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ABSTRACT 

Ozone (O3), nitrogen oxides (NOx) and carbon monoxide (CO) concentrations and some meteorological 

parameters measured hourly have been analyzed to examine the interaction patters between O3 and NOx, CO, air 

temperature, wind speed, relative humidity, and air pressure by taking into account the diurnal variations of them 

at urban site (Akçaabat ) in Trabzon. Variations of O3 levels have been modeled via Jaya and Teaching-Learning 

Based Optimization (TLBO) algorithms considering the effects of certain parameters (NOx and CO concentration, 

air temperature, wind speed, relative humidity, and air pressure) called as the independent variables. The accuracy 

of Jaya and TLBO methods has been determined and these methods have been carried out with four different 

functions: quadratic, exponential, linear and power. Some statistical indices have been applied to evaluate the 

performance of these models. In conclusion,  it is shown that Jaya and TLBO algorithms can be used in the 

optimization of the regression function coefficients in modelling some air pollutants interactions and the best-fit 

equation for each parameter is obtained from the quadratic function. 

 

Keywords: Air pollution, Ozone concentration, Modeling 

 

 

Jaya ve Öğretme-Öğrenme Tabanlı Optimizasyon Algoritmalarını 

Kullanarak Meteorolojik Faktörler ve Çeşitli Hava Kirleticileri ile 

Ozon Etkileşimlerinin Modellenmesi  
 

ÖZET 
Ozon (O3), azot oksitler (NOx) ve karbon monoksit (CO) konsantrasyonları ve saatlik olarak ölçülen bazı 

meteorolojik parametreler, O3 ile NOx, CO, hava sıcaklığı, rüzgar hızı, bağıl nem ve hava basıncı arasındaki 

etkileşim eğilimini incelemek için, onların Trabzon'daki kentsel alanda (Akçaabat) günlük değişimlerini dikkate 

alarak analiz edildi. Bağımsız değişkenler olarak adlandırılan belirli parametrelerin (NOx ve CO konsantrasyonu, 

hava sıcaklığı, rüzgâr hızı, bağıl nem ve hava basıncı) etkilerini dikkate alarak O3 seviyelerinin değişimleri Jaya 

ve Öğretme-Öğrenme Tabanlı Optimizasyon (TLBO) algoritmaları ile modellenmiştir. Jaya ve TLBO 

yöntemlerinin doğruluğu belirlenmiş ve bu yöntemler ikinci dereceden, üstel, doğrusal ve güç olmak üzere dört 

farklı fonksiyona uygulanmıştır. Bu modellerin başarımını test etmek için bazı istatistiksel belirteçler (ortalama 

karesel hata, ortalama karesel hatanın karekökü, ortalama mutlak hata, ortalama mutlak yüzde hata ve belirleme 

katsayısı) kullanılmıştır. Sonuç olarak, Jaya ve TLBO algoritmalarının, bazı hava kirletici etkileşimlerinin 

modellenmesinde regresyon fonksiyonu katsayılarının optimizasyonunda kullanılabileceği ve her parametre için 

en uygun denklemin ikinci derece fonksiyonundan elde edildiği görülmüştür. 
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I. INTRODUCTION 
 

Photochemical air pollution is formed through the interactions between ozone (O3) and its main 

precursors of nitrogen oxides (NOx) and volatile organic compounds (VOCs) under intense sunlight. It 

is known that O3 has an important function in upper layers of atmosphere as it conserves living 

organisms from sun radiation, but it is accepted as harmful gas in layers nearer to earth's surface. 

According to Turkey and European Union countries Air Quality Assessment and Management 

Regulation, the average O3 amount of 8 hours must be 120 µg/m3 [1]. Potential impacts of O3 to health 

are irritation to eyes, nose and throat, as well as its effects on vegetation and materials. Surface O3 is a 

major component of photochemical smog characterized by high O3 owing to complex and non-linear 

chemistry and meteorology. The concentration of ozone in the atmosphere changes with the formation 

and transport of ozone, photochemical reactions and meteorological factors. O3 is produced by the 

reaction of an oxygen molecule (O2) with an oxygen atom occurring from the photolysis of nitrogen 

dioxide (NO2) by solar radiation. However, O3  is  destroyed  by  reacting  with  NO to form  NO2  and  

O2. In addition, hydrocarbons and VOCs in the atmosphere are oxidized to CO, CO2 and water vapour. 

The oxidation processes include a number of cyclic stages driven by the hydroxyl radical (OH) leading 

to reactions with the present NO and therefore, leading to the accumulation of O3. As these complex 

reactions happen in the atmosphere, measuring O3 levels alone cannot help in evaluating photochemical 

conditions [2-7]. 

 

Meta-heuristic optimization algorithms solve optimization problems by imitating animal behavior, 

biological or physical events. Today, a range of meta-heuristic optimization algorithms such as Jaya[8], 

Teaching-Learning-Based Optimization (TLBO) [9], Artificial Bee Colony (ABC) [10], Coyote 

Optimization (COA) [11], Cuckoo Search (CS) [12], Crow Search (CSA) [13], Differential Search (DS) 

[14], Grey Wolf Optimizer (GWO) [15], Harris Hawks Optimization (HHO) [16], Neural Network 

(NNA) [17], Symbiosis Organisms Search (SOS) [18], Teaching–Learning–Based Artificial Bee Colony 

(TLABC) [19], Weighted Differential Evolution (WDE) [20] are widely used in solving problems. 

 

In this study, O3 concentration and its correlation with NOx, CO and some meteorological parameters in 

Trabzon (Akçaabat) for 2016 and 2017 datasets obtained from Ministry of Environment and Urban 

Planning-air quality monitoring stations [21] are modelled using Jaya and TLBO algorithms. There are 

several studies on estimation algorithms in the literature [22-26]. 

 

Jaya algorithm, meaning “victory” in Indian language, was  developed  by Rao in 2016. This algorithm 

can maximize the size of a target function by trying  to get closer to the best and to get away from the 

worst among the candidate  solutions that are created and  refreshed in each iteration [8]. 

 

TLBO algorithm simulates the relationship between students and the teacher in the class. The algorithm 

is consisting of teacher and student stages. The teacher phase represents the education of the students 

by the teacher. Also, the student phase represents the learning which is the result of the interaction 

among the students themselves. Further information about the algorithm can be obtained from related 

reference[9]. 

 

The objective of this study is to generate equations being quadratic, exponential, linear and power 

functions for modeling of O3 levels via Jaya and TLBO algorithms. 

 

 

II. METHODOLOGY 
 

Trabzon is a city located at the geographic coordinates of 40°N and 390°E with a population over 779000 

with an area of about 4664 km2. Although there are six different stations measured various pollutants in 

Trabzon, in this study, Akçaabat station has been chosen because of regional characteristic, providing 
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different emissions, particularly O3. Relationships between O3 emission levels and   some meteorological 

parameters - the other emission (NOx, CO) levels have been modelled via Jaya and TLBO methods. 

In the present work, the objective function of the models is minimization of mean square error (MSE) 

calculated as follows: 

 

min𝑓(𝑥) =
1

𝑁
∑(𝑃𝑖 − 𝐸𝑖)

2

𝑁

𝑖=1

 (1) 

 

where N is the number of data sets, Ei is the ith measured O3 amount, and Pi is the ith estimated O3 amount 

for the regression functions. Root mean square error (RMSE), mean absolute error (MAE), mean 

absolute percentage error (MAPE), and coefficient or determination (R2) for data sets have been selected 

to measure the performance of models of Jaya and TLBO. 
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Jaya and TLBO algorithms have been applied to reach optimum coefficient of the regression 

functions (quadratic, exponential, linear and power) formed with eight delayed data sets . For 

example, these regression functions have been created depending on time for two independent 

variables and two delayed data sets as follows: 

 

𝑌(𝑡) = 𝑤1 +𝑤2 ∙ 𝑋1(𝑡 − 2) + 𝑤3 ∙ 𝑋1(𝑡 − 1) + 𝑤4 ∙ 𝑋1(𝑡) + 𝑤5 ∙ 𝑋2(𝑡 − 2) + 𝑤6 ∙ 𝑋2(𝑡 − 1)

+ 𝑤7 ∙ 𝑋2(𝑡) + 𝑤8 ∙ 𝑌(𝑡 − 2) + 𝑤9 ∙ 𝑌(𝑡 − 1) 
(6) 

 

𝑌(𝑡) = 𝑤1 + 𝑒𝑥𝑝(𝑤2 +𝑤3 ∙ 𝑋1(𝑡 − 2) + 𝑤4 ∙ 𝑋1(𝑡 − 1) + 𝑤5 ∙ 𝑋1(𝑡) + 𝑤6 ∙ 𝑋2(𝑡 − 2) + 𝑤7

∙ 𝑋2(𝑡 − 1) + 𝑤8 ∙ 𝑋2(𝑡) + 𝑤9 ∙ 𝑌(𝑡 − 2) + 𝑤10 ∙ 𝑌(𝑡 − 1)) 
(7) 

 

𝑌(𝑡) = 𝑤1 ∙ 𝑋1(𝑡 − 2)𝑤2 . 𝑋1(𝑡 − 1)𝑤3 . 𝑋1(𝑡)
𝑤4 . 𝑋2(𝑡 − 2)𝑤5 . 𝑋2(𝑡 − 1)𝑤6 . 𝑋2(𝑡)

𝑤7 . 𝑌(𝑡

− 2)𝑤8 . 𝑌(𝑡 − 1)𝑤9 
(8) 

 

𝑌(𝑡) = 𝑤1 +𝑤2 ∙ 𝑋1(𝑡 − 2) + 𝑤3 ∙ 𝑋1(𝑡 − 1) + 𝑤4 ∙ 𝑋1(𝑡) + 𝑤5 ∙ 𝑋1(𝑡 − 2). 𝑋1(𝑡 − 1) + 𝑤6

∙ 𝑋1(𝑡 − 2). 𝑋1(𝑡) + 𝑤7 ∙ 𝑋1(𝑡 − 1). 𝑋1(𝑡) + 𝑤8 ∙ 𝑋1(𝑡 − 2)2 +𝑤9

∙ 𝑋1(𝑡 − 1)2 +𝑤10 ∙ 𝑋1(𝑡)
2 +𝑤11 +𝑤12 ∙ 𝑋2(𝑡 − 2) + 𝑤13 ∙ 𝑋2(𝑡 − 1)

+ 𝑤14 ∙ 𝑋2(𝑡) + 𝑤15 ∙ 𝑋2(𝑡 − 2). 𝑋2(𝑡 − 1) + 𝑤16 ∙ 𝑋2(𝑡 − 2). 𝑋2(𝑡) + 𝑤17

∙ 𝑋2(𝑡 − 1). 𝑋2(𝑡) + 𝑤18 ∙ 𝑋2(𝑡 − 2)2 +𝑤19 ∙ 𝑋2(𝑡 − 1)2 +𝑤20 ∙ 𝑋2(𝑡)
2

+𝑤21 +𝑤22 ∙ 𝑌(𝑡 − 2) + 𝑤23 ∙ 𝑌(𝑡 − 1) + 𝑤24 ∙ 𝑌(𝑡 − 2). 𝑌(𝑡 − 1) + 𝑤25

∙ 𝑌(𝑡 − 2)2 +𝑤26 ∙ 𝑌(𝑡 − 1)2 

(9) 
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Population size and maximum number of cycles of the algorithms have been taken 20 and 8000, 

respectively. The algorithms have been programmed in MATLAB (2014). 

 

 

III. RESULT AND DISCUSSION 
 

The main statistics of the data sets are given in Table 1. There is a negative correlation between O3 

concentration and NOx, CO and relative humidity, while air tempereture, wind speed and air pressure 

have a positive correlation. 

 
Table 1. The main statistics of the data sets 

 

Data sets Unit Min Mean Max 
Standart 

Deviation 

Coefficient 

of variation 
Correlation 

NOx µg/m³ 11 35.056 197 21.733 61.995 -0.245 

CO µg/m³ 111 1618.634 4151 924.303 57.104 -0.223 

Air 

temperature 
°C 0 15.973 29 7.216 45.175 0.051 

Wind speed m/s 1 1.603 3 0.509 31.755 0.196 

Relative 

humidity 
% 31 73.896 96 11.12 15.049 -0.194 

Air pressure mbar 998 1013.131 1035 6.262 0.618 0.11 

 

When the findings obtained from models developed with TLBO and Jaya algorithms are examined, it is 

seen that the best relationship between dependent variable and independent variables is between NOx-

relative humidity and O3 and the worst relationship is between air pressure and O3. Considering the 

functions used in modeling these relationships, it is understood that the function giving the smallest error 

is quadratic, and the function giving the largest error is the exponential function( Table 2 and 3).  
 

Table 2. Results of TLBO algorithm model 

 

Independent Variable 
Dependent 

Variable 
Function MSE RMSE MAE MAPE R2 

Relative Humudity 

O3 Linear 24.9541 4.9954 3.8567 0.0826 0.7225 

O3 Power 24.9017 4.9902 3.8801 0.0833 0.7231 

O3 Exponential 25.8241 5.0817 3.9591 0.0852 0.7128 

O3 Quadratic 22.8448 4.7796 3.7002 0.0792 0.7459 

Air Pressure 

O3 Linear 26.1388 5.1126 3.9375 0.0846 0.7093 

O3 Power 26.2456 5.1231 3.9597 0.0853 0.7081 

O3 Exponential 27.6076 5.2543 4.0609 0.0876 0.6930 

O3 Quadratic 24.1535 4.9146 3.8693 0.0829 0.7314 

CO 

O3 Linear 26.4889 5.1467 3.9919 0.0852 0.7054 

O3 Power 26.6624 5.1636 4.036 0.0863 0.7035 

O3 Exponential 27.8172 5.2742 4.0894 0.0878 0.6906 

O3 Quadratic 24.11 4.9102 3.7942 0.0803 0.7319 
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Table 2 (continuation). Results of TLBO algorithm model 

 

Independent Variable 
Dependent 

Variable 
Function MSE RMSE MAE MAPE R2 

NOX 

O3 Linear 25.088 5.0088 3.9106 0.0832 0.7210 

O3 Power 25.0103 5.001 3.9343 0.084 0.7218 

O3 Exponential 25.9412 5.0933 3.9984 0.0853 0.7115 

O3 Quadratic 23.3103 4.8281 3.7382 0.0792 0.7408 

NOX-Relative 

Humudity 

O3 Linear 20.5103 4.5288 3.485 0.0742 0.7719 

O3 Power 20.6423 4.5434 3.5139 0.0754 0.7704 

O3 Exponential 21.5837 4.6458 3.6256 0.0777 0.7600 

O3 Quadratic 19.5954 4.4267 3.4084 0.0723 0.7821 

NOX-CO 

O3 Linear 24.1502 4.9143 3.7867 0.0804 0.7314 

O3 Power 24.2741 4.9269 3.85 0.0821 0.7300 

O3 Exponential 25.4763 5.0474 3.9186 0.0834 0.7167 

O3 Quadratic 22.8192 4.7769 3.7425 0.0789 0.7462 

NOX-Air Temperature 

O3 Linear 24.0054 4.8995 3.7834 0.0806 0.7330 

O3 Power 24.1707 4.9164 3.8135 0.0815 0.7312 

O3 Exponential 25.1732 5.0173 3.9114 0.0838 0.7200 

O3 Quadratic 22.2127 4.713 3.6721 0.0776 0.7530 

NOX-Relative 

Humudity-Wind Speed 

O3 Linear 20.8774 4.5692 3.5222 0.0752 0.7678 

O3 Power 21.1807 4.6023 3.5513 0.0762 0.7644 

O3 Exponential 21.6881 4.657 3.6596 0.0785 0.7588 

O3 Quadratic 19.8181 4.4518 3.4388 0.0734 0.7796 

NOX-Air Temperature-

Wind Speed 

O3 Linear 22.6849 4.7629 3.6651 0.078 0.7477 

O3 Power 23.0582 4.8019 3.7316 0.0795 0.7436 

O3 Exponential 23.9079 4.8896 3.7838 0.0812 0.7341 

O3 Quadratic 21.8516 4.6746 3.6214 0.0769 0.7570 

 

Table 3. Results of Jaya algorithm model 

 

Independent 

Variable 

Dependent 

Variable 
Function MSE RMSE MAE MAPE R2 

Relative 

Humudity 

O3 Linear 25.0469 5.0047 3.8678 0.0829 0.7214 

O3 Power 24.9278 4.9928 3.8823 0.0833 0.7228 

O3 Exponential 28.4483 5.3337 4.1710 0.0886 0.6836 

O3 Quadratic 23.0213 4.4041 3.3021 0.0796 0.7320 

Air Pressure 

O3 Linear 26.3712 5.1353 3.9638 0.0854 0.7067 

O3 Power 26.3020 5.1286 3.9693 0.0855 0.7075 

O3 Exponential 28.4661 5.3354 4.1563 0.0900 0.6834 

O3 Quadratic 25.8934 5.0643 3.8432 0.0842 0.7120 
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Table 3 (continuation). Results of Jaya algorithm model 

 

Independent 

Variable 

Dependent 

Variable 
Function MSE RMSE MAE MAPE R2 

CO 

O3 Linear 27.5249 5.2464 4.0798 0.0871 0.6937 

O3 Power 27.7776 5.2704 4.1210 0.0883 0.6909 

O3 Exponential 29.9449 5.4722 4.2226 0.0906 0.6668 

O3 Quadratic 26.7520 5.1732 3.9877 0.0834 0.7182 

NOX 

O3 Linear 26.0840 5.1073 3.9975 0.0853 0.7097 

O3 Power 25.8172 5.0811 4.0216 0.0859 0.7127 

O3 Exponential 27.6407 5.2574 4.1382 0.0883 0.6924 

O3 Quadratic 24.9367 5.0122 3.9562 0.0809 0.7238 

NOX-

Relative 

Humudity 

O3 Linear 22.6981 4.7642 3.6572 0.0778 0.7474 

O3 Power 22.1524 4.7066 3.6758 0.0794 0.7535 

O3 Exponential 27.3535 5.2301 4.0873 0.0878 0.6956 

O3 Quadratic 20.2672 4.4910 3.0435 0.0685 0.7925 

NOX-CO 

O3 Linear 26.7909 5.1760 4.0365 0.0863 0.7019 

O3 Power 29.5671 5.4376 4.2719 0.0886 0.6710 

O3 Exponential 30.2055 5.4960 4.2862 0.0946 0.6639 

O3 Quadratic 26.1360 5.0645 3.9031 0.0823 0.7080 

NOX-Air 

Temperature 

O3 Linear 25.6974 5.0693 3.9716 0.0845 0.7140 

O3 Power 26.3697 5.1351 4.0540 0.0870 0.7066 

O3 Exponential 27.7133 5.2643 4.1176 0.0886 0.6916 

O3 Quadratic 24.3560 5.0192 3.7396 0.0810 0.7235 

NOX-

Relative 

Humudity-

Wind Speed 

O3 Linear 23.8372 4.8823 3.6551 0.0786 0.7347 

O3 Power 21.9946 4.6898 3.6256 0.0776 0.7552 

O3 Exponential 24.8762 4.9876 3.8821 0.0844 0.7232 

O3 Quadratic 21.5493 4.5239 3.5927 0.0740 0.0765 

NOX-Air 

Temperature-

Wind Speed 

O3 Linear 25.4261 5.0424 3.9448 0.0845 0.7171 

O3 Power 27.6849 5.2616 4.1076 0.0864 0.6919 

O3 Exponential 31.3367 5.5979 4.3522 0.0941 0.6513 

O3 Quadratic 24.3786 5.0213 3.3826 0.0823 0.7195 

 

Optimum coefficients (wi) of the independent variables (xi) from these regression functions by both 

algorithms have been obtained. Obtained optimum coefficients from Jaya analysis of linear function 

explaining relationship between NOx emission levels - relative humidity and O3 emission levels are 

shown as an example in Table 4.  
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Table 4. The coefficient obtained from Jaya analysis 

 

Coefficients 

w1  w2 w3 w4 w5 w6 w7 w8 w9 w10 

0.027 0.094 -0.072 0.049 -0.010 0.165 0.047 -0.036 0.372 -0.614 

Coefficients 

w11  w12 w13 w14 w15 w16 w17 w18 w19 w20 

0.035 0.007 -0.017 0.119 0.033 0.098 0.030 0.038 -0.332 0.070 
Coefficients 

w21  w22 w23 w24 w25 w26 w27 

0.032 -0.002 0.078 0.056 0.034 0.121 0.545 

 

Figure 1 illustrates a comparison of  the measured O3 with the predicted ones from the determined 

quadratic function by depending on NOX  and relative humidity. Figure 2 also supplies a different 

presentation of the performance for the obtained best fitting model via Jaya analysis. If the points gather 

around the diagonal, smaller error and greater R2 values are obtained.  

 

 
 

Figure 1. The comparison of the measured O3 with the predicted (depending on NOX - relative humidity) ones 

varying by time 
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Figure 2.The comparison of the measured O3 with the predicted (depending on NOX – relative humidity) ones by 

JAYA algorithm model 

 

 

IV. CONCLUSION 
 

In order to model which chemicals and meteorological factors are more effective in the formation of O3, 

which is a component of photochemical air pollution, the data set was first analyzed, and then the 

relationship between O3 concentration and some parameters was modeled with Jaya and TLBO 

algorithms. When the main statistics of the data sets were analyzed, it was observed that the O3 

concentration was negative correlation between NOx, CO and relative humidity, while it was positively 

correlated with other parameters. According to the data obtained from both algorithms, the best fit 

equation between ozone and NOX - relative humidity is obtained from the quadratic function. Also, the 

results of the study show that the quadratic function provide the best fit equation for each parameter. 

Higher correlations of ozone with NOX-relative humidity than of ozone with the other independent 

variables are found pointing that NOX and relative humidity are highly effective on modelling of ozone. 

However, the Jaya model shows the relationship between ozone with NOX and relative humidity by a 

slightly higher correlation than the TLBO model. On the other hand, lower correlations pointed that the 

ozone formation in this region depends on many meteorological and chemical factors. Results of both 

models suggest that formation of surface ozone pollution is much more closely related to the amount of 

NOX and relative humidity rather than other parameters. 
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