and 

homogeneity of error variances. The results of the simulation showed that the performances 

become different in terms of some structural features from the suggested methods for 

determination of structural break. 

 

Key words: Structural Break, Linear Regression Models, Cross-Sectional Data,  

Break-Point 
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1. INTRODUCTION 

 

In the literature, it is known that many methods determine the structural break in the regression 

model. The majority of these methods are based on the use of time-series data. However, the 

number of studies based on cross-sectional data is limited. In this context, this study focuses on 

comparing the performances of the methods which determine the break in the linear regression 

model using cross-sectional data. A structural break in the regression equation can be defined 

as the change of the relationship form between dependent and independent variables for certain 

values of independent variables. In the case of time-series data, the structural break is usually 

defined as a change from one period to another. Therefore, the model parameters do not remain 

same throughout the sample period. This can be expressed as "structural instability" in the 

regression equation. This instability means that there are two or more different behavioral 

patterns during the sample period. In the literature, the problem of structural break is also 

expressed in terms such as "stability of regression equation", "parameter stability", "structural 

change", "structural determination", "structural change". 
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The structural break problem is generally seen in time-series data, but it can also occur in the 

regression equations with the cross-sectional data. For example, in terms of time-series data, 

from a macroeconomic context, a society's saving trends may differ before and after the period 

of crisis. On the other hand, in the context of cross-sectional data, the saving trends of the socio-

economic groups may be different. Saving trends of social socio-economic sections may be 

different from each other in cross-section data. Structural break problem is one of the most 

important discussion areas in terms of both time series and regression analysis. However, in 

this study, only the problem of a structural break in the regression equation is considered and 

the problem of a break in time series model is ignored. 

 

In the regression analysis, it is generally assumed that the dependent variable is a function of 

the independent variable during the sample period, and the behavioral model does not change 

during this period. In the same sample period, there may be structural differences between the 

dependent variable and the independent variables. In this case, estimating a single regression 

equation for the sample period may reduce the reliability of parameter estimates. It can also 

reduce the forecast and prediction performance of the estimation equation. Fitting a single 

regression equation for a sample period in the case of structural break may cause problems 

about estimation. Also, whether there is a structural break in the data set is an important problem 

especially in economic studies. 

 

In a structural break, the sample can be separated into two different data sets (one break) as 

well as it can be included in more than two sets (multiple breaks). "Multiple breaks" can be 

discussed especially when the examined sample is big enough. However, this study was limited 

only the case that has a single break. 

 

Many studies determine both single and multiple breaks for time series models. However, there 

are relatively limited number of approaches to a single break for cross-sectional data regression 

models. Nevertheless, the recommended methods may not work effectively in all situations. 

Therefore, the tests developed based on specific criteria have weaknesses or strengths. Under 

the same conditions, the superiority of a test against others is measured by having the maximum 

power (Hansen, 1992). 

 

The structural break tests used in the literature can be classified into two groups. The methods 

in the first group determine the existence of structural break and the second group determine its 

location in addition to the presence of break. The cases which the structural break is unknown, 

using the test from the second group becomes important. 

 

Approaches to the determination of structural breaks work under certain assumptions. A 

structural break in a regression equation occurs when there are significant differences in terms 

of constant coefficients, slope coefficients, or both. Sample size and sub-sample size may have 

an impact on the performances of these methods which work based on the separation of the data 

set into subsets. The homogeneity in the error variance of the subsets may be effective on the 

model behaviors, too. Therefore, the performance of these methods may be considered as a 

function of five main factors. These are the size of the absolute difference between constant 

terms, the size of the absolute difference between slope coefficients, the homogeneity of error 

variances, the sample size and the location of the break-point. In this context, the performance 

evaluation of the methods in terms of the power of the test was carried out with a full factorial 

experiment design based on the five factors listed. 
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In the study, Chow Break-point Test (CBT), Chow Predictive Test (CPT), Chow Test with 

Heteroscedasticity (HCT), Chow Test with Dummy Variables (DCT), Hendry Predictive Test 

(HPT), Recursive Residual Test (RRT), CUSUM Test (CST), CUSUM2 Test (CSQT) and MZ 

Test which are well known in the literature and used in many software, are compared. 

Performance evaluation was made on the synthetic data sets which were randomly produced. 

 

The rest of this paper is structured as follows. Firstly, the concept of structural break is defined 

and methods for determining the structural break are clarified. Then, the simulation study 

carried out taking into account the model combinations formed by the experimental design 

method is explained. After that, the effects of the main factors and the binary interactions of the 

factors on the structural break methods are revealed. Finally, the findings of the analyzes were 

discussed. 

 

2. STRUCTURAL BREAK AND METHODS OF DETERMINING STRUCTURAL 

BREAK 

 

In multiple regression models, it is assumed that the model parameters will not change over 

the sample. However, economic behaviors may change in time due to different reasons such 

as changes in economic policy, changes in economic structure, technological developments, 

economic crisis, and postwar reconstruction. Besides, the consumption patterns of households 

may be shown by different behavior structures as to income groups. Due to these reasons, 

there may be significant differences in the distribution of the dependent variable (especially 

in its mean). These breaks separate the data set into different parts having different 

characteristics. Therefore, the model's behavior in the sample period cannot be described with 

a single model. Different model characters make the description of the model more difficult. 

 

In other words, the structural break will cause a break on the regression line in the linear 

regression model. This break can result in simultaneous differentiation of the constant terms 

or slope coefficients of the sub-sample periods or both of them. If the model is estimated 

without considering the break, the model's functional shape will be faulty and a description 

error will occur. Thus, the model must be estimated in at least two parts (or more). 

 

Various approaches have been developed to determine structural break in linear regression 

models. Each model has different requirements and capabilities. Most widely known among 

these is the Chow Test (CT) which suggested by Gregory Chow (1960). This test aims to 

determine one break or multiple breaks in the regression equation. CT tests the null hypothesis 

of "no structural break" against the alternative hypothesis of "there is a structural break". For 

the CT to be valid some assumptions must be provided. These assumptions can be summarized 

as follows for the model in which there is one break:  

 

 Error terms of the sub-samples (t1 and t2) must be independent from each other. 

 

 Each error term of sub-samples should be distributed normally with zero mean and 

constant variance, 

 t1N(0,2) and  t2N(0,2) 

 

  Break-point must be known in advance. 

 

The fact that the test is based on assumptions in this way may reveal some weaknesses. For 

example, this cannot apply when assumptions about error variances and the normality of error 
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terms are not provided or the breakpoint is not known in before. Furthermore, the test does not 

give any information about where the difference in the regression model is originated and this 

is one of its weaknesses. On the other hand, it can be said that CT is more useful than other 

tests due to its ease of operation and feasibility in case of more than one break-point.  

 

Chow, suggests two methods: CBT and CPT. Both of these tests use F statistic which is 

identified as based on the Sum of Squared Residual (SSR). The proposed tests divide the data 

set into two from the known break-point to determine the structural break. Then, they compare 

their SSRs.  

 

While testing for structural breaks with CBT, the data set containing n observations are divided 

into two sub-sample sets containing n1 and n2 observations. If it is considered that the model 

estimates k number of parameters, for estimation of the sub regression equations, (n1–k) and 

(n2–k) must be greater than 0. Consequently, it must be n1>k  and n2>k . A deficiency of CBT 

is the requirement that each subsample’s observation number must be at least the same with 

the number of parameters. Because, when there is a structural break and one of the subsets 

have fewer observations, these conditions may not be provided and it may be n1<k  and n2<k . 

In such circumstances, instead of CBT, CPT must be used. 

 

CPT is a test that shows whether the results obtained from one of the subsamples are valid for 

the whole sample set. The idea behind this recommendation is to compare the estimated SSR 

with the SSR obtained from one of the sub-samples (larger than the number of observations) 

and for all sample observations. 

 

CT reflects well behavior even under heteroscedasticity when at least one of the two 

subsamples is bigger. For two sample orders with small sizes, the test’s significance level will 

be affected more in case that heteroscedasticity is more moderate. The level of the real 

significance under heteroscedasticity is always bigger than so-called the significance level of 

homoscedasticity deemed as a prerequisite (Toyoda, 1974). 

 

As in econometric research, when CT is applied for smaller samples, it may be useful to make 

some prior tests against heteroscedasticity of error terms. If these tests show a presence of 

heteroscedasticity, CT must be used directly. In this case, the test can be applied after 

providing homoscedasticity of the error terms obtained by multiplying the original regression 

equation with an appropriate matrix (Toyoda, 1974). 

 

Error variances must be homogenous in all of these approaches. Toyoda (1974) has shown 

that CT is unsuccessful when these assumptions are not provided and the sample size is 

smaller.  

 

All of the methods mentioned above determine whether there is a break in the regression 

equation but they do not give information on constant term or slope coefficient from which 

the behavior change in equation come. The DCT method, which requires the prior knowledge 

of the break-point, can be used to overcome this deficiency. In this method, the dummy 

variable which is equal to the subsamples can be used. The significance of dummy and 

interaction variable coefficients indicates the presence and source of the structural break.  

 

Both CT and DCT give the same results. However, DCT has more advantages than CT. Firstly, 

despite the CT can determine the difference between the two regression lines, it cannot 

determine where this difference originates. Both the presence of the structural break and the 
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cause of the break can be determined using the DCT. Another advantage of DCT is the ease 

of application. All the information needed can be obtained from a single regression equation 

with DCT while requiring a multi-stage process at CT. Moreover, the parameters of the two 

sample sets can be estimated from a regression equation (Gujarati, 1970). 

 

Similar to the Chow test, Hendry et al. (1989) also proposed another structural break method 

that requires prior knowledge for the break-point, and this method is called Hendry Prediction 

Test (HPT). This method tests the null hypothesis of homoscedasticity against the alternative 

hypothesis of heteroscedasticity. Test statistics has χ2

 distribution. Furthermore, Maasoumi et 

al. (2010) developed the MZ Test for structural change with a known break-point when not 

only the regression coefficients but also the error variances change. The most important 

feature of the MZ test is that it tests the null hypothesis that there is no structural break versus 

the alternative hypothesis that break in both regression coefficients and the error variances. 

 

As with most of the economic problems, prior information on the structural break-point is 

known by the researcher. However, some stochastic processes, such as quality control 

processes, may not need prior knowledge of the structural breakpoint. In such cases, the location 

of the break-point is considered as a distinct problem. When prior information on the break-

point is not present, the approaches mentioned above cannot be used. For the removal of this 

problem, three different methods were developed by Brown et al. (1975): RRT, CST, and CSQT. 

RRT is based on an addition of data to the small sample and “recursive residuals” (rr) which 

were obtained by using the OLS  estimations on the previous point. CST is based on 

standardized rr obtained by standardizing rr obtained in RRT. Finally, CSQT determines the 

structural break and its place by using standardized rr’s squares. 

 

Before making performance evaluation works of the aforementioned methods, it would be 

useful to make a summary of them. In this section of the study, theoretical and functional 

frames of the methods which were suggested and performance-evaluated for the determination 

of the behavioral differences in the model will be discussed. 

 

2.1. Chow Test  

  

The principle of the method is based on testing null hypothesis “H0: There is no structural 

break.” against alternative hypothesis “H1: There is a structural break”. The method separates 

the considered data set into subsets and these subsets are based on the comparison of SSRs 

obtained by estimation. Consider the following linear regression model: 

 Yi=β
0
+β

1
Xi+εi   (i=1,2,…,n) (2.1) 

 

When the data are separated from break-point into two independent data sets which consist 

the number of n1 and n2 observations (n=n1+n2), regression equations for these two data sets 

can be identified as  

 Yi1=β
01

+β
11

Xi1+εi1   (i=1,2,…,  n1) (2.2) 

 Yi2=β
02

+β
12

Xi2+εi2   (i=1,2,…,  n2) (2.3) 

 

The procedure applied based on the size of subsamples can be classified as CBT and CPT. 

CBT is a method based on the principle of the proportion of SSRs which obtained from these 

two equations with each other. CBT statistic is calculated as: 

 FCBT=
[eUR

' eUR-(e1
' e1+e2

' e2)] k⁄

(e1
' e1+e2

' e2) (n-2k)⁄
 (2.4) 

where eUR vector is n×1 vector which consists of the estimated residual values of the 
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unconstrained model for all sample observations. e1 is n1×1 vector which consists of the 

estimated residual values of the constraint model for the first subsample. e2 is n2×1 vector 

which involves the estimated residual values obtained from the constraint model for the second 

sub-sample. 

 

The degree of freedom for the first sub-sample (df1) is n1–k , the degree of freedom for the 

second subsample (df2) is n2–k
 
and the denominator’s degree of freedom is n1–k+n2–k=n–2k . 

The numerator’s degree of freedom is k, which is the number of parameters in the model. For 

this reason, the distribution of the test statistic (FCBT) is F distribution with degrees of freedom 

k and n–2k (FCBT  Fα;k,n–2k). If FCBT > Fα;k,n–2k, the null hypothesis H0 is rejected. 

 

CPT estimates two models. First of these models is the model using all data and the second one 

is the model using the bigger sub-sample data. If it is supposed that the bigger sub-sample is 

the first sub-sample (n1), first the regression equation is estimated by using n1 observation. This 

estimated equation is used for predicting n2 observation. Then the hypothesis that the means of 

error terms are “zero” is tested. In this case, the CPT statistic is: 

 FCPT=
(eUR

' eUR-e1
' e1) n2⁄

e1
' e1 (n1–k)⁄

 (2.5) 

and FCPT statistic has F distribution with degrees of freedom n2 and n1–k  (FCPT  Fα;n₂,n₁–k). The 

calculated test statistic will be compared to the following with type I error α, df1=n2 and  

df2=n1–k, the regression equation is estimated by using n1 observation. If FCPT > Fα;n₂,n₁–k the 

null hypothesis is rejected and it is interpreted as “there is a structural break in the regression 

model”. 

 

2.2. Chow Test in Case of Heteroscedasticity 

 

In the case of heteroscedasticity in the model, Generalized Least Square (GLS) method will be 

used instead of the OLS method. GLS is the estimation of the regression equation after the 

variables of the model have been converted to provide the homoscedasticity assumption of error 

variances. The conversion of variables is made by dividing each variable in the model by error 

variance (standard deviation) w i=1/ i or by another suitable weighting (Gujarati, 2004). 

 

 Y
*=X

*
β+e* (2.6) 

where Y*=
1

σ
(Yn×1), X*=

1

σ
(Xn×k), β is k×1 coefficients vector for all samples and e*=

1

σ
(en×1). 

 

 Yt
*
=Xt

*β+et
*   (t=1,2) (2.7) 

where Yt
*=

1

σt
(Ynt×1), Xt

*=
1

σt
(Xnt×k) , βt is k×1 coefficients vector for all sub-samples and 

et
*=

1

σt
(ent×1).  

 

When the residuals of the estimated model for the whole sample are denoted by eUR
*  and the 

residuals of the models estimated for the sub-samples are denoted by e1
* and e2

* , respectively, 

HCT statistic is calculated as follows: 

 FHCT
* =

[eR
* 'eR

* -(e1
*'e1

*+ e2
*'e2

*)] k⁄

(e1
*'e1

*+ e2
*'e2

*) (n-2k)⁄
 (2.8) 

 

If FHCT
* >Fα;k,n-2k then it is interpreted as “there is a structural break in the regression model”. 
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2.3. Dummy Variable Approach in case of Structural Break 

 

In the case of a structural break, firstly, the regression equation with the dummy variable(s) is 

estimated for the whole data set. Then the significance of the coefficient of the dummy variable 

and the significance of the interaction coefficient is tested. The presence of a structural break 

and where it originated is determined by this test. Dummy variable added regression model is 

as follows: 

 Yi=β
01

+β
02

Di+β
11

Xi+β
12

(DiXi)+εi   (i=1,2,…,n) (2.9) 

where, Di is a dummy variable and it takes the value of 0 for the period before the structural 

break, while it takes the value of 1 for the period after the structural break (Gujarati, 1970). 

Under the assumption E(ε i)=0, when equation (2.9) is estimated, the following functions are 

obtained: 

 Di=0 ⇒E(Yi|Xi)=β
01

+β
11

Xi (2.10) 

 Di=1⇒E(Yi|Xi)=(β
01

+β
02

)+(β
11

+β
12

)Xi (2.11) 

 

These functions are the conditional average functions of Y given X and they provide the 

comparisons of sub-samples in which dummy variable gets values 0 (before the structural 

break) and 1 (after the structural break, Gujarati, 2004). 

 

In equation (2.9), β02 shows the difference of the constant terms and β12 shows the difference 

of the slope coefficients. DCT is considered as two different tests. One of these tests 

determines a structural break which is caused by the difference of the constant terms         

(DCT–1) and the other one determines a structural break which is caused by the difference of 

slope coefficients (DCT–2). 

 

2.4. Hendry Prediction Test 

 

In HPT, firstly the equation (2.2) having the regression model of the first sub-sample is 

estimated. Then, the regression model of the second sub-sample and the coefficient estimations 

of the first sample b01 and b11 are used. The one-step prediction errors can be calculated as 

follows: 

 e2=Y2–b01–b11X2 (2.12) 

these one-step prediction errors can be used for calculation of HPT statistics. HPT statistics can 

be calculated as: 

 HPT=
e2'e2

e1'e1 (n
1
-k)⁄

 (2.13) 

 

This calculated test statistic has Chi-square distribution with a degree of freedom n2 

(HPT~χ
α,n2

2 ). 

 

2.5. Recursive Residual, CUSUM and CUSUM2 Tests  

 

For RRT, the regression set is estimated through OLS by using a small n1 sized observation set. 

The observation number to be taken at the beginning (n1) must be at least as much as the number 

of parameters k (n1≥k). Then OLS estimations are repeated by increasing the data period one 

by one. Thus, n–k+1 coefficient estimation set is obtained. 

 

Under the accuracy of the null hypothesis 𝐻0, 𝐛𝑟 is an OLS estimator of β based on r 

observations, the following formula is obtained: 



International Econometric Review (IER) 

77 

 

 br=(Xr'Xr)-1Xr'Yr (2.14) 

where Xr
' =[x1,…,xr] and Yr

' =[y
1
,…, y

r
], and (Xr'Xr) is a non-singular matrix. In each step, the 

last estimation of br is used for the estimation of the next value of the dependent variable. The 

one-step prediction error obtained from this prediction is called recursive residual (rr). Thus, 

rth  term error prediction is calculated as follows: 

 vr=y
r
-xr

' br-1     (r=k+1,…,n) (2.15) 

 

Instead of rr (vr) in equation (2.15), standardized rr (wr) is calculated as: 

 wr=
vr

√Var(vr) σ⁄
=

yr-xr
' br-1

√(1+xr
' (Xr–1

'
Xr–1)

-1
xr)

   (r=k+1,…,n) (2.16) 

wr is standardized error estimator of yr which was estimated from y1,…,yr-1. In equation (2.16) 

the variance of rr, Var(vr), is defined as: 

 Var(vr)=σ2(1+xi(Xi-1'Xi-1)-1xi') (2.17) 

where 2 means the error variance in regression period. xi 𝐱𝑖 shows ith term row vector of X 

matrix. 

 

When rr (vr) is used, the graph of vr is plotted against time. In this graph, the lower and upper 

limits based on the following formula are drawn. 

 E(vr)±2√Var(vr) (2.18) 

 

If vr’s are exceeded these limits, it is decided that there is a structural break in the model. This 

is also equivalent to applying a t-test for each point. 

 

When standardized rr (wr) is used, these limits are considered as +2 and -2, because of 

w rN(0,1). If wr’s are out of these limits, then it is concluded that there is a structural break.  

 

In RRT, the moments when standardized residuals or calculated residuals get beyond their own 

limits, they are determined as the break-point and it is said that there is a structural break after 

this point. 

 

In this part, for not creating confusions in the indexes, the standardized residuals will be shown 

with wi instead of wr. In CST, 𝑤𝑟 has a normal distribution N(0,2) under H0. wr and wi (r i) 

are also independent. In this case, the values of CUSUM are calculated as follows:  

 CUSUMr= ∑
wi

σ̂

r
i=k+1    (r=k+1,…,n) (2.19) 

where 

 σ̂
2
=

1

n-k-1
∑ (wr-w̅)2n

r=k+1  (2.20) 

and 

 w̅=
∑ wi

n
i=1

n-k
 (2.21) 

lines relating ±a√n–k determinated at k point and ±3a√n–k determinated at n point are obtained 

in the graph drawn (Guris et al., 2010). 

 

Parameter a is determined by the selected significance level. According to different significance 

levels, the value was given in Brown et al (1975) and a values which are frequently used for 

significance levels were given below: 

 
α=0.01 ⇒ a=1.143

α=0.05 ⇒ a=0.948

α=0.10 ⇒ a=0.850
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If CUSUM values exceed any of lower and upper limits in the graph, the hypothesis on “no 

structural break” is rejected (Guris et al., 2010). 

 

The hypothesis in CSQT, which is an alternative test similar to CST, are determined as in CST 

but test statistics are calculated by using standardized squares of rr in this test. For CSQT, 

 CUSUMr
2
=

∑ wi
2r

i=k+1

∑ wr
2n

r=k+1

   (r=k+1,…,n) (2.22) 

 

The values are calculated and the graph of CUSUMr
2
 is drawn. The expected value of the test 

statistic, 

 E(CUSUMr
2
)≅

r–k

n–k
  (2.23) 

 

When r=k  the expected value is “0” and r=n  it becomes “1”. Confidence limits are determined 

as in CST. In CSQT, the confidence limits are obtained from the following equation: 

 E(CUSUM
2
)±c0 (2.24) 

 

Tables of c0 values were given in Brown et al. (1975). c0 is determined according to m and α 

significance level values according to whether the test has single or double sides. If  n–k value 

is an odd number, m value is calculated as: 

 m=
1

2
(n–k)– 1 (2.25) 

 

If n–k  value is an even number, m value is calculated and based interpolation is carried out as 

in the following (Guris et al., 2010). 

 

 m=
1

2
(n–k)–

3

2
 and m=

1

2
(n–k)–

1

2
 (2.26) 

 

If the test is double-sided, the value of the c0 is obtained with m and α/2 values, if the test 

single-sided the c0 value is calculated from m and α values. The upper and lower confidence 

limits of CSQT are drawn with the values determined from the table (Brown et al., 1975). If 

CSQT statistics cut the confidence limits, it is decided that there is a structural break. 

 

2.6. MZ Test 

 

In MZ Test, the standard linear regression model in equation (2.1) and separated models before 

and after break-point in equation (2.2) and (2.3) are considered. Under the null hypothesis of 

no structural break the usual OLS estimates of the parameters β and 2 are 

β̂
0
=(X'X)-1X'Y and σ̂0

2
= Y–Xβ̂

0

2
(n–k)⁄ , 

respectively. And the standard OLS estimates for two models (eq. 2 and 3) are 

β̂
i
=(Xi'Xi)

-1Xi'Yi (i=1,2) and σ̂i
2
= Yi–Xiβ̂i

2
(ni–k)⁄  (i=1,2), 

respectively (Ahmed et al., 2017). 

 

MZ Test is calculated that a test of the null hypothesis "H0: β
1
=β

2
, σ1

2=σ2
2" against alternative 

hypothesis "H1: β
1
≠β

2
 or σ1

2≠σ2
2". 

 

The MZ statistics defined as follows: 

 MZ=(n–k)logσ̂0
2– {(n1– k)logσ̂1

2
+(n2– k)logσ̂2

2} (2.27) 
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The critical values for MZ Test are computed under the null hypothesis there is no structural 

break. To calculate the critical values we consider the model in equation (2.1). We generate 

independent variable X as a series ranging from 1 to 50 with a step size of 0.5 (n=100). We 

set β
0
=β

1
=1 and generate errors (ε) from the standard normal distribution. The dependent 

variable Y is obtained from equation (2.1). This simulated data is used to generate critical 

values which are got by performing 30.000 replications. The MZ Test rejects the null 

hypothesis when MZ statistics exceed the simulated critical value at 5% significance level. 

 

3. EXPERIMENT DESIGN AND SIMULATION STUDY 

 

In this part of the study, simulation studies were made under various conditions to make the 

performance evaluation for the structural tests considered in the previous section. The tests 

suggested for the determination of the structural break may have performance differences 

under some factors. These factors, as mentioned by Antoshin et al. (2008), can be listed as the 

size of the difference between constant terms and slope coefficients in the sub-sample 

regression equation, the division rate of data set in the break-point, sample observation 

coefficient and variables of sub-sample error variances. The methods discussed in this study 

will be compared with their performances which are represented as the power of test with 

regards to these factors.   

 

The data used in this paper were produced by considering a single variable linear regression 

model. For determining that, there is a structural break in the model, an n sized sample was 

produced as a total of two different samples sized n1 and n2. When the data were produced, the 

assumptions of the linear regression model were considered. For instance, error terms were 

randomly produced from the normal distribution. If the explanatory variables are (Xi) average 

0 and its variance 1 were produced randomly following the Standard Normal Distribution. 

Constant term (β
0
) and slope coefficient (β

1
) were produced in a manner to differentiate 

between 1st and 2nd samples. Then these obtained values are located in the models to 

determine the variable (Y). 

 

Table 3.1 shows the factors included in the experimental design and their levels. In this study, 

the structural break in the model was created by taking into account 5 factors such as 

differentiation of constant term (dc), differentiation of slope coefficient (ds), location of break-

point (bp), sample size (ss) and homogeneity of error term variance (de). In this context, model 

combinations consist from five-factors were studied by experimental design method. The 

differentiation in constant terms and slope coefficients was calculated as the absolute 

difference of the coefficients of the two sub-samples and it was discussed at three different 

levels as 0.00, 0.50 and 1.00. Here, the first level (0.00) means that there is no difference 

between the coefficients, i.e. there is no structural break in the model. The location of the 

break-point was calculated by the ratio of the sample size of the first sub-sample to the whole 

sample size and it was examined at three different levels, 0.10, 0.25 and 0.50. Thus, the 

question that “is the effect of the break of the data set in the early, midway or late?” was 

examined. The sample size was questioned at two levels, 60 and 120. Thus, the effect of small 

sample or large sample on the tests could be determined. The homogeneity of the error terms 

variance was discussed at two levels as 0.00 and 0.30. Here, the first level (0.00) refers to 

homoskedasticity and the second level (0.30) refers to heteroskedasticity. Thus, the effect of 

the homogeneity of error variance on the tests was observed. In this case, the total experiment 

number of the simulation study is 33×22=108 (three factors are consisting of three levels and 

two factors are consisting of two levels). The simulation study was carried out for a 5-factor 
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balanced full-factorial experiment. For each cell of the design matrix, the simulation operation 

was repeated 3000 times and the averages of power of the tests (1-β) were recorded as 

response variables. The simulation study was performed by coding in STATA 13.0.  

 

A Monte Carlo study is conducted to study size and power properties. The powers of the 

methods are computed in 3000 repetitions under the alternative hypothesis of the existence of 

break in at least one of constant term and slope coefficient. The break is introduced by taking 

different cases of error term variance. Also, the break set at different locations in the sample 

with different sample sizes. 

 

Factors 

 

Number of  

factor levels 

Values of  

factor levels 

 Level 1 Level 2 Level 3 

Difference in constant terms (dc) |β
01

–β
02

| 3 0.00 0.50 1.00 

Difference in slope coefficients (ds) |β
11

-β
12

| 3 0.00 0.50 1.00 

Break-point (bp) n1/n 3 0.10 0.25 0.50 

Sample size (ss) n 2 60 120  

Difference in variance of error terms (de) |σt1
2 –σt2

2 | 2 0.0 0.3  

Table 3.1 Factors of experiment. 

 

Table 3.2 shows the power of the tests on the variation of the constant term depending on the 

location of the break-point and sample size without any variability in slope coefficient and error 

variance. In general, while ds and dt are invariant, it can be said that as dc, bp and ss increases, 

the power of the tests performs better. In other words, a bigger break that occurs later in a larger 

sample can be detected much better by tests. For example, when dc=1.0, bp=0.1 and ss=60, 

5 of the 10 methods (CBT, HCT, DCT–1, HPT and CST) showed high performance, meanwhile 

dc=1.0, bp=0.5 and ss=120, 8 of the 10 methods (CBT, CPT, HCT, DCT-1, HPT, CST, CSQT 

and MZ) showed very strong performance. 

 

METHODS 

 

𝑠𝑠 

60 120 

𝑏𝑝 𝑏𝑝 

0.1 0.25 0.5 0.1 0.25 0.5 

𝑑𝑐 𝑑𝑐 𝑑𝑐 𝑑𝑐 𝑑𝑐 𝑑𝑐 

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 

CBT 4.60 51.20 98.30 5.47 84.20 100.00 5.53 91.67 100.00 4.83 83.57 99.97 5.03 99.10 100.00 4.97 99.97 100.00 

CPT 4.87 6.00 8.93 4.47 11.20 40.30 5.87 25.53 90.83 5.67 6.97 14.33 5.20 16.97 71.43 4.60 46.27 99.73 

HCT 7.00 44.73 96.97 5.13 83.07 100.00 5.03 90.93 100.00 6.33 84.87 99.97 5.57 99.23 100.00 4.63 99.97 100.00 

DCT–1 5.40 57.63 99.07 5.27 90.23 100.00 4.73 95.57 100.00 4.53 89.00 99.97 5.00 99.63 100.00 5.87 99.97 100.00 

DCT–2 4.63 4.63 4.63 4.77 4.77 4.77 5.33 5.33 5.33 4.60 4.60 4.60 5.03 5.03 5.03 4.70 4.70 4.70 

HPT 7.80 43.23 95.90 11.00 66.90 99.80 22.83 80.63 99.97 7.00 59.60 99.87 9.03 84.57 100.00 16.87 93.77 100.00 

RRT 0.50 2.40 23.47 0.50 2.40 23.47 0.50 2.40 23.47 0.50 2.40 23.47 0.50 2.40 23.47 0.50 2.40 23.47 

CST 3.40 84.37 100.00 3.37 84.37 100.00 3.37 84.37 100.00 3.37 84.37 100.00 3.37 84.37 100.00 3.37 84.37 100.00 

CSQT 0.57 5.83 85.83 0.57 5.80 85.83 0.57 5.80 85.83 7.60 27.83 98.60 7.60 27.83 98.60 7.60 27.83 98.60 

MZ 0.27 8.13 69.30 0.07 33.03 98.83 0.37 49.80 99.93 0.27 31.67 98.67 0.33 75.57 100.00 0.23 90.27 100.00 

Table 3.2 The powers of tests in the ds=0.0 and de=0.0 cases 

 

The powers for ds=0.0,0.5,1.0 with different values of bp and ss while dc=0.0 and de=0.0 

cases are shown in Table 3.3. As in Table 3.2, it can be said that in a larger sample, the bigger 

break that occurs later is better detected by the methods. With the model that dc=0.0, de=0.0,  

ds=0.1 with different 𝑏𝑝 and different 𝑠𝑠, some of the tests like as CBT, HCT, DCT–2, HPT 

and CSQT gives the similar high powers. DCT–1 test is a method that is sensitive to the 

variability of the constant term, so it does not work much for the variability in the slope 
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coefficient. On the other hand, it can be said that the CST and the MZ tests perform slightly 

worse under these conditions. 

 

METHODS 

 

ss 

60 120 

bp bp 

0.1 0.25 0.5 0.1 0.25 0.5 

ds ds ds ds ds ds 

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 

CBT 4.60 53.30 98.90 5.47 81.33 100.00 5.53 87.57 100.00 4.83 83.57 100.00 5.03 99.57 100.00 4.97 100.00 100.00 

CPT 4.87 5.77 9.10 4.47 10.37 36.90 5.87 23.07 85.90 5.67 7.10 14.30 5.20 18.53 75.60 4.60 49.97 99.97 

HCT 7.00 67.33 99.60 5.13 86.57 100.00 5.03 87.33 100.00 6.33 92.47 100.00 5.57 99.77 100.00 4.63 100.00 100.00 

DCT–1 5.40 5.40 5.40 5.27 5.27 5.27 4.73 4.73 4.73 4.53 4.53 4.53 5.00 5.00 5.00 5.87 5.87 5.87 

DCT–2 4.63 59.90 99.53 4.77 88.17 100.00 5.33 93.40 100.00 4.60 89.47 100.00 5.03 99.87 100.00 4.70 100.00 100.00 

HPT 7.80 45.03 97.10 11.00 63.87 99.83 22.83 81.77 100.00 7.00 59.67 99.80 9.03 87.33 100.00 16.87 92.20 100.00 

RRT 0.50 3.03 56.90 0.50 3.03 56.90 0.50 3.03 56.90 0.50 3.03 56.90 0.50 3.03 56.90 0.50 3.03 56.90 

CST 3.40 3.07 2.33 3.37 3.07 2.33 3.37 3.07 2.33 3.37 3.07 2.33 3.37 3.07 2.33 3.37 3.07 2.33 

CSQT 0.57 5.83 91.33 0.57 5.80 91.33 0.57 5.80 91.33 7.60 31.70 99.53 7.60 31.70 99.53 7.60 31.70 99.53 

MZ 0.27 0.33 2.20 0.07 1.63 7.27 0.37 2.23 15.80 0.27 0.87 8.60 0.33 3.43 36.27 0.23 5.67 44.47 

Table 3.3 The powers of tests in the dc=0.0 and de=0.0 cases 

 

METHODS 

 

𝑠𝑠 

60 120 

bp bp 

0.1 0.25 0.5 0.1 0.25 0.5 

dc dc dc dc dc dc 

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 

CBT 49.83 92.73 100.00 25.97 98.67 100.00 5.07 99.10 100.00 46.13 99.43 100.00 25.47 99.97 100.00 5.83 100.00 100.00 

CPT 0.23 0.63 2.23 0.00 0.10 9.40 0.00 0.57 62.53 0.00 0.03 0.60 0.00 0.00 12.30 0.00 0.17 94.13 

HCT 40.97 90.80 99.93 24.57 98.60 100.00 6.83 99.50 100.00 44.90 99.33 100.00 25.13 99.97 100.00 4.73 100.00 100.00 

DCT–1 34.03 90.03 100.00 20.33 99.03 100.00 5.17 99.73 100.00 33.23 99.13 100.00 19.03 100.00 100.00 5.20 100.00 100.00 

DCT–2 34.80 34.80 34.80 17.77 17.77 17.77 3.53 3.53 3.53 32.20 32.20 32.20 19.13 19.13 19.13 6.00 6.00 6.00 

HPT 91.50 99.20 100.00 99.63 99.97 100.00 100.00 100.00 100.00 98.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

RRT 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

CST 12.17 97.00 100.00 12.17 97.00 100.00 12.17 97.00 100.00 12.17 97.00 100.00 12.17 97.00 100.00 12.17 97.00 100.00 

CSQT 99.93 12.17 37.43 99.93 12.17 37.43 99.93 12.17 37.43 99.97 42.37 80.20 99.97 42.37 80.20 99.97 42.37 80.20 

MZ 14.33 65.90 99.30 31.37 95.63 100.00 31.93 99.50 100.00 38.00 96.07 100.00 80.73 100.00 100.00 90.57 100.00 100.00 

Table 3.4 The powers of tests in the ds=0.0 and de=0.3 cases 

 

METHODS 

 

ss 

60 120 

bp bp 

0.1 0.25 0.5 0.1 0.25 0.5 

ds ds ds ds ds ds 

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 

CBT 49.83 94.03 100.00 25.97 98.13 100.00 5.07 99.27 100.00 46.13 99.03 100.00 25.47 100.00 100.00 5.83 100.00 100.00 

CPT 0.23 0.50 2.17 0.00 0.13 7.47 0.00 0.57 49.57 0.00 0.03 0.57 0.00 0.00 17.60 0.00 0.33 96.63 

HCT 40.97 93.97 100.00 24.57 98.17 100.00 6.83 99.37 100.00 44.90 99.27 100.00 25.13 100.00 100.00 4.73 100.00 100.00 

DCT-1 34.03 34.03 34.03 20.33 20.33 20.33 5.17 5.17 5.17 33.23 33.23 33.23 19.03 19.03 19.03 5.20 5.20 5.20 

DCT-2 34.80 92.00 99.97 17.77 98.90 100.00 3.53 99.73 100.00 32.20 98.93 100.00 19.13 100.00 100.00 6.00 100.00 100.00 

HPT 91.50 99.23 100.00 99.63 100.00 100.00 100.00 100.00 100.00 98.87 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

RRT 0.10 0.10 1.07 0.10 0.10 1.07 0.10 0.10 1.07 0.10 0.10 1.07 0.10 0.10 1.07 0.10 0.10 1.07 

CST 12.17 7.17 2.67 12.17 7.17 2.67 12.17 7.17 2.67 12.17 7.17 2.67 12.17 7.17 2.67 12.17 7.17 2.67 

CSQT 99.93 15.93 52.50 99.93 15.93 52.50 99.93 15.93 52.50 99.97 49.23 88.37 99.97 49.23 88.37 99.97 49.23 88.37 

MZ 14.33 20.83 46.93 31.37 47.40 80.00 31.93 53.60 90.30 38.00 55.63 80.50 80.73 91.93 99.17 90.57 96.90 99.93 

Table 3.5 The powers of tests in the dc=0.0 and de=0.3 cases 

 



Güler and Bakır-Performance of Methods Determining Structural Break in Linear Regression Models 

82 

 

When de=0.3 and ds=0.0, the powers in cases with dc=0.0,0.5,1.0 are considered with the 

different break-point locations and different sample sizes are provided in Table 3.4. Here, since 

there is a break in both the constant term and the error variance, it is seen that the differences 

between the powers of the tests are more evident. Also, even with a change of 0.5 units in the 

constant term, the methods perform very well. This table shows that CBT, HCT, DCT–1, HPT, 

CST and MZ tests have better power overall in these cases.  

 

Table 3.5 gives the powers of the tests for the models that dc=0.0, de=0.3 with different ds, bp 

and ss. Here, it is seen that fewer methods are stronger according to the Table 3.4. According 

to Table 3.5, CBT, HCT, DCT–2 and HPT work very well under all possible cases that dc=0.0, 

de=0.3 and ds=0.0,0.5,1.0. In addition, in some cases where dc=0.0 and de=0.3 the MZ test 

also performed very well. For example, in the ds=0.5 or 1.0, ss=120 and bp=0.25 or 0.50 cases, 

the powers of the MZ test are higher. 

 

4. CONCLUSION AND DISCUSSION 

 

In this paper, we have considered methods for determining structural break in the linear 

regression model with cross-section data and compared them in terms of power performances. 

Different results were obtained from the ten methods applied on regression models in different 

forms on the data sets produced in the same conditions. Our simulations show that different 

methods have quite different behavior under the various alternative. These differences may be 

caused by the assumptions of the methods. 

 

These findings were obtained as a result of the analysis. It is observed that the power of the 

tests increases with a longer duration of the sample since a shift rather late in the sample period 

means that each test has much time to determine.  

 

The power of the MZ test is higher in de=0.3 cases than in de=0.0 cases. Because the MZ test 

considers with the break in any coefficients in the heteroscedastic case. The MZ test is more 

important than the other tests in that it deals with the change in error term variance and the 

change in coefficients simultaneously. 

 

Since DCT–1 test sensitive to the break in a constant term, it shows high performance in ds=0.0 

cases. Similarly, DCT–2 is a method that sensitive to the break in slope coefficient and showed 

high performance in dc=0.0 cases. 

 

As CPT is a method based on using the big sample, it can be inferred that the break-point has 

a statistically significant effect on CPT. It can also be inferred that the place of the break-point 

change according to before and after the break. For example, from Table 3.2, in the dc=1.0, 

bp=0.5 and ss=120 case, the power of the CPT is 99.73, while in the dc=1.0, bp=0.5 and 

ss=60 case it is 90.83. 

  

It is seen that from all tables the size of the sample (number of observations) is not effective 

on RRT, CST, and CSQT. Therefore, the number of observations has no distinctive feature on 

the power of these tests. 
   

At the end of the study, it was determined that the powers of these methods differ for the 

structural break based on the cross-sectional data structure. To make better measurements and 

take healthier results, it may be suggested to apply more than one tests on data structure, rather 

than applying only one test.  
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